

Advanced Design System 2011.01

Feburary 2011 Nonlinear Devices

#### © Agilent Technologies, Inc. 2000-2011

5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA

No part of this documentation may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

#### Acknowledgments

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other countries. Mentor products and processes are registered trademarks of Mentor Graphics Corporation. \* Calibre is a trademark of Mentor Graphics Corporation in the US and other countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation. Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat® are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. SystemC® is a registered trademark of Open SystemC Initiative, Inc. in the United States and other countries and is used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc.. HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights in and to the source code in its entirety, is owned by Hiroshima University and STARC. FLEXIm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project, Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg. QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open Software Foundation. Netscape is a trademark of Netscape Communications Corporation. Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of Minnesota", <u>http://www.cs.umn.edu/~metis</u>, METIS was written by George Karypis (karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU\_MT version 2.0 - Copyright © 2003, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are: 7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. unRAR copyright: The decompression engine for RAR archives was developed using source code of unRAR program.All copyrights to original unRAR code are owned by Alexander Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR compression algorithm, which is proprietary. Distribution of modified unRAR sources in separate form or as a part of other software is permitted, provided that it is clearly stated in the documentation and source comments that the code may not be used to develop a RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any modified version of AMD implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. AMD Availability: http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission. UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version of UMFPACK implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any

code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission." Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. UMFPACK Availability: <u>http://www.cise.ufl.edu/research/sparse/umfpack</u> UMFPACK (including versions 2.2.1 and earlier, in FORTRAN) is available at

http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0, originally released on Jan. 31, 2000, also available at

<u>http://www.cise.ufl.edu/research/sparse</u> . COLAMD V2.0 is also incorporated as a built-in function in MATLAB version 6.1, by The MathWorks, Inc. <u>http://www.mathworks.com</u> . COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at <u>http://www.netlib.org</u> ). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3 is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright: Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt License: Your use or distribution of Qt or any modified version of Qt implies that you agree to this License. This library is free software; you can redistribute it and/or modify it under the

terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this program under the terms of the GNU LGPL, provided that the Copyright, this License, and the Availability of the original version is retained on all copies.User

documentation of any code that uses this code or any modified version of this code must cite the Copyright, this License, the Availability note, and "Used by permission."

Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. Qt Availability: <u>http://www.qtsoftware.com/downloads</u> Patches Applied to Qt can be found in the installation at:

\$HPEESOF\_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian Buchanan at Agilent Inc. at brian\_buchanan@agilent.com for more information.

The HiSIM\_HV source code, and all copyrights, trade secrets or other intellectual property rights in and to the source code, is owned by Hiroshima University and/or STARC.

**Errata** The ADS product may contain references to "HP" or "HPEESOF" such as in file names and directory names. The business entity formerly known as "HP EEsof" is now part of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and to maintain backward compatibility for our customers, we did not change all the names and labels that contain "HP" or "HPEESOF" references.

**Warranty** The material contained in this document is provided "as is", and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this documentation and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in

Advanced Design System 2011.01 - Nonlinear Devices connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

**Technology Licenses** The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license. Portions of this product include the SystemC software licensed under Open Source terms, which are available for download at <a href="http://systemc.org/">http://systemc.org/</a>. This software is redistributed by Agilent. The Contributors of the SystemC software provide this software "as is" and offer no warranty of any kind, express or implied, including without limitation warranties or conditions or title and non-infringement, and implied warranties or conditions merchantability and fitness for a particular purpose. Contributors shall not be liable for any damages of any kind including without limitation direct, indirect, special, incidental and consequential damages, such as lost profits. Any provisions that differ from this disclaimer are offered by Agilent only.

**Restricted Rights Legend** U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

| Devices and Models, BJT                                                                                                                               | 10                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Bin Model                                                                                                                                             | 11                                            |
| Multiplicity Parameter _M                                                                                                                             |                                               |
| Netlist Syntax                                                                                                                                        |                                               |
| Parameter Aliases                                                                                                                                     |                                               |
| Tnom                                                                                                                                                  |                                               |
| Temp and Trise                                                                                                                                        |                                               |
| AgilentHBT_NPN (Agilent Heterojunction Bipolar Transistor, NPN)                                                                                       | 17                                            |
| AgilentHBT_NPN_Th (Agilent Heterojunction Bipolar Transistor with Thermal Node, NPN) $\ldots$                                                         | 18                                            |
| AgilentHBT_Model (Agilent Heterojunction Bipolar Transistor Model)                                                                                    | 26                                            |
| BJT4_NPN, BJT4_PNP (Bipolar Junction Transistors w/Substrate Terminal, NPN, PNP)                                                                      | 50                                            |
| BJT_Model (Bipolar Transistor Model)                                                                                                                  | 55                                            |
| BJT_NPN, BJT_PNP (Bipolar Junction Transistors NPN, PNP)                                                                                              |                                               |
| EE_BJT2_Model (EEsof Bipolar Transistor Model)                                                                                                        |                                               |
| HICUM0_1_12 (HICUM Level 0, Version 1.12 Instance)                                                                                                    |                                               |
| HICUM0_1_12_model (HICUM Level 0, Version 1.12 Model)                                                                                                 |                                               |
| HICUM0_1_2 (HICUM Level 0, Version 1.2)                                                                                                               |                                               |
| HICUM0_1_2 model (HICUM Level 0, Version 1.2)                                                                                                         |                                               |
| HICUM0 (HICUM Level 0 Model Instance)                                                                                                                 |                                               |
| HICUM0_model (HICUM Level 0 Model)                                                                                                                    |                                               |
| HICUM2_21 (HICUM Bipolar Junction Transistor Version 2.21)                                                                                            |                                               |
| HICUM2_21_model (HICUM Bipolar Junction Transistor Version 2.21 Model)                                                                                |                                               |
| HICUM2_22 (HICUM Bipolar Junction Transistor Version 2.22)                                                                                            |                                               |
| HICUM2_22_model (HICUM Bipolar Junction Transistor Version 2.22 Model)                                                                                |                                               |
| HICUM2_23 (HICUM Bipolar Junction Transistor Version 2.23)                                                                                            |                                               |
| HICUM2_23 model (HICUM Bipolar Junction Transistor Version 2.23)                                                                                      |                                               |
| HICUM_Model (Bipolar Transistor Model)                                                                                                                |                                               |
| HICUM_NPN, HICUM_PNP (HICUM Bipolar Transistors, NPN, PNP)                                                                                            | 125                                           |
| M504_BJT4_NPN, M504_BJT4_PNP (Mextram 504 Nonlinear Bipolar Transistors with Substrate                                                                |                                               |
| Terminal, NPN, PNP)                                                                                                                                   | 127                                           |
| M504_BJT5_NPN, M504_BJT5_PNP (Mextram 504 Nonlinear Bipolar Transistors with Substrate                                                                | 1 2 0                                         |
| and Thermal Terminals, NPN, PNP)                                                                                                                      |                                               |
| MEXTRAM 504 Model (MEXTRAM 504 Model)                                                                                                                 |                                               |
|                                                                                                                                                       |                                               |
| MEXTRAM_Model (MEXTRAM Model)                                                                                                                         |                                               |
| STBJT_Model (ST Bipolar Transistor Model)                                                                                                             | 128                                           |
| VBIC5_NPN, VBIC5_PNP (VBIC Nonlinear Bipolar Transistors with Thermal Terminal, NPN, PNP)                                                             | 162                                           |
| VBIC_Model (VBIC Model)                                                                                                                               |                                               |
| VBIC_NPN, VBIC_PNP (VBIC Nonlinear Bipolar Transistors, NPN, PNP)                                                                                     |                                               |
| Devices and Models, Diode                                                                                                                             |                                               |
| Bin Model                                                                                                                                             |                                               |
| Multiplicity Parameter _M                                                                                                                             |                                               |
| Netlist Syntax                                                                                                                                        |                                               |
| Parameter Aliases                                                                                                                                     |                                               |
| Tnom                                                                                                                                                  |                                               |
|                                                                                                                                                       |                                               |
| Temp and Trice                                                                                                                                        |                                               |
| Temp and Trise                                                                                                                                        | 180                                           |
| ADSDiode (ADS_Root Diode)                                                                                                                             | 180<br>181                                    |
| ADSDiode (ADS_Root Diode)          ADS_Diode_Model (ADS_Root Diode Model)                                                                             | 180<br>181<br>182                             |
| ADSDiode (ADS_Root Diode)ADS_Diode_Model (ADS_Root Diode Model)dio500 (Diode Level 500)                                                               | 180<br>181<br>182<br>184                      |
| ADSDiode (ADS_Root Diode)ADS_Diode_Model (ADS_Root Diode Model)dio500 (Diode Level 500)Diode (PN-Junction Diode)                                      | 180<br>181<br>182<br>184<br>186               |
| ADSDiode (ADS_Root Diode)ADS_Diode_Model (ADS_Root Diode Model)dio500 (Diode Level 500)Diode (PN-Junction Diode)Diode_Model (PN-Junction Diode Model) | 180<br>181<br>182<br>184<br>186<br>188        |
| ADSDiode (ADS_Root Diode)ADS_Diode_Model (ADS_Root Diode Model)dio500 (Diode Level 500)Diode (PN-Junction Diode)                                      | 180<br>181<br>182<br>184<br>186<br>188<br>203 |

| PIN_diode (PIN Diode)                                                                         |     |
|-----------------------------------------------------------------------------------------------|-----|
| Devices and Models, GaAs                                                                      |     |
| Bin Model                                                                                     |     |
| Multiplicity Parameter _M                                                                     |     |
| Netlist Syntax                                                                                | 218 |
| Parameter Aliases                                                                             | 219 |
| Tnom                                                                                          | 220 |
| Temp and Trise                                                                                | 221 |
| ADS_FET (ADS_Root FET)                                                                        | 222 |
| ADS_FET_Model (ADS Root Model GaAsFET Model)                                                  | 224 |
| Advanced_Curtice2_Model (Advanced Curtice-Quadratic GaAsFET Model)                            | 226 |
| Angelov_FET (Angelov Nonlinear GaAsFET)                                                       |     |
| Angelov_Model (Angelov (Chalmers) Nonlinear GaAsFET Model)                                    | 232 |
| Curtice2_Model (Curtice-Quadratic GaAsFET Model)                                              |     |
| Curtice3_Model (Curtice-Cubic GaAsFET Model)                                                  |     |
| EE_FET3 (EEsof Scalable Nonlinear GaAsFet, Second Generation)                                 |     |
| EE_FET3_Model (EEsof Scalable Nonlinear GaAsFet Model)                                        |     |
| EE_HEMT1 (EEsof Scalable Nonlinear HEMT)                                                      |     |
| EE_HEMT1_Model (EEsof Scalable Nonlinear HEMT Model)                                          |     |
| GaAsFET (Nonlinear Gallium Arsenide FET)                                                      |     |
| Materka_Model (Materka GaAsFET Model)                                                         |     |
| Mesfet_Form (Symbolic MESFET Model)                                                           |     |
| Modified_Materka_Model (Modified Materka GaAsFET Model)                                       |     |
| Statz_Model (Statz Raytheon GaAsFET Model)                                                    |     |
| Tajima_Model (Tajima GaAsFET Model)                                                           |     |
| TOM3 (TriQuint TOM3 Scalable Nonlinear FET)                                                   |     |
| TOM3_Model (TriQuint TOM3 Scalable Nonlinear FET Model)                                       |     |
| TOM4 (TriQuint TOM4 Scalable Nonlinear FET)                                                   |     |
| TOM4_Model (TriQuint TOM4 Scalable Nonlinear FET Model)                                       |     |
| TOM (TriQuint Scalable Nonlinear GaAsFET)                                                     |     |
| TOM_Model (TriQuint Scalable Nonlinear GaAsFET Model)                                         |     |
| TriQuintMaterka (TriQuint-Materka Nonlinear FET)                                              |     |
| TriQuintMaterka_Model (TriQuint-Materka Nonlinear FET Model)                                  |     |
| Devices and Models, JFET                                                                      |     |
| Bin Model                                                                                     |     |
| Multiplicity Parameter _M                                                                     |     |
|                                                                                               |     |
| Parameter Aliases                                                                             |     |
|                                                                                               |     |
| Temp and Trise                                                                                |     |
| JFET_Model (Junction FET Model)                                                               |     |
| JFET_NFET, JFET_PFET (Nonlinear Junction FETs, P-Channel, N-Channel)                          |     |
| r3 (Three-Terminal Nonlinear Diffused and Poly-Silicon Resistor and JFET Model and Instance). |     |
| Devices and Models, MOS                                                                       |     |
| Bin Model                                                                                     |     |
| Multiplicity Parameter _M                                                                     |     |
|                                                                                               |     |
| Netlist Syntax                                                                                |     |
| Parameter Aliases                                                                             |     |
|                                                                                               |     |
| Temp and Trise                                                                                |     |
| MOSFET Parameter Niev                                                                         |     |
| ADS_MOS (ADS_Root MOS Transistor)                                                             |     |
| ADS_MOS_Model (ADS_Root MOS Transistor Model)                                                 |     |
| BSIM1_Model (BSIM1 MOSFET Model)                                                              | 396 |

| Advanced Design System 2011.01 - Nonlinear Devices                                 |
|------------------------------------------------------------------------------------|
| BSIM2_Model (BSIM2 MOSFET Model) 400                                               |
| BSIM3_Model (BSIM3 MOSFET Model) 406                                               |
| BSIM3SOI5_NMOS, BSIM3SOI5_PMOS (BSIM3 SOI Transistor with 5th Terminal, Ext. Body  |
| Contact, NMOS, PMOS)                                                               |
| BSIM3SOI_Model (BSIM3 Silicon On Insulator MOSFET Model)                           |
| BSIM3SOI_NMOS, BSIM3SOI_PMOS (BSIM3 SOI Transistor, Floating Body, NMOS, PMOS) 441 |
| BSIM4_Model (BSIM4 MOSFET Model)                                                   |
| BSIM4_NMOS, BSIM4_PMOS (BSIM4 Transistor, NMOS, PMOS)                              |
| bsimsoi (bsimsoi MOSFET Model and Instance)                                        |
| EE_MOS1, EE_MOS1P (EEsof Nonlinear MOSFETs, N-Channel, P-Channel)                  |
| EE_MOS1 (EEsof Nonlinear MOSFET, N-Channel)                                        |
| EE_MOS1 (EEsof Nonlinear MOSFET Model)                                             |
| hisim2 (HiSIM 2 MOSFET Model and Instance)                                         |
| HISIM_HV (HISIM_HV version 1.11 MOSFET Model and Instance)                         |
|                                                                                    |
| HiSIM_HV_1_2 (HiSIM_HV Version 1.2 Model and Instance)                             |
| hisim (HiSIM MOSFET Model and Instance)                                            |
| LEVEL1_Model (MOSFET Level-1 Model)                                                |
| LEVEL2_Model (MOSFET Level-2 Model)                                                |
| LEVEL3_Model (MOSFET Level-3 Model)                                                |
| LEVEL3_MOD_Model (Level-3 NMOD MOSFET Model)                                       |
| MM9_NMOS, MM9_PMOS (Philips MOS Model 9, NMOS, PMOS)                               |
| MM11_NMOS, MM11_PMOS (Philips MOS Model 11 NMOS, PMOS)                             |
| MM30_Model (Philips MOS Model 30)                                                  |
| MM30_NMOS, MM30_PMOS (Philips MOS Model 30, NMOS, PMOS)                            |
| MOSFET_NMOS, MOSFET_PMOS (Nonlinear MOSFETs, NMOS, PMOS)                           |
| MOS_Model9_Process (Philips MOS Model 9, Process Based)                            |
| MOS_Model9_Single (Philips MOS Model 9, Single Device)                             |
| MOS_Model11_Binned (Philips MOS Model 11, Binned)                                  |
| MOS_Model11_Electrical (Philips MOS Model 11, Electrical)                          |
| MOS_Model11_Physical (Philips MOS Model 11, Physical)                              |
| MOSVAR_1_1 (PSP-Based MOS Varactor Version 1.1 Model and Instance)                 |
| MOSVAR (PSP-Based MOS Varactor Model)                                              |
| Devices and Models, NXP SiMKit                                                     |
| Equation-Based Non-Linear Components                                               |
| Multiplicity Parameter _M                                                          |
| FDD1P to FDD10P (1- to 10-Port Frequency-Domain Defined Devices)                   |
| NonlinC (Nonlinear Capacitor)                                                      |
| NonlinCCCS (Nonlinear Current-Controlled Current Source)                           |
| · · ·                                                                              |
| NonlinCCVS (Nonlinear Current-Controlled Voltage Source)                           |
| NonlinL (Nonlinear Inductor)                                                       |
| NonlinVCCS (Nonlinear Voltage-Controlled Current Source)                           |
| NonlinVCVS (Nonlinear Voltage-Controlled Voltage Source)                           |
| SDD1P to SDD12P, SDD14P (Symbolically Defined Devices, 1-12 and 14 Ports)          |
| Linear Devices                                                                     |
| BIP (Bipolar Transistor with Alpha Current Gain)                                   |
| BIPB (Bipolar Transistor, with Beta Current Gain) 626                              |
| DFET (Dual-Gate Field Effect Transistor)628                                        |
| FET2 (Field Effect Transistor with Source Resistance)       631                    |
| FET (Field Effect Transistor)    633                                               |
| FETN1 (FET Noise Model (Van der Ziel))                                             |
| FETN2 (FET Noise Model (Statz, et al))637                                          |
| FETN3 (FET Noise Model (Fukui))639                                                 |
| FETN4 (FET Noise Model (Podell))641                                                |
| FETN4a (FET Noise Model (Podell))643                                               |
|                                                                                    |

| FETN5 (FET Noise Model Gupta, et al))                        | 645 |
|--------------------------------------------------------------|-----|
| HYBPI (Hybrid-Pi Bipolar Transistor with Alpha Current Gain) | 647 |
| PIN2 (PIN Diode, Packaged Model)                             | 649 |
| PIN (PIN Diode, Chip Model)                                  | 650 |

## **Devices and Models, BJT**

- AgilentHBT\_NPN\_Th (Agilent Heterojunction Bipolar Transistor with Thermal Node, NPN) (ccnld)
- AgilentHBT Model (Agilent Heterojunction Bipolar Transistor Model) (ccnld)
- BJT4\_NPN, BJT4\_PNP (Bipolar Junction Transistors with Substrate Terminal, NPN, PNP) (ccnld)
- BJT Model (Bipolar Transistor Model) (ccnld)
- BJT NPN, BJT PNP (Bipolar Junction Transistors NPN, PNP) (ccnld)
- EE BJT2 Model (EEsof Bipolar Transistor Model) (ccnld)
- HICUM0 1 12 (ccnld)
- HICUM0 1 12 model (ccnld)
- HICUM0\_1\_2 (HICUM Level 0, Version 1.2) (ccnld)
- HICUM0\_1\_2 model (HICUM Level 0, Version 1.2) (ccnld)
- HICUM0 (HICUM Level 0 Model Instance) (ccnld)
- HICUM0 model (HICUM Level 0 Model) (ccnld)
- HICUM2 21 (HICUM Bipolar Junction Transistor Version 2.21) (ccnld)
- HICUM2 21 model (HICUM Bipolar Junction Transistor Version 2.21 Model) (ccnld)
- HICUM2 22 (HICUM Bipolar Junction Transistor Version 2.22) (ccnld)
- HICUM2 22 model (HICUM Bipolar Junction Transistor Version 2.22 Model) (ccnld)
- HICUM2\_23 (HICUM Bipolar Junction Transistor Version 2.23) (ccnld)
- HICUM2\_23 model (HICUM Bipolar Junction Transistor Version 2.23) (ccnld)
- HICUM Model (Bipolar Transistor Model) (ccnld)
- HICUM NPN, HICUM PNP (HICUM Bipolar Transistors, NPN, PNP) (ccnld)
- *M504 BJT4 NPN, M504 BJT4 PNP (Mextram 504 Nonlinear Bipolar Transistors with Substrate Terminal, NPN, PNP)* (ccnld)
- *M504 BJT5 NPN, M504 BJT5 PNP (Mextram 504 Nonlinear Bipolar Transistors with Substrate and Thermal Terminals, NPN, PNP)* (ccnld)
- M504 BJT NPN, M504 BJT PNP (Mextram 504 Nonlinear Bipolar Transistors) (ccnld)
- MEXTRAM 504 Model (MEXTRAM 504 Model) (ccnld)
- MEXTRAM Model (MEXTRAM Model) (ccnld)
- STBJT Model (ST Bipolar Transistor Model) (ccnld)
- VBIC5 NPN, VBIC5 PNP (VBIC Nonlinear Bipolar Transistors with Thermal Terminal, NPN, PNP) (ccnld)
- VBIC Model (VBIC Model) (ccnld)
- VBIC NPN, VBIC PNP (VBIC Nonlinear Bipolar Transistors, NPN, PNP) (ccnld)

## **Bin Model**

The BinModel in the BJT library allows you to sweep a parameter (usually a geometry, such as gate length), then enable the simulator to automatically select between different model cards. This alleviates the problem that one scalable model typically doesn't work for all sizes of a device.

For information on the use of the binning feature, refer to *BinModel (Bin Model for Automatic Model Selection)* (ccsim).

## **Multiplicity Parameter \_M**

The multiplicity feature provides a way to scale components or entire sub-circuits containing many components and sub-circuits. Given a component with a multiplicity value *M*, the simulator treats this component as if there were *M* such components all connected in parallel. Sub-circuits within sub-circuits will be appropriately scaled.

The \_M parameter is available at the component level as shown here. (For components that do not explicitly have a Multiplicity parameter, the same functionality can be achieved by placing the component in a sub-circuit and using the sub-circuit's Multiplicity parameter, as described next.)

| Select Parameter<br>Model=BJTM1             | I            | None 🗹                              |
|---------------------------------------------|--------------|-------------------------------------|
| Area=<br>Region=<br>Temp=<br>Mode=nonlinear |              | nation Editor<br>m/Statistics Setup |
| Noise=yes<br>_M=<br>_M : Number of devices  | in parallel, | (default: 1)                        |
| OK Apply                                    | Cancel       | Reset Help                          |

For sub-circuits, the parameter is enabled by selecting **File** > **Design Parameters** from the Schematic window. In the dialog box, select the **Parameters** tab. To add the Multiplicity parameter, choose **Add Multiplicity Factor\_M**.

| General   | Param      | eters      |
|-----------|------------|------------|
| Select Pa | rameter    |            |
|           |            |            |
| Add       | Cat        | Paste      |
| Add Multi | plicity Fa | ictor (_M) |

## **Netlist Syntax**

Models for the ADS circuit simulator have the following syntax:

```
model modelname modeltype [param=value]*
```

where model is a keyword, modelname is the user-defined name for the model and modeltype is one of the predefined model types (e.g., Diode, BJT, MOSFET). After these three required fields comes zero or more param=value pairs. param is a model keyword and value is its user-assigned value. There is no required order for the param=value pairs. Model keywords that are not specified take on their default values. Refer to documentation for each model type to see the list of model parameters, their meanings and default values.

The model statement must be on a single line. Use the backslash "\"as a line continuation character. The instance and model parameter names are case sensitive; most, (not all) model parameters have their first character capitalized and the rest are lower case. Scale factors (e.g.,  $p=10^{-12}$ ,  $n=10^{-9}$ ,  $u=10^{-6}$ ,  $m=10^{-3}$ ,  $k=10^{+3}$ ,  $M=10^{+6}$ ) can be used with numbers for numeric values. For more information about the circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

A netlist translator is available for translating models and subcircuits from Pspice, Hspice, and Spectre syntax to the form used by the ADS Circuit Simulator. Refer to *Netlist Translator for SPICE and Spectre* (netlist) for more information.

### **Parameter Aliases**

For compatibility with other simulators, some models accept two or more different keywords for the same parameter. For example, the Diode model accepts both model keywords Is and Js for the saturation current. In the documentation, the parameter Name column lists the aliases in parentheses after the main parameter name. The main parameter name is the one that appears in the ADS dialog box for the model.

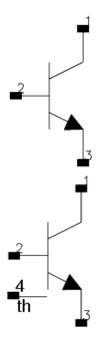
## Tnom

All nonlinear device models have a parameter that specifies the temperature at which the model parameters were extracted. Normally called Tnom, some models may use Tref, Tr, or Tmeas. The default value for Tnom is specified on the Options item in the Tnom field. If Options.Tnom is not specified it defaults to 25°C. This is true for all nonlinear devices.

It is strongly suggested that the user explicitly set Tnom in each model and not depend on its default value. First, this provides a self-documenting model; other users of the device will not have to guess at what Tnom should be. Second, different users of the same model would get different results for the same circuit if they simulate with different values of Options.Tnom.

## **Temp and Trise**

The ADS circuit simulation allows the user to directly specify the temperature of each individual device instance. This is done with the device instance parameter Temp which is the device temperature in degrees Celsius. If it is not specified, it defaults to the ambient temperature set with Options.Temp, which defaults to 25°C.


For compatibility with other simulators, many of the nonlinear devices allow the user to specify Trise for each device instance, which specifies actual device temperature as an increase from ambient. It defaults to zero. The Trise instance value is used only if the Temp instance value is not specified. If the user does not specify Trise on the instance, a default value for Trise can also be specified in the model. It defaults to zero. The following shows the logic of how the instance temperature is calculated if it is not explicitly specified.

if Instance.Temp is not specified
if instance.Trise is not specified
Instance.Temp = Options.Temp + Model.Trise
else
Instance.Temp = Options.Temp + Instance.Trise

AgilentHBT\_NPN (Agilent Heterojunction Bipolar Transistor, NPN)

## AgilentHBT\_NPN\_Th (Agilent Heterojunction Bipolar Transistor with Thermal Node, NPN)





#### **Parameters**

| Name     | Description                                                | Units | Default   |
|----------|------------------------------------------------------------|-------|-----------|
| Model    | Model instance name                                        | None  | HBTM1     |
| Area     | Scaling factor for resistances, currents, and capacitances | None  | 1.0       |
| Temp     | Device operating temperature                               | °C    | 25        |
| Trise    | Temperature rise over ambient                              | °C    | 0         |
| Mode     | Simulation mode: nonlinear or linear (refer to note 3)     | None  | Nonlinear |
| Noise    | Noise generation option: yes, no                           | None  | yes       |
| SelfTmod | Self-Heating Model, 0=Off, 1=On                            | None  | 0         |
| _M       | Number of devices in parallel                              | None  | 1         |

#### **Notes/Equations**

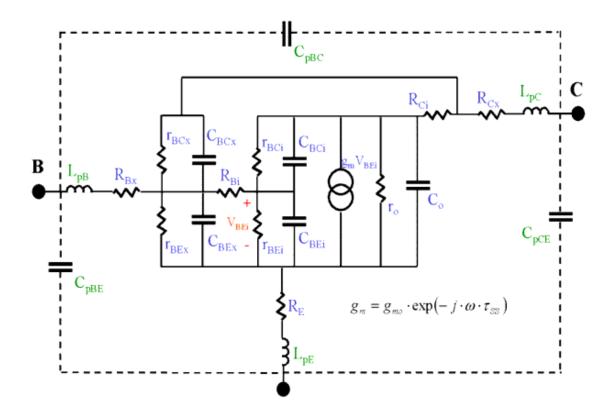
- 1. The Area factor scales the device capacitances, currents, and resistances. The parasitic capacitances (*Cpbe*, *Cpbc*, *Cpce*) and inductances, (*Lpb*, *Lpc*, *Lpe*) are not scaled by this factor. In addition, Rth1, Cth1, Rth2, and Cth2 are not scaled with the Area factor. For more information on area scaling dependence, refer to the section *Area Scaling Equations* (ccnld) of the AgilentHBT\_Model component documentation.
- 2. The Temp parameter specifies the physical (operating) temperature of the device; if

different from the temperature at which the model parameters are extracted (specified by Tnom in the model), certain model parameters are scaled such that the device is simulated at its operating temperature. For more information on the temperature scaling relationships, refer to the section *Temperature Scaling Equations* (ccnld) of the AgilentHBT\_Model component documentation.

- 3. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with *Mode=linear* are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 4. DC operating point parameters that can be sent to the dataset are listed in the following table.

| Name                | Description                                                                                                                                                                          | Units   |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Ic <sup>†</sup>     | Total current flowing into the collector terminal                                                                                                                                    | amperes |
| Ib <sup>†</sup>     | Total current flowing into the base terminal                                                                                                                                         | amperes |
| Ie <sup>†</sup>     | Total current flowing into the emitter terminal                                                                                                                                      | amperes |
| Power <sup>†</sup>  | Total power dissipation                                                                                                                                                              | watts   |
| Temp <sup>†</sup>   | Intrinsic device /(junction/) temperature                                                                                                                                            | celsius |
| Vbe <sup>†</sup>    | Voltage across the base and emitter terminals                                                                                                                                        | volts   |
| Vbc <sup>†</sup>    | Voltage across the base and collector terminals                                                                                                                                      | volts   |
| Vce <sup>†</sup>    | Voltage across the collector and emitter terminals                                                                                                                                   | volts   |
| BetaDC <sup>†</sup> | Ic : DC current gain<br>Ib                                                                                                                                                           |         |
| Gm_ext <sup>†</sup> | $ \frac{Gm\_int}{1 + Gm\_int  \times \left( Re + \frac{Re + Rbi + Rbx}{BetaDC} \right)} : Estimated extrinsic transconductance in CE-configuration $                                 | siemens |
| Gm_int <sup>†</sup> | $ \frac{\partial I_{CE}}{\partial I_{BEi}} \Big _{V_{eei}} $ : Intrinsic transconductance                                                                                            | siemens |
| Ft_ext <sup>†</sup> | $\frac{1}{2\pi \times (\text{ Tau\_ext})}$ : Estimated extrinsic fT                                                                                                                  | hertz   |
| Fmax <sup>†</sup>   | $\sqrt{\frac{f_{t\_ext}}{8\pi  R Ceff }}$ where !ccnld-3-03-006.gif!This estimate of Fmax /(from unilateral gain/) based on Vaidyanathan and Pulfrey                                 | hertz   |
| Tau_ss <sup>†</sup> | $\frac{Cm}{Gm_{int}}$ : Small-signal delay. This modifies the overall intrinsic<br>$\frac{Cm_{int}}{Gm_{int}}$ transconductance to gm = Gm_int × exp/(- <i>j</i> $\omega$ × Tau_ss/) | seconds |
| Rpi <sup>†</sup>    | $\frac{1}{\text{Gbei} + \text{Gbex}}$ : Total base-emitter resistance for hybrid-n model                                                                                             | ohms    |
| Rmu <sup>†</sup>    | $\frac{1}{\text{Gbci} + \text{Gbcx}}$ : Total base-collector resistance for hybrid- $\pi$ model                                                                                      | ohms    |
| Ro <sup>†</sup>     |                                                                                                                                                                                      |         |

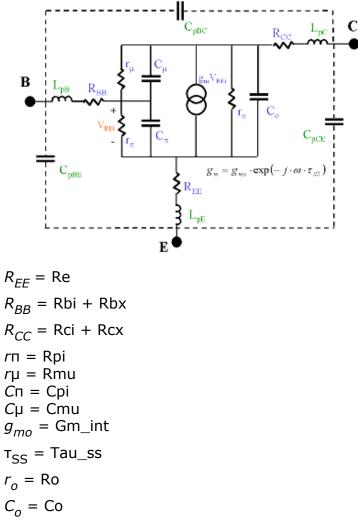
#### **DC Operating Point Parameters**


|                                     | Advanced Design System 2011.01 - Nonlinear Devices                                                                                                                                                                                                                              |         |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Ro <sup>†</sup>                     | $\frac{1}{\frac{\partial I_{CE}}{\partial V_{CEi}}}  _{V_{BEi}}$ : Output resistance                                                                                                                                                                                            | ohms    |
| Re <sup>†</sup>                     | Area and temperature scaled emitter resistance                                                                                                                                                                                                                                  | ohms    |
| Rbi <sup>†</sup>                    | Area and temperature scaled intrinsic base resistance                                                                                                                                                                                                                           | ohms    |
| Rbx <sup>†</sup>                    | Area and temperature scaled extrinsic base resistance                                                                                                                                                                                                                           | ohms    |
| Rci <sup>†</sup>                    | Area and temperature scaled intrinsic collector resistance                                                                                                                                                                                                                      | ohms    |
|                                     | Area and temperature scaled extrinsic collector resistance                                                                                                                                                                                                                      | ohms    |
| Rcx <sup>†</sup>                    | Cbei + Cbex: Total base-emitter capacitance for hybrid- $\pi$ model                                                                                                                                                                                                             | farads  |
| Cpi <sup>†</sup>                    | Cbci + Cbcx: Total base-collector capacitance for hybrid-n model                                                                                                                                                                                                                | farads  |
| Cmu <sup>†</sup><br>Co <sup>†</sup> | $\frac{\partial Q_{CC}}{\partial V_{CEi}}\Big _{V_{BEi}} + \left(\frac{\partial Q_{BB}}{\partial V_{CEi}}\Big _{V_{BEi}}\right) \qquad : \text{Collector-emitter } \lor(\text{output/}) \text{ capacitance}$                                                                    | farads  |
| Gbei                                | $rac{dI_{BEi}}{dV_{BEi}}$ : Intrinsic base-emitter conductance                                                                                                                                                                                                                 | siemens |
| Gbci                                | $rac{dI_{BCi}}{dV_{BCi}}$ : Intrinsic base-collector conductance                                                                                                                                                                                                               | siemens |
| Gbex                                | $\frac{dI_{BEx}}{dV_{BEx}}$ : Extrinsic base-emitter conductance                                                                                                                                                                                                                | siemens |
| Gbcx                                | $rac{dI_{BCx}}{dV_{BCx}}$ : Extrinsic base-collector conductance                                                                                                                                                                                                               | siemens |
| Cbei                                | $\left. \frac{\partial Q_{BB}}{\partial V_{BEi}} \right _{V_{CEi}} + \left( \frac{\partial Q_{BB}}{\partial V_{CEi}} \right _{V_{BEi}} \right)  : \text{ Total intrinsic base-emitter capacitance}$                                                                             | farads  |
| Chai                                | /(diffusion _ depletion/)                                                                                                                                                                                                                                                       | farads  |
| Cbci                                | $ \left \frac{\partial Q_{BB}}{\partial V_{CEi}} \right _{V_{BEi}} $ : Total intrinsic base-collector capacitance /(diffusion _ depletion/)                                                                                                                                     | laiaus  |
| Cbex                                | $\frac{dQ_{BEx}}{dV_{BEx}}$ : Extrinsic base-emitter depletion capacitance                                                                                                                                                                                                      | farads  |
| Cbcx                                | $\frac{dQ_{BCx}}{dV_{BCx}}$ : Extrinsic base-collector depletion capacitance                                                                                                                                                                                                    | farads  |
| Cbei_depl                           | $\frac{dQ_{BEid}}{dV_{BEi}}$ : Intrinsic base-emitter depletion capacitance                                                                                                                                                                                                     | farads  |
| Cbci_depl                           | $rac{dQ_{BCid}}{dV_{BCi}}$ : Intrinsic base-collector depletion capacitance                                                                                                                                                                                                    | farads  |
| Cm                                  | $ \begin{array}{c c} -\frac{\partial Q_{CC}}{\partial V_{BEi}} \\  _{V_{CEi}} + \left( \frac{\partial Q_{BB}}{\partial V_{CEi}} \\  _{V_{BEi}} \end{array} \right) & : \text{Transcapacitance which is used to calculate} \\ \text{the small-signal delay Tau_ss} \end{array} $ | farads  |
|                                     | Voltage across the intrinsic base and intrinsic emitter                                                                                                                                                                                                                         | volts   |
| Vbei                                |                                                                                                                                                                                                                                                                                 |         |
| Vbei<br>Vbci                        | Voltage across the intrinsic base and intrinsic collector                                                                                                                                                                                                                       | volts   |

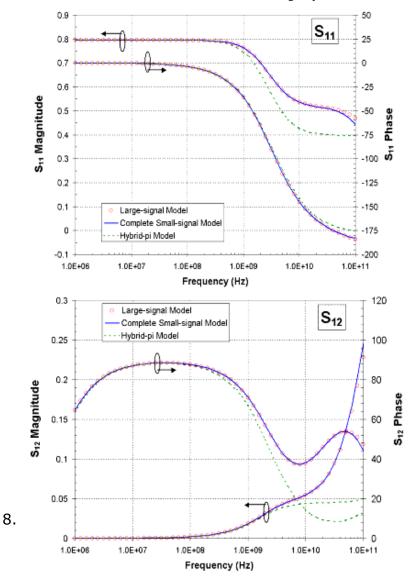
|          | Auvaited Design System 2011.01 - Noniniear Devices                                                                                                                                                     |                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Tau_int  | !ccnld-3-03-023.gif!Intrinsic delay in forward active mode                                                                                                                                             | seconds            |
| Tau_ext  | /( /(Tau_int + /(Re + Rci + Rcx/) × /(Cbci_depl + Cbcx_depl/) + /(Cbci_depl + Cbcx + Cbei_depl + Cbex/) /) / Gm_int. Estimated extrinsic /(total/) emitter-<br>collector delay in forward-active mode. | seconds            |
| Ft_int   | $\frac{1}{2\pi \times (\text{ Tau_int})}$ : Estimated intrinsic fT                                                                                                                                     | hertz              |
| Teff     | Effective \/(limited/) device temperature used in model equations.<br>Approximately within [-200,500].                                                                                                 | celsius            |
| Rth1     | Temperature scaled thermal resistance #1                                                                                                                                                               | Kelvin/watt        |
| Cth1     | Thermal capacitance #1                                                                                                                                                                                 | sec<br>watt/Kelvin |
| Rth2     | Temperature scaled thermal resistance #2                                                                                                                                                               | Kelvin/watt        |
| Cth2     | Thermal capacitance #2                                                                                                                                                                                 | sec<br>watt/Kelvin |
| Gmdc_int | $DI_{CE}$ Intrinsic DC transconductance. Includes modulation of temperature $\overline{DV_{BEi}}$ with bias. Gmdc_int=Gm_int+Gth Dthi                                                                  | siemens            |
| Gmdc_ext |                                                                                                                                                                                                        | siemens            |
| Godc_int | $DI_{CE}$ Intrinsic DC output conductance. Includes modulation of temperature $DV_{CEx}$ with bias.                                                                                                    | siemens            |
| Gth      | $\left. \frac{\partial I_{CE}}{\partial T} \right _{V_{BE}, V_{CE}}$ Rate of change in intrinsic collector current with temperature                                                                    | amp/Kelvin         |
| Dthi     | $\left. rac{\partial T}{\partial V_{BEi}}  ight _{V_{CEi}}$ Rate of change in temperature with intrinsic base-emitter voltage                                                                         | Kelvin/volt        |
| Dthx     | $\left.\frac{\partial T}{\partial V_{BEx}}\right _{V_{CEx}}$ Rate of change in temperature with extrinsic base-emitter voltage                                                                         | Kelvin/volt        |
|          | Total intrinsic base current. <sup>‡</sup>                                                                                                                                                             | ampere             |
| Icc      | Total intrinsic collector current. <sup>‡</sup>                                                                                                                                                        | ampere             |
| Qbb      | Total intrinsic base charge. <sup>‡</sup>                                                                                                                                                              | coulombs           |
| Qcc      | Total intrinsic collector charge. <sup>‡</sup>                                                                                                                                                         | coulombs           |

<sup>+</sup> Parameters are displayed under "Brief Device Operating Point".

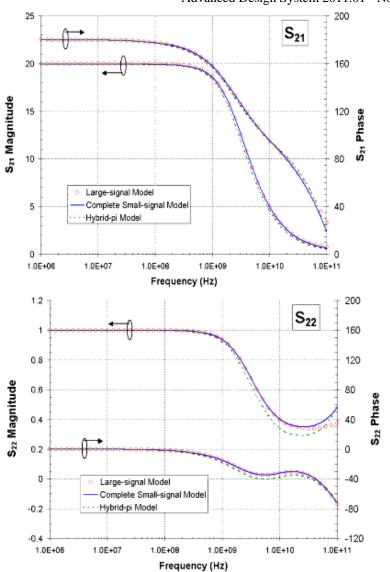
<sup>‡</sup> From 2-Port Network of the Large-Signal Intrinsic Model in AgilentHBT Model (Agilent Heterojunction Bipolar Transistor Model) (ccnld).


5. The operating point parameter calculations do not account for the parasitic capacitances (*Cpbe*, *Cpbc*, *Cpce*) and inductances (*Lpb*, *Lpc*, *Lpe*). The DC operating point results can be used to construct an accurate small-signal representation of the large-signal topology.




6. The circuit elements of the small-signal model correspond to the DC operating point parameters as follows:

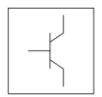
 $R_E = \text{Re}$  $R_{Bi} = Rbi$  $R_{Bx} = Rbx$  $R_{Ci} = \text{Rci}$  $R_{Cx} = \text{Rcx}$  $r_{BEx} = 1/\text{Gbex}$  $r_{BCx} = 1/\text{Gbcx}$  $C_{BEx} = \text{Cbex}$  $C_{BCx} = \text{Cbcx}$  $r_{BEi} = 1/\text{Gbei}$  $r_{BCi} = 1/\text{Gbci}$  $C_{BEi}$  = Cbei  $C_{BCi}$  = Cbci  $g_{mo} = \text{Gm\_int}$  $T_{SS} = Tau_ss$  $r_o = \text{Ro}$  $C_o = Co$ 


7. The DC operating point parameters can be also used to construct a standard hybrid- $\!\pi$ 



8. The following 2 illustrations show the accuracy of the two small-signal models. Note the limited accuracy of the hybrid-n model topology at high frequencies.




(Default parameters of AgilentHBT\_Model: VBE=1.39V and VCE=3V)



(Default parameters of AgilentHBT\_Model: VBE=1.39V and VCE=3V) 9. This device has no default artwork associated with it.

# AgilentHBT\_Model (Agilent Heterojunction Bipolar Transistor Model)

#### Symbol



#### **Parameters**

#### Model parameters must be specified in SI units

| Name | Description and Comments                                                                 | Units | Default      |
|------|------------------------------------------------------------------------------------------|-------|--------------|
| Tnom | Nominal temperature (temperature at which the room temperature parameters are extracted) | °C    | 25           |
| Re   | Emitter resistance                                                                       | Ohm   | 2.0          |
| Rci  | Intrinsic collector resistance                                                           | Ohm   | 1.0          |
| Rcx  | Extrinsic collector resistance                                                           | Ohm   | 5.0          |
| Rbi  | Intrinsic base resistance                                                                | Ohm   | 15.0         |
| Rbx  | Extrinsic base resistance                                                                | Ohm   | 5.0          |
| Is   | Collector-Emitter current: Forward collector saturation current                          | A     | 1.0e-25      |
| Nf   | Collector-Emitter current: Forward collector current ideality factor                     | None  | 1.0          |
| Isr  | Collector-Emitter current: Reverse emitter saturation current                            | A     | 1.00e-<br>15 |
| Nr   | Collector-Emitter current: Reverse emitter current ideality factor                       | None  | 2.0          |
| Ish  | Base-Emitter current: Ideal base-emitter current                                         | Α     | 1.0e-27      |
| Nh   | Base-Emitter current: Ideal base-emitter current ideality factor                         | None  | 1.0          |
| Ise  | Base-Emitter current: Non-ideal base-emitter current                                     | А     | 1.0e-18      |
| Ne   | Base-Emitter current: Non-ideal base-emitter current ideality factor                     | None  | 2.0          |
| Isrh | Base-Collector current: Ideal base-collector saturation current                          | А     | 1.0e-15      |
| Nrh  | Base-Collector current: Ideal base-collector current ideality factor                     | None  | 2.0          |
| Isc  | Base-Collector current: Non-ideal base-collector saturation current                      | A     | 1.0e-13      |
| Nc   | Base-Collector current: Non-ideal base-collector current ideality factor                 | None  | 2.0          |
| Abel | Base-Emitter current: Portion of base-emitter current allocated to extrinsic region      | None  | 0.0          |
| Vaf  | Forward Early voltage                                                                    | V     | 500          |
| Var  | Reverse Early voltage                                                                    | V     | 1000         |
| Isa  | Base-emitter heterojunction saturation current (BE barrier effects)                      | Α     | 1.0e+10      |

| Na                    | Advanced Design System 2011.01 - Nonlinear Devices<br>Base-emitter heterojunction ideality factor | None            | 1.0                   |
|-----------------------|---------------------------------------------------------------------------------------------------|-----------------|-----------------------|
| Isb                   | Base-collector heterojunction saturation current (BC barrier effects)                             | А               | 1.0e+10               |
| Nb                    | Base-collector heterojunction ideality factor                                                     | None            | 1.0                   |
| Ikdc1                 | I-V knee effect: Slope of q3 function                                                             | A               | 1.0                   |
| Ikdc2Inv <sup>+</sup> | I-V knee effect: Transition width of Ic                                                           | A <sup>-1</sup> | infinity <sup>†</sup> |
| Ikdc3                 | I-V knee effect: I-V knee effect critical current                                                 | A               | 1.0                   |
| VkdcInv               | I-V knee effect: Transition width of Vcb                                                          | V <sup>-1</sup> | 0.1                   |
| Nkdc                  | I-V knee effect: Maximum value of q3                                                              | None            | 3.0                   |
| Gkdc                  | I-V knee effect: Exponent of q3 factor in base current                                            | None            | 0.0                   |
| Ik                    | High injection roll-off current                                                                   | A               | 1.0                   |
| Cje                   | Base-emitter capacitance: zero-bias capacitance                                                   | F               | 4.0e-14               |
| Vje                   | Base-emitter capacitance: built-in voltage                                                        | V               | 1.3                   |
| Mje                   | Base-emitter capacitance: grading factor                                                          | None            | 0.3                   |
| Cemax                 | Base-emitter capacitance: maximum value in forward bias                                           | F               | 1.0e-13               |
| Vpte                  | Base-emitter capacitance: punch-through voltage                                                   | V               | 1.0                   |
| Mjer                  | Base-emitter capacitance: grading factor beyond punchthrough                                      | None            | 0.05                  |
| Abex                  | Base-emitter capacitance: ratio between extrinsic and total base-emitter regions                  | None            | 0.0                   |
| Cjc                   | Base-collector capacitance: zero-bias capacitance                                                 | F               | 5.0e-14               |
| Vjc                   | Base-collector capacitance: built-in voltage                                                      | V               | 1.1                   |
| Мјс                   | Base-collector capacitance: grading factor                                                        | None            | 0.3                   |
| Ccmax                 | Base-collector capacitance: maximum value in forward bias                                         | F               | 9.0e-14               |
| Vptc                  | Base-collector capacitance: punch-through voltage                                                 | V               | 3.0                   |
| Mjcr                  | Base-collector capacitance: grading factor beyond punch-through                                   | None            | 0.03                  |
| Abcx                  | Base-collector capacitance: Ratio between extrinsic and total base-collector regions              | None            | 0.75                  |
| Tfb                   | Base delay: Intrinsic base transit time                                                           | sec             | 1.0e-12               |
| Fextb                 | Base delay: Fraction of base delay charge allocated to B-C junction                               | None            | 0.2                   |
| Tfc0                  | Collector delay: Low current transit time                                                         | sec             | 2.0e-12               |
| Tcmin                 | Collector delay: High current transit time                                                        | sec             | 5.0e-13               |
| Itc                   | Collector delay: Midpoint in Ice between Tfc0 and Tcmin                                           | A               | 0.006                 |
| Itc2                  | Collector delay: Width in Ic between Tfc0 and Tcmin                                               | A               | 0.008                 |
| Vtc0Inv               | Collector delay: Rate of change of Tfc0 with Vcb                                                  | V <sup>-1</sup> | 0.3                   |
| Vtr0                  | Collector delay: Transition width in Vcb to Vmx0                                                  | V               | 2.0                   |
| Vmx0                  | Collector delay: Maximum Vcb for Tfc0                                                             | V               | 2.0                   |
| VtcminInv             | Collector delay: Rate of change of Tcmin with Vcb                                                 | V <sup>-1</sup> | 0.5                   |
| Vtrmin                | Collector delay: Transition width in Vcb to Vmxmin                                                | V               | 1.0                   |
| Vmxmin                | Collector delay: Maximum Vbc for Tcmin                                                            | V               | 1.0                   |
| VtcInv                | Collector delay: Rate of change of Itc with Vcb                                                   | V <sup>-1</sup> | 0.1                   |
| Vtc2Inv               | Collector delay: Rate of change of Itc2 with Vcb                                                  | V <sup>-1</sup> | 0.1                   |
| Fextc                 | Collector delay: Fraction of collector delay charge allocated to B-C junction                     | None            | 0.8                   |
| Tkrk                  | Kirk effect delay: Kirk effect delay time                                                         | sec             | 1.00e-<br>12          |
| Ikrk                  | Kirk effect delay: Critical current for Kirk effect                                               | А               | 0.025                 |

| Ikrktr   | Advanced Design System 2011.01 - Nonlinear Devices<br>Kirk effect delay: Transition width to Ikirk=0 | A               | 1.00e-<br>06 |
|----------|------------------------------------------------------------------------------------------------------|-----------------|--------------|
| Vkrk     | Kirk effect delay: Rate of change of Ikrk with Vcb                                                   | V               | 3.0          |
| Vkrk2Inv | Kirk effect delay: Rate of change of Tkrk with Vcb                                                   | V <sup>-1</sup> | 0.2          |
| Gkrk     | Kirk effect delay: Exponent of Kirk effect delay                                                     | None            | 4.0          |
| Vktr     | Kirk effect delay: Transition width in Vcb to Vkmx                                                   | V               | 1.0          |
| Vkmx     | Kirk effect delay: Maximum Vcb                                                                       | V               | 1.0          |
| Fexke    | Fraction of Kirk effect charge allocated to the B-C junction                                         | None            | 0.2          |
| Tr       | Reverse transit time                                                                                 | sec             | 1.0e-09      |
| Срсе     | Parasitic / fringing collector-emitter capacitance                                                   | F               | 1.0e-15      |
| Cpbe     | Parasitic / fringing base-emitter capacitance                                                        | F               | 1.0e-15      |
| Cpbc     | Parasitic / fringing base-collector capacitance                                                      | F               | 1.0e-15      |
| Lpb      | Parasitic base inductance                                                                            | Н               | 0.0          |
| Lpc      | Parasitic collector inductance                                                                       | Н               | 0.0          |
| Lpe      | Parasitic emitter inductance                                                                         | Н               | 0.0          |
| Xrb      | Temperature exponent for Rbi and Rbx                                                                 | None            | 0.0          |
| Xrc      | Temperature exponent for Rci and Rcx                                                                 | None            | 0.0          |
| Xre      | Temperature exponent for Re                                                                          | None            | 0.0          |
| Tvje     | Rate of change in temperature of Vje                                                                 | V/K             | 0.0          |
| Тvpe     | Rate of change in temperature of Vpte                                                                | V/K             | 0.0          |
| Tvjc     | Rate of change in temperature of Vjc                                                                 | V/K             | 0.0          |
| Тvpc     | Rate of change in temperature of Vptc                                                                | V/K             | 0.0          |
| Tnf      | Rate of change in temperature of Nf                                                                  | K <sup>-1</sup> | 0.0          |
| Tnr      | Rate of change in temperature of Nr                                                                  | K <sup>-1</sup> | 0.0          |
| Ege      | Effective emitter band gap parameter                                                                 | V               | 1.55         |
| Xtis     | Temperature exponent for Is                                                                          | None            | 3.0          |
| Xtih     | Temperature exponent for Ish                                                                         | None            | 4.0          |
| Xtie     | Temperature exponent for Ise                                                                         | None            | 3.0          |
| Egc      | Effective collector bandgap parameter                                                                | V               | 1.5          |
| Xtir     | Temperature exponent for Isr                                                                         | None            | 3.0          |
| Xtic     | Temperature exponent for Isc                                                                         | None            | 3.0          |
| Xtirh    | Temperature exponent for Isrh                                                                        | None            | 4.0          |
| Xtik3    | Temperature exponent for Ikdc3                                                                       | None            | 0.0          |
| Eaa      | Temperature dependence of Isa                                                                        | V               | 0.0          |
| Eab      | Temperature dependence of Isb                                                                        | V               | 0.0          |
| Xtfb     | Temperature exponent for Tfb                                                                         | None            | 0.0          |
| Xtcmin   | Temperature exponent for Tcmin                                                                       | None            | 0.0          |
| Xtfc0    | Temperature exponent for Tfc0                                                                        | None            | 0.0          |
| Xitc     | Temperature exponent for Itc                                                                         | None            | 0.0          |
| Xitc2    | Temperature exponent for Itc2                                                                        | None            | 0.0          |
| Xtkrk    | Temperature exponent for Tkrk                                                                        | None            | 0.0          |
| Xikrk    | Temperature exponent for Ikrk                                                                        | None            | 0.0          |
| Xvkrk    | Temperature exponent for Vkrk                                                                        | None            | 0.0          |

| Rth1      | Thermal resistance #1                                   | K/W  | 1000.0 |
|-----------|---------------------------------------------------------|------|--------|
| Cth1      | Thermal capacitance #1                                  | J/K  | 5e-10  |
| Xth1      | Temperature exponent for Rth1                           | None | 0.0    |
| Rth2      | Thermal resistance #2                                   | K/W  | 0.0    |
| Cth2      | Thermal capacitance #2                                  | J/K  | 0.0    |
| Xth2      | Temperature exponent for Rth2                           | None | 0.0    |
| Kf        | Flicker (1/f) noise coefficient                         | None | 0.0    |
| Af        | Flicker (1/f) noise exponent                            | None | 1.0    |
| Ffe       | Flicker (1/f) noise frequency exponent                  | None | 1.0    |
| Kb        | Burst (popcorn) noise exponent                          | None | 0.0    |
| Ab        | Burst (popcorn) noise corner frequency                  | None | 1.0    |
| Fb        | Burst noise corner frequency                            | Hz   | 1      |
| Imax      | Explosion current                                       | A    | 10     |
| wBvbe     | Base-emitter reverse voltage (warning)                  | V    | 0.0    |
| wBvbc     | Base-collector reverse voltage (warning)                | V    | 0.0    |
| wVbcfwd   | Base-collector forward bias (warning)                   | V    | 0.0    |
| wIbmax    | Maximum base current (warning)                          | A    | 0.0    |
| wIcmax    | Maximum collector current (warning)                     | A    | 0.0    |
| wPmax     | Maximum power dissipation (warning)                     | W    | 0.0    |
| Version   | Model version/revision (1.0 = ADS2003C, 2.0 = ADS2004A) | None | 2.0    |
| AllParams | Data Access Component (DAC) Based Parameters            | None | None   |

#### **Notes/Equations**

- 1. This model supplies values for AgilentHBT\_NPN and AgilentHBT\_NPN\_Th devices.
- AgilentHBT model is based on the general concepts from the UCSD HBT model [1], <u>http://hbt.ucsd.edu</u> (in which the charge model is originally based on [2]), and the Gummel-Poon BJT model [3].
- 3. The charge model contains a flexible collector transit time formulation that empirically accounts for the electric field dependent electron drift velocity in GaAs and InP collectors (based on the work from [4]). This enables accurate fits of ft vs. bias over a wide range of bias points, which improves linearity predictions [5]. The depletion and high-current charges are leveraged from HICUM [6,7] ( http://www.iee.et.tu-dresden.de/iee/eb/comp\_mod.html ).
- 4. The ideal base-emitter current has its distinct saturation current (Ish) and ideality factor (Nh), similar to HICUM and VBIC [8,9] (<u>http://www.designers-guide.com/VBIC/references.html</u>). Therefore, the parameter *Bf* in the Gummel-Poon and UCSD HBT models is not used. This is required for a III-V HBT model because the mechanism of base current is not necessarily proportional to the collector current (due to the presence of a heterojunction between the base and emitter). The current gain (Beta) at a bias point can be viewed from the DC operating point information under Simulate > Detailed Device Operating Point.
- Dynamic self-heating is implemented (Version 2) and can be activated (de-activated) by setting the device instance parameter SelfTmod=1 (SelfTmod=0). For more information, refer to <u>Self-Heating Model</u>. Static temperature scaling of parameters with operating temperature (Temp in the device instance) applies to both cases.
- 6. Heterojunction effects on DC current (from the UCSD HBT model) is taken into

account by ISA and NA (through VBEi dependent Ica) in the base-emitter junction and ISB and NB (through VBCi dependent Icb) in the base-collector junction. Ica typically models the barrier effects that occur at the base-emitter heterojunction, which modifies the relationship between the collector current and VBEi. Icb typically models the influence of the barrier for electrons at the base-collector junction (which is present at zero bias and is gradually removed with reverse-bias of the basecollector junction).

- 7. The soft-knee observed in the common-emitter ICE vs. VCE curve in single heterojunction bipolar transistors at high currents and low voltages [10] can be taken into account by the parameters of q3mod. For the soft-knee observed in double heterojunction bipolar transistors, for example the *Tiwari effect* [11] (which is separate from the base-collector blocking accounted by ISB and NB), q3mod can also be used. *Gkdc* can be used to empirically fit the increase in base current. If a soft-knee is not apparent, q3mod can be turned off by setting *Ikdc2Inv=0*
- 8. '*Inverse*' parameters for several of the model parameters are used to enable flexibility. For example, the parameter Vkrk2Inv is used in the manner:

 $TKRK \times (1 - V_{BCi} \times VKRK2Inv)$ 

If the standard way of normalizing VBCi were used with a parameter called Vkrk2 (which does not exist in this model), it would look like:

$$TKRK \times \left(1 - \frac{V_{BCi}}{VKRK2}\right)$$

Although the latter method is more intuitive because the parameter *VKRK2* is in the familiar units of voltage, it is numerically inconvenient because a divide-by-zero occurs when *VKRK2* is set to 0, which prevents parameter sweeps crossing 0. Therefore, by defining an `inverse' parameter, this numerical problem is circumvented. Another advantage of using `inverse' parameters is that setting that particular parameter to 0 can turn off its effect. Otherwise, parameters must be set to a high value to turn off the effect (e.g., Forward early voltage, *Vaf*). The only inconvenience for using `inverse' parameters is that the units of these parameters are the reciprocal of the units of the variable that it is modifying, which may be difficult to conceptualize.

9. Resistances (Re, Rci, Rcx, Rbi, Rbx). When set to 0, the nodes connected by resistors collapse to a single node. When set to a value greater than 0, the effective resistance (after temperature and area scaling) is limited to be greater than or equal to MinExtR, which can be specified in the General Simulation Options.

When Re, Rci, Rcx, Rbi or Rbx is initially set to 0 and then swept to non-zero values, the circuit response will not change due to the node collapsing described above.

- 10. Zero bias junction capacitances (Cje and Cjc). When set to 0, the depletion charge is set to 0. Note that Ccmax and Cemax must be >0.
- 11. Junction capacitance built-in voltages (Vjc and Vje). When temperature scaled values go below 1e-6, these parameters are set to 1e-6.
- 12. Imax specifies the P-N junction explosion current. Imax can be specified in the device model or in the General Simulation Options; the device model value takes precedence over the Options value.
- 13. For the Version parameter, the default setting is 2. Setting *Version=1* selects the first AgilentHBT model release (without dynamic self-heating) in ADS2003C, for backwards compatibility. Note however, there have been a few minor bug fixes to the *Version=1* model, so it is possible that simulation results will not always be exactly identical with the ADS2003C release. If the Version parameter is within the range

[1,2], and set to any value other than 1.0 or 2.0, then it will default to 2.0 with a warning. Outside of this range, an error is returned.

Note that the dynamic self-heating option is available only in *Version*=2. The following is a brief list of enhancements for *Version*=2.

- Dynamic self-heating (self-consistent electro-thermal interaction) effects on currents, capacitances, delays, and resistances.
- Temperature scaling of NF, NR, VPTE, VPTC, VKRK
- Parameters *NKDC* and *GKDC* can be real values
- Parasitic inductances included at the electrical terminals
- 14. Use *AllParams* with a DataAccessComponent to specify file-based parameters (refer to "DataAccessComponent" in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those via *AllParams*.

#### **Netlist Syntax**

#### Model

model model\_name AgilentHBT list\_of\_parameters

*model\_name* is the user defined name for the particular AgilentHBT model which can be used in multiple instances. *list\_of\_parameters* is the list of the model parameters and values.

#### **Example:**

```
model hbt1 AgilentHBT Re=2 Rci=1 Rcx=5 Rbi=
```

Model name hbt1 is an AgilentHBT model with the corresponding listed parameters. hbt1 can be used in multiple instances with its area and temperature scaled independently for each instance.

#### Device

When the device specified by model\_name is called, the syntax below is used:

model\_name:deviceID Cnode Bnode Enode list\_of\_parameters

*deviceID* is the unique identification given to the particular instance with the corresponding listed parameters.

#### **Example:**

hbt1:q1 2 1 0 Area=1 Temp=25

Component q1 is defined by hbt1, which is an AgilentHBT model. The collector node is at node 2, the base node is at node 1, and the emitter node is at node 0. The area factor is set to 1 and the device (operating) temperature is at 25°C.

#### Large- and Small-signal Model Topologies Overview

The large-signal topology of the AgilentHBT model is given in <u>Figure 1</u>. The intrinsic model (bounded by the dashed box) is shown in more detail in <u>Figure 2</u>. The thermal

equivalent circuit is given in Figure 8.

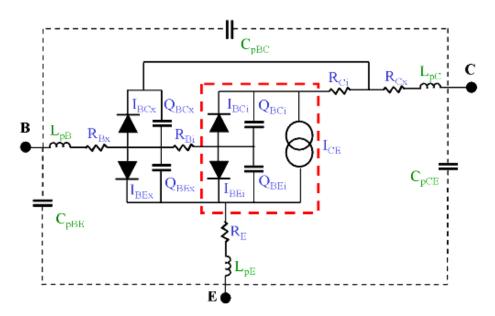
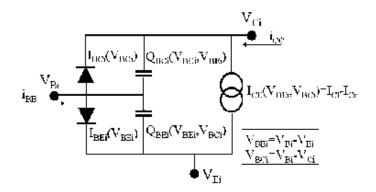




Figure 1.



#### Figure 2.

The intrinsic model can be expressed in general as a 2-port network as shown in the following figure.

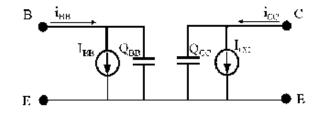



Figure 3. "2-Port Network of the Large-Signal Intrinsic Model"

In Figure 3, shown above:

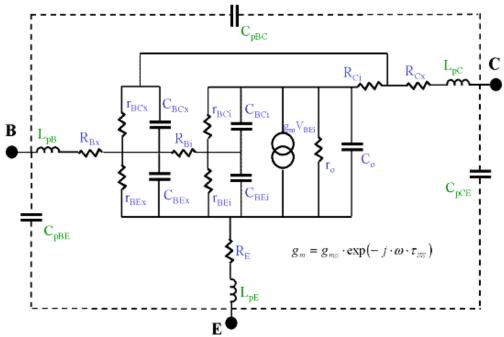
 $I_{BB} = I_{BEi} + I_{BCi}$ 

 $Q_{BB} = Q_{BEi} + Q_{BCi}$ 

$$i_{BB} = I_{BB} + \frac{dQ_{BB}}{dt}$$
$$I_{CC} = I_{CE} - I_{BCi}$$
$$Q_{CC} = -Q_{BCi}$$

$$i_{CC} = I_{CC} + \frac{dQ_{CC}}{dt}$$

This 2-port circuit representation of the intrinsic device facilitates the calculation of the intrinsic elements of the small-signal model. This is because the intrinsic Y-parameters can be expressed using the 2- port circuit elements as follows:


$$[Y_{int}] = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial I_{BB}}{\partial V_{BEi}}\Big|_{V_{CEi}}\right) + j\omega\left(\frac{\partial Q_{BB}}{\partial V_{BEi}}\Big|_{V_{CEi}}\right) & \left(\frac{\partial I_{BB}}{\partial V_{CEi}}\Big|_{V_{BEi}}\right) + j\omega\left(\frac{\partial Q_{BB}}{\partial V_{CEi}}\Big|_{V_{BEi}}\right) \\ \left(\frac{\partial I_{CC}}{\partial V_{BEi}}\Big|_{V_{CEi}}\right) + j\omega\left(\frac{\partial Q_{CC}}{\partial V_{BEi}}\Big|_{V_{CEi}}\right) & \left(\frac{\partial I_{CC}}{\partial V_{CEi}}\Big|_{V_{BEi}}\right) + j\omega\left(\frac{\partial Q_{CC}}{\partial V_{CEi}}\Big|_{V_{BEi}}\right) \end{bmatrix}$$

Small-signal parameters such as the total intrinsic base-emitter and base-collector capacitances (depletion + diffusion) can be extracted directly from the intrinsic Y-parameters, as well as the transconductance ( $g_m$ ) and the transcapacitance ( $C_m$ ), which

can then be used to calculate the small-signal time delay (SS).

The small-signal equivalent circuit approximates the time delay with a modification to the transconductance  $(g_m)$ . It is represented as the circuit shown in Figure 4.

Advanced Design System 2011.01 - Nonlinear Devices



#### Figure 4.

In Figure 4:

 $\begin{aligned} r_{BCi} &= \left(\frac{dI_{BCi}}{dV_{BCi}}\right)^{-1} \\ r_{BEi} &= \left(\frac{dI_{BEi}}{dV_{BEi}}\right)^{-1} \\ C_{BCi} &= -\frac{\partial Q_{BB}}{\partial V_{CEi}}\Big|_{V_{BEi}} \\ C_{BEi} &= \left.\frac{\partial Q_{BB}}{\partial V_{BEi}}\right|_{V_{CEi}} + \left.\frac{\partial Q_{BB}}{\partial V_{CEi}}\right|_{V_{BEi}} \\ r_{BCx} &= \left(\frac{dI_{BCx}}{dV_{BCx}}\right)^{-1} \\ r_{BEx} &= \left(\frac{dI_{BEx}}{dV_{BEx}}\right)^{-1} \\ C_{BCx} &= \left.\frac{dQ_{BCx}}{dV_{BCx}}\right|^{-1} \\ C_{BEx} &= \left.\frac{dQ_{BEx}}{dV_{BCx}}\right|^{-1} \end{aligned}$ 

$$\begin{split} g_{mo} &= \left. \frac{\partial I_{CE}}{\partial V_{BEi}} \right|_{V_{CEi}} \\ r_o &= \left( \left. \frac{\partial I_{CE}}{\partial V_{CEi}} \right|_{V_{BEi}} \right)^{-1} \\ C_o &= \left. \frac{\partial Q_{CC}}{\partial V_{CEi}} \right|_{V_{BEi}} + \left. \frac{\partial Q_{BB}}{\partial V_{CEi}} \right|_{V_{BEi}} \\ C_m &= - \left. \frac{\partial Q_{CC}}{\partial V_{BEi}} \right|_{V_{CEi}} + \left. \frac{\partial Q_{BB}}{\partial V_{CEi}} \right|_{V_{BEi}} \\ \tau_{SS} &= \left. \frac{C_m}{g_{mo}} \right] \end{split}$$

#### **Collector-Emitter Current Equations**

The collector-emitter current (i.e., main collector current) is composed of the forward and reverse currents (Icf and Icr). The formulation for the modification factor DD is based on the UCSD HBT model. q1 and q2 (contained in qb) are originally from the Gummel-Poon model where they model the Early and high-current roll-off effects, respectively. Ica and Icb model the heterojunction effects on the collector current for the base-emitter and base-collector junctions, respectively. q3mod is a function that empirically models the drop in current gain at high currents and low collector voltages that results in a softening of the knee behavior of a common-emitter I-V plot. In the following equations, T represents Tdev, defined in terms of the ambient or dynamical temperature, as described in <u>Self-Heating Model</u>.

$$I_{CE} = I_{cf} - I_{cr}$$

$$I_{cf} = \frac{IS \times \left( \exp\left(\frac{qV_{BEi}}{NF \times k \times T}\right) - 1 \right)}{DD \times q \, 3mod} \quad (t)$$

\_ \_

(total forward collector current)

$$I_{cr} = \frac{ISR \times \left(\exp\left(\frac{qV_{BCi}}{NR \times k \times T}\right) - 1\right)}{DD}$$

(total reverse emitter current)

$$DD = qb + Ica + Icb$$

$$qb = \frac{q1 \times (1 + \sqrt{1 + 4 \times q^2})}{2}$$

$$q1 = \frac{1}{1 - \frac{V_{BEi}}{VAR} + \frac{V_{BCi}}{VAF}}$$
 (Early effect)

(A limiting function is used in the model implementation to prevent divide-by-zero error when the denominator is equal to zero)

$$q2 = \frac{IS \exp\left(\frac{q V_{BEi}}{NF \times k \times T}\right)}{IK}$$

(high current Beta roll-off)

(The numerator is slightly modified from the diode equation by removing the -1 term)

$$Ica = \frac{IS}{ISA} \exp\left(\frac{qV_{BEi}}{NA \times k \times T}\right)$$
 (BE heterojunction effect)

 $Icb = \frac{IS}{ISB} \exp\left(\frac{qV_{BCi}}{NB \times k \times T}\right)$  (BC heterojunction effect)

 $q3mod = \frac{NKDC \times q3}{(NKDC-1)+q^3}$  (Soft-knee effect)

$$q3 = trans2 \left( IS \left( exp \left( \frac{qV_{BEi}}{NF \times k \times T} \right) - 1 \right) \right) - trans2(0) + 1$$

$$trans2(I) = \frac{IKDC2Inv(\sqrt{(I-Icrit1)2 + IKDC^2 + I - Icrit1 - IKDC1)}}{2}$$

 $Icrit1 = IKDC3(1 - (V_{BCi} - VJC) \times VKDCInv)$ 

#### **Explanation of q3mod**

Because q3mod divides the forward collector current ( $I_{cf}$ ), it remains a value of 1 when its effect is not present. Figure 5 shows the behavior of q3mod versus the collector current at various  $V_{BCi}$  values.

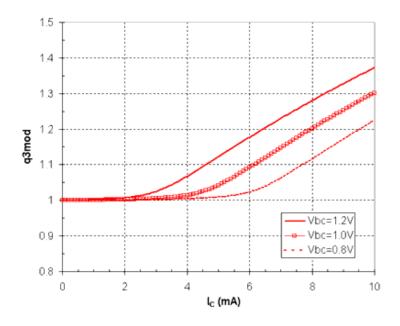



Figure 5. *q3mod* Behavior versus Collector Current (Ikdc1=0.001; Ikdc2Inv=100; kdc3=0.00; VkdcInv=5.26; Nkdc=3; Vjc=1.4)

*Ikdc1* defines the 'width' in current of the transition region, *Ikdc2Inv* defines the 'slope', and *Ikdc3* defines the 'turn-on' current of q3mod. *VkdcInv* defines the voltage dependence of the 'turn-on' current and *Nkdc* sets the limit to the value of q3mod. It should be noted that the parameter *Vjc* is used in the equation for q3mod. Because *Vjc* is primarily used to define the base-collector depletion charge (or capacitance), the base-collector capacitance should be extracted first before the parameters of q3mod are extracted.

### **Base-Emitter Current Equations**

In the following equations, T represents Tdev, defined in terms of the ambient or dynamical temperature, as described in <u>Self-Heating Model</u>.

$$\begin{split} I_{BEi} &= (1 - ABEL) \times \left( (q \, 3mod)^{GKDC} \times ISH \left( \exp \left( \frac{q \, V_{BEi}}{NH \times k \times T} \right) - 1 \right) + ISE \left( \exp \left( \frac{q \, V_{BEi}}{NE \times k \times T} \right) - 1 \right) \right) \\ I_{BEx} &= (ABEL) \times \left( (q \, 3mod)^{GKDC} \times ISH \left( \exp \left( \frac{q \, V_{BEx}}{NH \times k \times T} \right) - 1 \right) + ISE \left( \exp \left( \frac{q \, V_{BEx}}{NE \times k \times T} \right) - 1 \right) \right) \end{split}$$

q3mod is in the  $I_{BE}$  equations to empirically model any increase in base current due to the *soft-knee* effect, which occurs at high collector currents and low collector voltages. If this feature is not needed, set Gkdc=0 (default).

*Abel* is used as a partitioning factor of the total base-emitter current to separate extrinsic and intrinsic components.

# **Base-Collector Current Equations**

In the following equations, T represents Tdev, defined in terms of the ambient or dynamical temperature, as described in <u>Self-Heating Model</u>.

$$\begin{split} I_{BCi} &= (1 - ABCX) \times \left( ISRH \Big( \exp \Big( \frac{qV_{BCi}}{NRH \times k \times T} \Big) - 1 \Big) + ISC \Big( \exp \Big( \frac{qV_{BCi}}{NC \times k \times T} \Big) - 1 \Big) \Big) \\ I_{BCx} &= ABCX \times \Big( ISRH \Big( \exp \Big( \frac{qV_{BCx}}{NRH \times k \times T} \Big) - 1 \Big) + ISC \Big( \exp \Big( \frac{qV_{BCx}}{NC \times k \times T} \Big) - 1 \Big) \Big) \end{split}$$

*Abcx* is used as a partitioning factor for the total base-collector current to separate the extrinsic and intrinsic components. It is also the same parameter that is used to partition the intrinsic and extrinsic base-collector depletion charges.

# **Depletion Capacitance/Charge**

The depletion charge functions for both the base-emitter and base-collector junctions are based on the formulation from HICUM (version 2.1). This formulation and its derivatives are fully continuous for all regions of bias, and therefore appropriate for a large-signal model for CAD. The original documentation which can be found at: <u>"http://www.iee.et.tu-dresden.de/iee/eb/comp\_mod.html"</u> describes this function in more detail.

Modifications made for the AgilentHBT\_Model from the original HICUM formulation are:

- Specification of a maximum capacitance (i.e., *Ccmax*, *Cemax* in the AgilentHBT\_Model), rather than the ratio of the maximum to zero bias capacitance (e.g., Aljei in HICUM).
- Specification of grading factors Mjcr and Mjer in the punchthrough, or fully-depleted, region (which are fixed values in HICUM).
- Computationally efficient transition functions between the three regions of biases (i.e., vjxm and vjxr).

Because the same depletion charge functions are used for the base-emitter and basecollector charges, the following equations apply to both junctions. The variable x is used to denote either base-collector (C) or base-emitter (E).

$$Q_{xd}(V_x) = Q_{jxf} + Q_{jxm} + Q_{jxr} - Q_{jxcorr}$$

• The depletion capacitance can be derived in a straightforward manner (in concept) by taking the derivative of the total depletion charge (Qxd) with respect to Vx , given by the expression:

$$C_{xd}(V_x) = \frac{dQ_{xd}}{dV_x} = \frac{dQ_{jxf}}{dV_x} + \frac{dQ_{jxm}}{dV_x} + \frac{dQ_{jxr}}{dV_x} - \frac{dQ_{jxcorr}}{dV_x}$$

The derivatives of each of the four terms are provided:

$$\begin{aligned} \frac{dQ_{jxf}}{dV_x} &= CxMAX \left( 1 - \frac{d(v_{jxr})}{dV_x} \right) \\ (\text{forward-bias case}) \end{aligned}$$

$$\begin{aligned} \frac{dQ_{jxm}}{dV_x} &= CJx \left( 1 - \frac{v_{jxm}}{VJx} \right)^{-MJx} \times \frac{d(v_{jxm})}{dV_x} \\ (\text{partially-depleted case}) \end{aligned}$$

$$\begin{aligned} \frac{dQ_{jxr}}{dV_x} &= C_{jx0r} \left( 1 - \frac{v_{jxr}}{VJx} \right)^{-MJxR} \times \frac{d(v_{jxr})}{dV_x} \\ (\text{fully-depleted case}) \end{aligned}$$

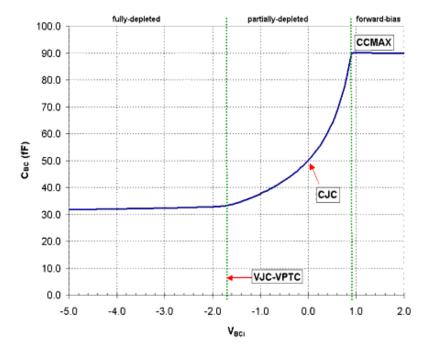
$$\begin{aligned} \frac{dQ_{jxcorr}}{dV_x} &= C_{jx0r} \left( 1 - \frac{v_{jxm}}{VJx} \right)^{-MJxR} \times \frac{d(v_{jxr})}{dV_x} \\ (\text{fully-depleted case}) \end{aligned}$$

where:

$$\begin{split} \mathbf{v}_{jxm} &= \frac{1}{2} (\mathbf{v}_{jxr} - V_{jPxi} + \sqrt{(V_{jPxi} + \mathbf{v}_{jxr})^2 + V_r^2}) \\ V_r &= 0.1 V_{jPxi} + 4 \Big( \frac{k \times Temp}{q} \Big) \\ V_{jPxi} &= VPTx - VJx \\ \mathbf{v}_{jxr} &= -0.5 \Big( -V_x - V_{fxi} + \sqrt{(V_{fxi} - V_x)^2 + \Big( \frac{k \times Temp}{q} \Big)^2} \end{split}$$

$$V_{fxi} = VJx \left[ 1 - \left(\frac{CxMAX}{CJx}\right)^{-(1/MJx)} \right]$$

$$C_{jx0r} = CJx \left(\frac{VJx}{VPTx}\right)^{MJx - MJx}$$


$$\frac{d(v_{jxr})}{dV_x} = \frac{1}{2} \left( 1 - \frac{V_x - V_{fxi}}{\sqrt{\left(V_x - V_{fxi}\right)^2 + \left(\frac{k \times Temp}{q}\right)^2}} \right)$$

$$\frac{d(v_{jxm})}{dV_{x}} = \frac{d(v_{jxr})}{dV_{x}} \times \frac{1}{2} \left( 1 + \frac{V_{jPxi} + v_{jxr}}{\sqrt{(V_{jPxi} - v_{jxr})^{2} + V_{r}^{2}}} \right)$$

- *Vx* is the junction voltage (e.g., VBEi or VBCi).
- *Vpte* and *Vptc* are the punchthrough voltages for the base-emitter and base-collector junctions, respectively.
- *Cemax* and *Ccmax* are the maximum depletion capacitances when forward biased for the base-emitter and base-collector junctions, respectively.
- *Mjer* and *Mjcr* are parameters that describe the slope of the punchthrough region for the base-emitter and base-collector junctions, respectively.

The total base-emitter depletion charge is denoted  $Q_{BEd}$  and the corresponding capacitance is denoted  $C_{BEd}$ . Likewise, the total base-collector depletion capacitance is denoted  $Q_{BCd}$  and its corresponding capacitance is denoted as  $C_{BCd}$ .

An example plot of the analytical equation for the base-collector capacitance ( $C_{BC}$ ) versus  $V_{BCi}$  is shown in Figure 6, with some of the notable parameters.



### Figure 6.

# **Delay Charge Equations**

The delay (or *diffusion*) charge equations account for the intrinsic delay of the device. They are grouped into three separate components: base delay charge (QtB), Kirk effect charge (Qkrk), and collector delay charge (QtC). They are expressed in terms of the bias dependence of the forward collector current (Icfg) and the intrinsic base-collector voltage (VBCi). Icfg is a slightly modified version of the DC forward collector current (Icf), which is used to improve computational robustness by avoiding negative values for any bias voltage.

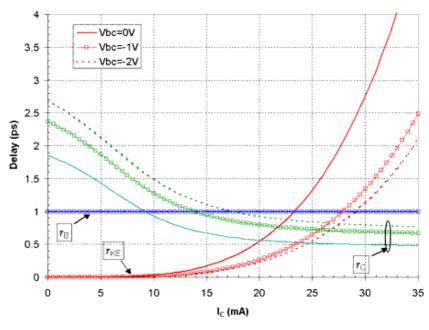
The base transit time (*Tfb*) is assumed to be constant due to the highly doped metallurgical base region of III-V HBTs. The increase in transit time at high currents is accounted for by Qkrk. The general form of Qkrk is leveraged from the HICUM model with some modifications. Note that Qkrk should generally account for any increase in transit time at high currents; for example, the f<sub>t</sub> roll-off in DHBTs (which is not necessarily due to

Kirk effect (or base pushout).

The collector delay charge, QtC, is a flexible function that empirically models the fielddependent electron drift velocity in the collector depletion region (modified from [4] for computational robustness). Because the depletion charge function of the base-collector junction does not contain a current dependence, QtC (in addition to Qkrk at very high currents) should be used to fit the current dependence of the intrinsic base-collector capacitance (CBCi). The capacitance cancellation (described in [13]) is taken into account by QtC because of its dependence with VBCi.

The delay due to the three *diffusion* charges can be expressed by taking the derivatives with respect to the forward current Icfq. Expressions for the delays and a graphical representation of them (see Figure 7) are given:

$$\begin{split} \tau_B &= \frac{dQ_{tB}}{dI_{cfq}} = TFB \\ (\text{base transit time}) \\ \tau_{KE} &= \left. \frac{\partial Q_{krk}}{\partial I_{cfq}} \right|_{V_{BCi}} = TKRK(1 - V_{BCi} \times VKRK2Inv) \Big( \frac{I_{cfq}}{Ik\,irk\,2} \Big)^{gKRK} \\ (\text{Kirk effect delay}) \end{split}$$


$$Ikirk2 = IKRK \times \left(1 - \frac{V_{BCiKE}}{VKRK}\right)$$

77

Note that *IKRKtr* is used in the implementation of Ikirk2 to define the *transition width* in current to a 0 value. By default, *IKRKtr* is set to 1e-6; it is recommended to not change this parameter.

$$V_{BCiKE} = trans3(V_{BCi}, VKTR, VKMX)$$
  
$$trans3(x, x_{ir}, x_{max}) = \frac{\sqrt{(x + x_{max})^2 + x_{tr}^2} + x - x_{max}}{2}$$

$$\begin{split} \tau_{C} &= \left. \frac{\partial Q_{IC}}{\partial I_{cfq}} \right|_{V_{BCi}} = 0.5 \\ &\left( (TFC0(1 - VTC0Inv \times trans3(V_{BCi}, VTR0, VMX0))) \right. \\ &\left. + 2 \times TCMIN(1 - VTCMINInv \times trans3(V_{BCi}, VTRMIN, VMXMIN)) \right. \\ &\left. - \frac{(TFC0(1 - VTC0Inv \times trans3(V_{BCi}, VTR0, VMX0)) \times (I_{cfq} - ITC(1 - V_{BCi} \times VTCInv)))}{\sqrt{(ITC(1 - V_{BCI} \times VTCInv) - I_{cfq})^{2} + (ITC2(1 - V_{BCI} \times VTC2Inv))^{2}}} \right) \\ (\text{collector transit time}) \end{split}$$



# Figure 7.

A very simple reverse delay charge is implemented by a constant reverse transit time parameter *TR*. The charge associated with this delay is equal to:

 $Q_{tR} = TR \times I_{crg}$ 

# **Total Charge Formulation**

Implementations of the base-emitter depletion charge (QBEd) and the base-collector depletion charge (QBCd) are straightforward because they solely reside between the base-emitter and base-collector junctions, respectively. Partitioning between the intrinsic and extrinsic portion of the device is accomplished by the parameters *Abex* and *Abcx*. Therefore, the intrinsic depletion charges are defined as:

 $Q_{BEid} = (1 - ABEX) \times Q_{BEd}(V_{BEi})$ 

 $Q_{BCid} \; = \; (1 - AB \, CX) \times Q_{BCd}(V_{BCi})$ 

and in turn, the extrinsic depletion charges are defined as:

 $Q_{BEx} = Q_{BExd} = (ABEX) \times Q_{BEd}(V_{BEx})$ 

 $Q_{B\,Cx} \;=\; Q_{B\,Cxd} = (AB\,CX) \times Q_{B\,Cd}(V_{B\,Cx})$ 

The delay charges (Qtb, Qtc, and Qkrk) reside only in the intrinsic region of the device (because they physically represent the time it takes for electrons to traverse the intrinsic base region and the intrinsic portion of the collector depletion region). These delay charges can be independently partitioned between the base-emitter and base-collector junctions by the partitioning factors *Fextb*, *Fextc*, and *Fexke*. These partitioning factors play an important role in defining the phase characteristics of the device at high frequencies [1,12].

The total intrinsic base-emitter and base-collector charges are defined as:

$$Q_{BEi} = Q_{BEid} + (1 - FEXTB)Q_{tB} + (1 - FEXTC)Q_{tC} + (1 - FEXKE)Q_{krk}$$

$$Q_{BCi} = Q_{BCid} + FEXTB \times Q_{tB} + FEXTC \times Q_{tC} + FEXKE \times Q_{krk} + Q_{tR}$$

The total charge at the intrinsic base  $(Q_{BB})$  and collector  $(Q_{CC})$  branches (as illustrated in Figure 3) are defined as:

$$Q_{BB} = Q_{BEi} + Q_{BCi} = Q_{BEid} + Q_{BCid} + Q_{tB} + Q_{tC} + Q_{krk} + Q_{tR}$$
$$Q_{CC} = -Q_{BCi} = -Q_{BCid} - FEXTB \times Q_{tB} - FEXTC \times Q_{tC} - FEXKE \times Q_{krk} - Q_{tR}$$

# Noise Model

Thermal noises generated by resistors *Rbi*, *Rbx*, *Rci*, *Rcx*, and *Re* are represented by the spectral densities:

$$\frac{\langle i_{Rbi}^{2} \rangle}{\Delta f} = \frac{4 \times k \times T}{RBI}$$
$$\frac{\langle i_{Rci}^{2} \rangle}{\Delta f} = \frac{4 \times k \times T}{RCI}$$
$$\frac{\langle i_{Rci}^{2} \rangle}{\Delta f} = \frac{4 \times k \times T}{RE}$$
$$\frac{\langle i_{Rbx}^{2} \rangle}{\Delta f} = \frac{4 \times k \times T}{RBX}$$
$$\frac{\langle i_{Rcx}^{2} \rangle}{\Delta f} = \frac{4 \times k \times T}{RBX}$$

The DC collector current generates shot noise represented by the spectral density:

$$\frac{\langle i_c^2 \rangle}{\Delta f} = 2qI_C$$

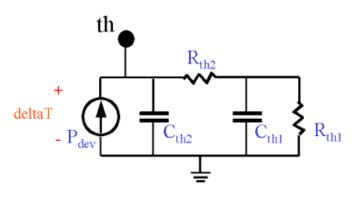
The DC base current generates shot noise represented by the spectral density:

$$\frac{\langle i_b^2 \rangle}{\Delta f} = 2qI_B$$

The DC base-emitter currents (IBEi and IBEx) generate flicker (1/f) noise (parameters Kf, Af, Ffe), and burst noise (parameters *Kb*, *Ab*, *Fb*) which are represented by the spectral densities:

$$\frac{\langle i_{bei}^{2} \rangle}{\Delta f} = (KF) \frac{I_{BEi}^{AF}}{f^{FFE}} + (Kb) \frac{I_{BEi}^{AB}}{1 + \left(\frac{f}{FB}\right)^{2}}$$
$$\frac{\langle i_{bex}^{2} \rangle}{\Delta f} = (KF) \frac{I_{BEx}^{AF}}{f^{FFE}} + (Kb) \frac{I_{BEx}^{AB}}{1 + \left(\frac{f}{FB}\right)^{2}}$$

# Self-Heating Model


In an isothermal model (e.g., Version 1), the electrical constitutive relations, such as the collector forward current function, and their associated parameter values, such as IS (for details, refer to <u>Collector-Emitter Current Equations</u>), depend on temperature only through the static value specified by Temp (defined at the device instance, *AgilentHBT\_NPN (Agilent Heterojunction Bipolar Transistor, NPN)AgilentHBT\_NPN\_Th Agilent Heterojunction Bipolar Transistor w/ Thermal Node, NPN)* (ccnld)).

In a real device, temperature is constantly changing in time. This is due to the interplay between electrical energy conversion into heat, as a function of signal (level and frequency, waveform, and load), and the diffusion and other mechanisms of heat transfer, including thermal coupling to other heat sources or sinks. This changing of temperature with time, in turn, changes the electrical behavior of the device, which modifies the generation of heat etc., all in a self-consistent way.

In order to model these important effects, the self-heating (dynamic electro-thermal) model (Version 2) treats temperature as a dynamical variable, on the same footing as the time-dependent voltages and currents of the electrical part of the model. To select the self-heating model, set SelfTmod=1 at the device instance. The default is SelfTmod=0. That is, self-heating is not invoked as the default. Specifically, the self-heating switch behaves in the following way:

```
If SelfTmod=0 Then
Tdev=Temp
(self-heating is OFF. The ambient temperature, Temp, is used)
ElseIf SelfTmod=1 Then
Tdev=Temp+deltaT
(self-heating is ON. All temperature dependent equations use dynamic
temperature)
ElseIf SelfTmod >0 and <1 Then
Tdev=Temp+deltaT
(if not set to 0 or 1, the model turns self-heating is ON in the range
(0,1))
Else</pre>
```

Advanced Design System 2011.01 - Nonlinear Devices Error returned (out of range) EndIf



### Figure 8.

The electrical constitutive relations depend on the dynamical variable Tdev = Temp + deltaT(t), when SelfTmod=1, rather than just Temp, when SelfTmod=0. deltaT(t) represents the time-dependent temperature rise above ambient temperature. It is computed by a thermal evolution equation, which relates the total dissipated electrical power to the generation of heat, which then causes a time-dependent temperature rise based on thermal resistance and thermal capacitance. The thermal evolution equation is modeled by a thermal equivalent circuit, shown in <u>AgilentHBT Model (Agilent Heterojunction Bipolar Transistor Model)</u>. The circuit is in general a two-pole approximation to the diffusion equation, which governs the propagation of heat. A minimum of two poles has been shown to be needed in many practical cases for III-V devices [14].

The current source element of the thermal equivalent circuit is set equal to the total dissipated power in the device model, including contributions from the intrinsic and extrinsic active device, and all parasitic resistors. The thermal node voltage represents the time-dependent deltaT(t). A voltage probe attached to the thermal node will return the value of deltaT(t). A (dc) voltage source added between the thermal node and ground will fix the value of deltaT. If the thermal node voltage is shorted to ground, the self-heating model is de-activated, which is equivalent to setting SelfTmod=0.

The electrical constitutive relations and their associated electrical parameters are evaluated at the temperature LimitT(Temp + deltaT(t)). The LimitT function limits the time-dependent temperature to a range [-200, 500] in degrees centigrade. This limiting function prevents the device model from thermally running away to infinity, and hence not-converging. If the device instance senses a temperature at the limits, a warning will be returned indicating that the device being modeled is potentially thermally unstable at the operating conditions being simulated. It should be noted that the model is not necessarily accurate over such a wide temperature range. Typically, the model is extracted from measurements over a temperature range approximately from 20 to 100 degrees centigrade, but is typically accurate over a wider range (e.g., -50 to 0 degrees centigrade).

The temperature limiting function may cause a very slight (e.g., 10-3) fractional modification to the value Temp + deltaT(t). Therefore the temperature value used to evaluate the electrical constitutive equations and parameters is not exactly equal the value Temp + deltaT(t). The actual value of the limited temperature is reported by the DC Operating Point parameter Teff, in *DC Operating Point Parameters* (ccnld).

By default, the general two-pole thermal equivalent circuit is reduced to a single pole thermal equivalent circuit. That is, by default, *Cth2* and *Rth2* are zero. *Cth2* and *Cth1* can be set equal to zero, even if *Rth2* and *Rth1* are non-zero. *Rth1* can be set to zero, but this completely de-activates the self-heating model and is equivalent to setting SelfTmod=0.

Under some conditions, it may be desirable to use a more complicated thermal network for the device than provided by the two-pole thermal equivalent circuit. This can be done by setting Rth2=0, Cth2=0 (making sure the second pole is removed), setting Cth1=0, and setting Rth1 to a very large resistance (e.g., 1e9) (to make it irrelevant once a substitute thermal network is added). Then users can attach their own thermal network from the thermal terminal (fourth device terminal) to ground and/or to any other thermal terminals of other device instances.

It is important to note that the thermal resistance parameters, Rth1 and Rth2, themselves are functions of the time-dependent temperature variable Tdev = Temp + deltaT(t). The temperature dependence of thermal resistance is an important property of III-V HBTs, and the modeling of it enables improved model fits.

### **Temperature Scaling Equations**

The temperature scaling equations allow simulations at various operating temperatures, specified by Temp (defined at the device instance). The change in temperature from the operating temperature can also be specified by the parameter Trise. Thom is defined as the nominal temperature at which the room temperature parameters are extracted. The device temperature Tdev is defined in the section <u>Self-Heating Model</u>.

$$rTemp = \frac{ZeroCKelvin + Tdev}{ZeroCKelvin + Tnom} \qquad ZeroCKelvin = 273.15$$

$$RBI_{Temp} = RBI \times (rTemp)^{XRB}$$

$$RBX_{Temp} = RBX \times (rTemp)^{XRB}$$

$$RCI_{Temp} = RCI \times (rTemp)^{XRC}$$

 $RCX_{Temp} = RCX \times (rTemp)^{XRC}$ 

$$RE_{Temp} = RE \times (rTemp)^{XRE}$$

$$VJE_{Temp} = VJE - TVJE \times (Tdev - Tnom)$$

$$VJC_{Temp} = VJC - TVJC \times (Tdev - Tnom)$$

 $VPTE_{Temp} = (VPTE - TVPE)(Tdev - Tnom)$ 

$$VPTC_{Temp} = (VPTC-TVPC)(Tdev - Tnom)$$

$$\begin{aligned} & \text{Advanced Design System 2011:01 - Nonlinear Devices} \\ & \text{CJE}_{Temp} = CJE \times \Big(\frac{VJE}{VJE_{Temp}}\Big)^{MJE} \\ & \text{CJC}_{Temp} = CJC \times \Big(\frac{VJC}{VJC_{Temp}}\Big)^{MJC} \\ & \text{NF}_{Temp} = NF + TNF \cdot (Tdev - Tnom) \\ & \text{NR}_{Temp} = NF + TNF \cdot (Tdev - Tnom) \\ & \text{IS}_{Temp} = IS \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGE)}{NF \times k \times Tdev}\Big) \\ & \text{ISH}_{temp} = ISH \times (rTemp)^{(XTIE/NE)} \exp\Big((1 - rTemp)\frac{(-EGE)}{NH \times k \times Tdev}\Big) \\ & \text{ISE}_{Temp} = ISE \times (rTemp)^{(XTIE/NE)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NR \times k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISE \times (rTemp)^{(XTIR/NR)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NR \times k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISC \times (rTemp)^{(XTIC/NC)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NC \times k \times Tdev}\Big) \\ & \text{ISRH}_{Temp} = ISR \times (rTemp)^{(XTIC/NC)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NC \times k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISR \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NC \times k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISE \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NF \times k \times Tdev} + \frac{EAA}{k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISE \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NF \times k \times Tdev} + \frac{EAA}{k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISE \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NF \times k \times Tdev} + \frac{EAA}{k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISE \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NF \times k \times Tdev} + \frac{EAB}{k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISE \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NF \times k \times Tdev} + \frac{EAB}{k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISE \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NF \times k \times Tdev} + \frac{EAB}{k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISE \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NF \times k \times Tdev} + \frac{EAB}{k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = ISE \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NF \times k \times Tdev} + \frac{EAB}{k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = IFE \times (rTemp)^{(XTIS/NF)} \exp\Big((1 - rTemp)\frac{(-EGC)}{NF \times k \times Tdev} + \frac{EAB}{k \times Tdev}\Big) \\ & \text{ISR}_{Temp} = TFE \times (rTemp)^{(XTIS/NF)} \\ & \text{ISR}_{Temp} = TFE \times (rTemp)^{(XTIC)}$$

 $TKRK_{Temp} = TKRK \times (rTemp)^{XTKRK}$ 

 $IKRK_{Temp} = IKRK \times (rTemp)^{XIKRK}$ 

 $VKRK_{Temp} = VKRK \times (rTemp)^{XVKRK}$ 

 $RTH1_{Temp} = RTH1 \times (rTemp)^{XTH1}$ 

 $RTH2_{Temp} = RTH2 \times (rTemp)^{XTH2}$ 

# **Area Scaling Equations**

The Area factor (specified in the device instance) scales the device resistances, currents, and capacitances. In general, the currents and capacitances are multiplied, and the resistances are divided by the area factor.

 $RBI_{Area} = \frac{RBI}{Area}$  $RBX_{Area} = \frac{RBX}{Area}$  $RCI_{Area} = \frac{RCI}{Area}$  $R CX_{Area} = \frac{R CX}{Area}$  $RE_{Area} = \frac{RE}{Area}$  $CJE_{Area} = CJE \times Area$  $CEMAX_{Area} = CEMAX \times Area$  $CJC_{Area} = CJC \times Area$  $CCMAX_{Area} = CCMAX \times Area$  $IS_{Area} = IS \times Area$  $ISR_{Area} = ISR \times Area$  $ISH_{Area} = ISH \times Area$  $ISRH_{Area} = ISRH \times Area$ 

 $ISE_{Area} = ISE \times Area$ 

 $ISC_{Area} = ISC \times Area$ 

 $IKDC1_{Area} = IKDC1 \times Area$ 

 $IKDC2Inv_{Arca} = \frac{IKDC2Inv}{Area}$ 

 $IKDC3_{Area} = IKDC3 \times Area$ 

 $ITC_{Area} = ITC \times Area$ 

 $ITC2_{Area} = ITC2 \times Area$ 

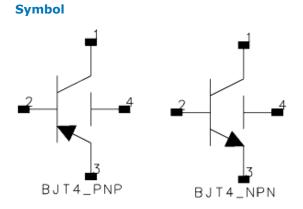
 $IKRK_{Area} = IKRK \times Area$ 

 $ISA_{Area} = ISA \times Area$ 

 $ISB_{Area} = ISB \times Area$ 

# \rm Note

There are several parameters that are not scaled with the Area factor. These parameters are Rth1, Cth1, Rth2, Cth2, Cpbe, Cpbc, Cpce, Lpb, Lpc, and Lpe.


# References

- 1. UCSD HBT model: <u>"http://hbt.ucsd.edu"</u>.
- L.H. Camnitz, S. Kofol, T.S. Low, and S. R. Bahl, "An Accurate, Large Signal, High Frequency Model for GaAs HBTs," GaAs IC Symposium Technical Digest, pp. 303-306, 1996.
- 3. P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE, New York: McGraw-Hill, Second Edition, 1993.
- M. Iwamoto, D.E. Root, J.B. Scott, A. Cognata, P.M. Asbeck, B. Hughes, D.C. D'Avanzo, "Large-signal HBT Model with Improved Collector Transit Time Formulation for GaAs and InP Technologies," 2003 IEEE MTT-S International Microwave Symposium, June 2003.
- M. Iwamoto, P.M. Asbeck, T.S. Low, C.P. Hutchinson, J.B. Scott, A. Cognata, X. Qin, L.H. Camnitz, D.C. D'Avanzo, "Linearity Characteristics of InGaP/GaAs HBTs and the Influence of Collector Design," Transactions on Microwave Theory and Techniques, vol. 48, pp. 2377-2388, Dec. 2000.
- 6. HICUM: High Current Model: <u>"http://www.iee.et.tu-</u> <u>dresden.de/iee/eb/comp\_mod.html"</u>.
- 7. M. Schrter and T.Y. Lee, "Physics-based Minority Charge and Transit Time Modeling for Bipolar Transistors", Transactions on Electron Devices, vol. 46, pp. 288-300, Feb. 1999.
- 8. VBIC: Vertical Bipolar Inter-Company Model: <u>"http://www.designers-guide.com/VBIC/references.html"</u>
- 9. C.C. McAndrew, J.A. Seitchik, D.F. Bowers, M. Dunn, M. Foisy, I. Getreu, M. McSwain, S. Moinian, J. Parker, D.J. Roulston, M. Schroter, P. van Wijnen, L.F. Wagner,

"VBIC95, The Vertical Bipolar Inter-Company Model," Journal of Solid-State Circuits, vol. 31, no.10, pp1476-1473, Oct. 1996.

- 10. Jongchan Kang, Youngoo Yang, Sungwoo Kim, and Bumman Kim, "A Heterojunction Bipolar Transistor Large-signal Model Focused on the Saturation Region," 32nd European Microwave Conference Digest, vol. 3, pp. 147-0, Sep., 2002.
- 11. S. Tiwari, "A New Effect at High Currents in Heterostructure Bipolar Transistors," Electron Device Letters, pp142-144, vol. 9, March 1999.
- 12. M. Rudolph, F. Lenk, R. Doerner, P. Heymann, "Towards a Unified Method to Implement Transit-Time Effects in -topology HBT Compact Models," International Microwave Symposium Digest, p997-1000, June 2002.
- 13. L.H. Camnitz and N. Moll, "An Analysis of the Cutoff-Frequency Behavior of Microwave Heterostructure Bipolar Transistors," in Compound Semiconductor Transistors, Physics and Technology, IEEE Press, pp.21-46, 1993.
- 14. W.R. Curtice, V.M. Hietala, E. Gebara, J. Laskar, "The Thermal Gain Effect in GaAs-Based HBTs", International Microwave Symposium Digest, pp 639-641, June 2003.

# BJT4\_NPN, BJT4\_PNP (Bipolar Junction Transistors w/Substrate Terminal, NPN, PNP)



### **Parameters**

| Name   | Description                                                    | Units | Default   |
|--------|----------------------------------------------------------------|-------|-----------|
| Model  | Model instance name                                            | None  | BJTM1     |
| Area   | Scaling Factor                                                 | None  | 1         |
| Region | DC operating region: off=0, on=1, rev=2, sat=3                 | None  | on        |
| Temp   | device operating temperature                                   | °C    | 25        |
| Trise  | temperature rise over ambient                                  | °C    | 0         |
| Mode   | simulation mode: Nonlinear, Linear, Standard (refer to note 2) | None  | Nonlinear |
| Noise  | noise generation option: yes=1, no=0                           | None  | yes       |
| _M     | number of devices in parallel                                  | None  | 1         |

### **Notes/Equations**

- 1. The Temp parameter specifies the physical (operating) temperature of the device; if different than the temperature at which the model parameters are valid or extracted (specified by Tnom of the associated model) certain model parameters are scaled such that the device is simulated at its operating temperature. Refer to the model to see which parameter values are scaled.
- 2. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 3. The fourth terminal (substrate) is available for connection to an external circuit.
- 4. <u>DC Operating Point Information Model = BJT\_Model or EE\_BJT2\_Model, DC Operating</u> <u>Point Information Model = STBJT\_Model</u>, and <u>DC Operating Point Information Model</u> <u>= MEXTRAM\_Model (503)</u> list the DC operating point parameters that can be sent to

# DC Operating Point Information Model = BJT\_Model or EE\_BJT2\_Mode

| Name   | Description                                 | Units   |
|--------|---------------------------------------------|---------|
| Ic     | Collector current                           | amperes |
| Ib     | Base current                                | amperes |
| Ie     | Emitter current                             | amperes |
| Is     | Substrate current                           | amperes |
| Power  | DC power dissipation                        | watts   |
| BetaDc | DC current gain                             |         |
| Gm     | Forward transconductance (dIce/dVbe)        | siemens |
| Rpi    | Input resistance 1/(dIbe/dVbe)              | ohms    |
| Rmu    | Feedback resistance 1/(dIbe/dVbc)           | ohms    |
| Rx     | Base resistance                             | ohms    |
| Ro     | Output resistance 1/(dIbe/dVbc - dIce/dVbc) | ohms    |
| Срі    | Base-emitter capacitance                    | farads  |
| Cmu    | Base-internal collector capacitance         | farads  |
| Cbx    | Base-external collector capacitance         | farads  |
| Ccs    | Substrate capacitance                       | farads  |
| BetaAc | AC current gain                             |         |
| Ft     | Unity current gain frequency                | hertz   |
| Vbe    | Base-emitter voltage                        | volts   |
| Vbc    | Base-collector voltage                      | volts   |
| Vce    | Collector-emitter voltage                   | volts   |

# DC Operating Point Information Model = STBJT\_Model

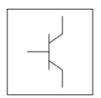
Advanced Design System 2011.01 - Nonlinear Devices

| Name   | Description                                                   | Units   |
|--------|---------------------------------------------------------------|---------|
| Ic     | Collector current                                             | amperes |
| Is     | Substrate current                                             | amperes |
| Ib     | Base current                                                  | amperes |
| Ie     | Emitter current                                               | amperes |
| Power  | DC power dissipation                                          | watts   |
| BetaDc | DC current gain                                               |         |
| BetaAc | AC current gain                                               |         |
| fTreal | Unity current gain frequency, full formula                    | hertz   |
| fTappr | Unity current gain frequency, approximate formula gm/(2*PI*C) | hertz   |
| Gm     | Forward transconductance (dIce/dVbe)                          | siemens |
| Rpi    | Input resistance 1/(dIbe/dVbe)                                | ohms    |
| Rmu    | Reedback resistance 1/(dIbe/dVbc)                             | ohms    |
| Rx     | Base resistance                                               | ohms    |
| Ro     | Output resistance 1/(dIbe/dVbc - dIce/dVbc)                   | ohms    |
| Rcv    | Collector resistance                                          | ohms    |
| Срі    | Base-emitter capacitance                                      | farads  |
| Cmu    | Base-internal collector capacitance                           | farads  |
| Cbx    | Base-external collector capacitance                           | farads  |
| Ccs    | Internal collector-substrate capacitance                      | farads  |
| Cbs    | Internal base-substrate capacitance                           | farads  |
| Cxs    | External base-substrate capacitance                           | farads  |
| Vbe    | Base-emitter voltage                                          | volts   |
| Vbc    | Base-collector voltage                                        | volts   |
| Vce    | Collector-emitter voltage                                     | volts   |

DC Operating Point Information Model = MEXTRAM\_Model (503)

| Name          | Description               | Units   |
|---------------|---------------------------|---------|
| Ic            | Collector current         | amperes |
| Ib            | Base current              | amperes |
| Ie            | Emitter current           | amperes |
| Is            | Substrate current         | amperes |
| Power         | DC power dissipated       | watts   |
| dIc2e1_dVb2e1 | (dIc2e1/dVb2e1)           | siemens |
| Gb2e1         | (dIb2e1/dVb2e1)           | siemens |
| Gb1b2         | (dIb1b2/dVb1b2)           | siemens |
| Gb1c1         | (dIb1c1/dVb1c1)           | siemens |
| Gbc1          | (dIbc1/dVbc1)             | siemens |
| Gb2c2         | (dIb2c2/dVb2c2)           | siemens |
| Cb2e1         | (dIb2e1/dVb2e1)           | siemens |
| Cb2c2         | (dIb2c2/dVb2c2)           | siemens |
| Gb1e1         | (dIb1e1/dVb1e1)           | siemens |
| Gc1s          | (dIc1s/dVc1s)             | siemens |
| dIc2e1_dVb2c2 | (dIc2e1/dVb2c2)           | siemens |
| dIc2e1_dVb2c1 | (dIc2e1/dVb2c1)           | siemens |
| dIc1c2_dVb2e1 | (dIc1c2/dVb2e1)           | siemens |
| dIc1c2_dVb2c2 | (dIc1c2/dVb2c2)           | siemens |
| dIc1c2_dVb2c1 | (dIc1c2/dVb2c1)           | siemens |
| dIb2c2_dVb2e1 | (dIb2c2/dVb2e1)           | siemens |
| dIb2c2_dVb2c1 | (dIb2c2/dVb2c1)           | siemens |
| dIb1b2_dVb2e1 | (dIb1b2/dVb2e1)           | siemens |
| dIb1b2_dVb2c2 | (dIb1b2/dVb2c2)           | siemens |
| dIb1b2_dVb2c1 | (dIb1b2/dVb2c1)           | siemens |
| dIc1s_dVb1c1  | (dIc1s/dVb1c1)            | siemens |
| dIc1s_dVbc1   | (dIc1s/dVbc1)             | siemens |
| Cb1b2         | (dQb1b2/dVb1b2)           | farads  |
| Cc1s          | (dQc1s/dVc1s)             | farads  |
| Cb1c1         | (dQb1c1/dVb1c1)           | farads  |
| Cbc1          | (dQbc1/dVbc1)             | farads  |
| dQb2e1_dVb2c2 | (dQb2e1/dVb2c2)           | farads  |
| dQb2e1_dVb2c1 | (dQb2e1/dVb2c1)           | farads  |
| dQc2b2_dVb2e1 | (dQc2b2/dVb2e1)           | farads  |
| dQb2c2_dVb2c1 | (dQb2c2/dVb2c1)           | farads  |
| dQb1b2_dVb2e1 | (dQb1b2/dVb2e1)           | farads  |
| dQb1e1_dVb2e1 | (dQb1e1/dVb2e1)           | farads  |
| Vbe           | Base-emitter voltage      | volts   |
| Vbc           | Base-collector voltage    | volts   |
| Vce           | Collector-emitter voltage | volts   |

5. This device has no default artwork associated with it.


# References

1. I. E. Getreu, CAD of Electronic Circuits, 1; Modeling the Bipolar Transistor, Elsevier

Scientific Publishing Company, 1978.
P. Antognetti and G. Massobrio. *Semiconductor Device Modeling with SPICE,* Second Edition, McGraw-Hill, Inc., 1993.

# BJT\_Model (Bipolar Transistor Model)

### Symbol



### **Parameters**

Model parameters must be specified in SI units.

| Name                         | Description                                                                         | Units | Default                           |
|------------------------------|-------------------------------------------------------------------------------------|-------|-----------------------------------|
| NPN                          | Model type (NPN bipolar transistor): YES or NO                                      | None  | yes                               |
| PNP                          | Model type (PNP bipolar transistor): YES or NO                                      | None  | no                                |
| Is (Js)                      | Transport Saturation Current                                                        | A     | 1.0e-16                           |
| Bf                           | Ideal Maximum Forward Beta                                                          | None  | 100                               |
| Nf                           | Forward Current Emission Coefficient                                                | None  | 1.0                               |
| Vaf (Vbf)                    | Forward Early Voltage                                                               | V     | fixed at infinity <sup>†</sup>    |
| Ikf (Jbf)                    | Corner for Forward Beta High Current Roll-off                                       | A     | fixed at<br>infinity <sup>†</sup> |
| Ise (Jle)                    | base-emitter leakage saturation current                                             | A     | 0.0                               |
| C2                           | forward leakage saturation current coefficient. If Ise is not given, Ise= C2 x Is   | None  | 0.0                               |
| Ne (Nle)                     | base-emitter leakage emission coefficient                                           | None  | 1.5                               |
| Br <sup>++</sup>             | Ideal Maximum Reverse Beta                                                          | None  | 1.0 ++                            |
| Nr                           | reverse current emission coefficient                                                | None  | 1.0                               |
| Var (Vbr)                    | reverse early voltage                                                               | V     | fixed at<br>infinity <sup>†</sup> |
| Ikr (Jbr)                    | Corner for Reverse Beta High Current Roll-off                                       | A     | fixed at<br>infinity <sup>†</sup> |
| Ke                           | base-emitter space charge integral multiplier                                       | 1/V   | 0.0                               |
| Кс                           | base-collector space charge integral multiplier                                     | 1/V   | 0.0                               |
| Isc (Jlc) <sup>++, +++</sup> | base-collector leakage saturation current                                           | A     | 0.0                               |
| C4                           | reverse leakage saturation current coefficient. If Isc is not given, Isc = C4 x Is. | None  | 0.0                               |
| Nc (Nlc)                     | base-collector leakage emission coefficient                                         | None  | 2.0                               |
| Cbo <sup>+++</sup>           | extrapolated 0-volt base-collector leakage current                                  | A     | 0.0                               |
|                              |                                                                                     | -     |                                   |

Advanced Design System 2011.01 - Nonlinear Devices

| Gbo <sup>†††</sup>       | Advanced Design System 2011.01 - Nonlinear Devices slope of Icbo vs. Vbc above Vbo                                                              | S                | 0.0                               |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|
| Vbo                      | slope of Icbo vs. Vbc at Vbc=0                                                                                                                  | V                | 0.0                               |
| Rb <sup>††</sup>         | zero-bias base resistance (Rb may be high-current dependent)                                                                                    | Ohm              | fixed at 0                        |
| Irb (Jrb)                | Current When Base Resistance Falls Halfway to Its Minimum Value                                                                                 | A                | fixed at<br>infinity <sup>†</sup> |
| Rbm                      | Minimum base resistance at high currents                                                                                                        | Ohm              | fixed at 0                        |
| Re <sup>‡</sup>          | emitter resistance                                                                                                                              | Ohm              | fixed at 0                        |
| Rc <sup>‡</sup>          | collector resistance                                                                                                                            | Ohm              | fixed at 0                        |
| Rcv <sup>‡</sup>         | variable collector resistance                                                                                                                   | Ohm              | 0.0                               |
| Rcm <sup>‡</sup>         | minimum collector resistance                                                                                                                    | Ohm              | 0.0                               |
| Dope                     | collector background doping concentration                                                                                                       | cm <sup>-3</sup> | 1e15                              |
| Cex                      | current crowding exponent                                                                                                                       | None             | 1.0                               |
| Cco <sup>+++</sup>       | current crowding normalization constant                                                                                                         | A                | 1.0                               |
| Imax                     | explosion current beyond which diode junction current is linearized                                                                             | A                | 1.0                               |
| Imelt                    | Explosion current; defaults to Imax (refer to note 3)                                                                                           | A                | defaults to<br>Imax               |
| Cje <sup>++, +++</sup>   | base-emitter zero-bias depletion capacitance (Cje, Vje and Mje determine nonlinear depletion-layer capacitance for base-emitter junction)       | F                | 0.0                               |
| Vje <sup>††</sup>        | base-emitter junction built-in potential (Cje, Vje and Mje determine nonlinear depletion-layer capacitance for base-emitter junction)           | V                | 0.75                              |
| Mje                      | base-emitter junction exponential factor (Cje, Vje and Mje determine nonlinear depletion-layer capacitance for base-emitter junction)           | None             | fixed at 1/3                      |
| Cjc <sup>++, +++</sup>   | base-collector zero-bias depletion capacitance (Cjc, Vjc and Mjc determine nonlinear depletion-layer capacitance for base-collector junction)   | F                | 0.0                               |
| Vjc <sup>††</sup>        | base-collector junction built-in potential (Cjc, Vjc and Mjc determine nonlinear depletion-layer capacitance for base-collector junction)       | V                | 0.75                              |
| Mjc                      | base-collector junction exponential factor (Cjc, Vjc and Mjc determine nonlinear depletion-layer capacitance for base-collector junction)       | None             | fixed at 1/3                      |
| Xcjc (Cdis)              | fraction of Cjc that goes to internal base pin                                                                                                  | F                | 1.0                               |
| Cjs <sup>++, +++</sup>   | zero-bias collector substrate (ground) capacitance (Cjs, Mjs and Vjs determine nonlinear depletion-layer capacitance for C-S junction)          | F                | 0.0                               |
| Vjs <sup>++</sup>        | substrate junction built-in potential (Cjs, Vjs, Mjs determine nonlinear depletion-layer capacitance for C-S junction)                          | V                | 0.75                              |
| Mjs                      | substrate junction exponential factor (Cjs, Vjs, Mjs determine nonlinear depletion-layer capacitance for C-S junction)                          | None             | fixed at 0                        |
| Fc                       | forward-bias depletion capacitance coefficient                                                                                                  | None             | 0.5                               |
| Xtf                      | coefficient of bias-dependence for Tf                                                                                                           | None             | 0.0                               |
| Tf                       | ideal forward transit time (Tr and Tf, along with the depletion-layer capacitances model base charge storage effects; Tf may be bias-dependent) | sec              | 0.0                               |
| Vtf                      | voltage dependence of Tf on base-collector voltage                                                                                              | V                | fixed at<br>infinity‡             |
| Itf (Jtf) <sup>+++</sup> | high-current effect on Tf                                                                                                                       | A                | 0.0                               |
| Ptf                      | excess phase at frequency = $1 / (Tf \times 2\pi)$                                                                                              | deg              | 0.0                               |
| Tr                       | ideal reverse transit time (Tr, Tf, and depletion-layer capacitances                                                                            | sec              | 0.0                               |

|                                    | model base charge storage effects)                      |                     |                   |
|------------------------------------|---------------------------------------------------------|---------------------|-------------------|
| Kf                                 | flicker-noise coefficient                               | None                | 0.0               |
| Af                                 | flicker-noise exponent                                  | None                | 1.0               |
| Kb (Bnoisefc)                      | burst noise coefficient                                 | None                | 0.0               |
| Ab                                 | burst noise exponent                                    | None                | 1.0               |
| Fb                                 | burst noise corner frequency                            | Hz                  | 1.0               |
| Rbnoi                              | effective base noise resistance; defaults to Rb         | Ohm                 | defaults to<br>Rb |
| Iss <sup>++</sup> , <sup>+++</sup> | collector-substrate P-N junction saturation current     | А                   | 0.0               |
| Ns                                 | collector-substrate P-N junction emission coefficient   | None                | 1.0               |
| Nk                                 | high-current roll-off coefficient                       | None                | 0.5               |
| Ffe                                | flicker noise frequency exponent                        | None                | 1.0               |
| Lateral                            | lateral substrate geometry type: yes, no                | None                | no                |
| RbModel                            | base resistance model: Spice=1, MDS=0                   | None                | MDS               |
| Approxqb                           | use the approximation for Qb vs early voltage: yes, no  | None                | yes               |
| Tnom                               | nominal ambient temperature                             | °C                  | 25                |
| Trise                              | temperature rise over ambient                           | °C                  | 0                 |
| Tlev                               | temperature equation selector (0/1/2/3)                 | None                | 0                 |
| Tlevc                              | temperature equation selector for capacitance (0/1/2/3) | None                | 0                 |
| Eg                                 | energy gap for temperature effect on Is                 | eV                  | 1.11              |
| EgAlpha<br>(Gap1)                  | energy gap temperature coefficient alpha                | V/°C                | 7.04e-4           |
| EgBeta (Gap2)                      | energy gap temperature coefficient beta                 | К                   | 1108              |
| Tbf1                               | Bf linear temperature coefficient                       | 1/°C                | 0                 |
| Tbf2                               | Bf quadratic temperature coefficient                    | 1/(°C) <sup>2</sup> | 0                 |
| Tbr1                               | Br linear temperature coefficient                       | 1/°C                | 0                 |
| Tbr2                               | Br quadratic temperature coefficient                    | 1/(°C) <sup>2</sup> | 0                 |
| Tcbc (Ctc)                         | Cbc linear temperature coefficient                      | 1/°C                | 0                 |
| Tcbe (Cte)                         | Cbe linear temperature coefficient                      | 1/°C                | 0                 |
| Tcbo                               | Cbo linear temperature coefficient                      | 1/°C                | 0                 |
| Tccs (Cts)                         | Ccs linear temperature coefficient                      | 1/°C                | 0                 |
| Tgbo                               | Gbo linear temperature coefficient                      | 1/°C                | 0                 |
| Tikf1                              | Ikf linear temperature coefficient                      | 1/°C                | 0                 |
| Tikf2                              | Ikf quadratic temperature coefficient                   | 1/(°C) <sup>2</sup> | 0                 |
| Tikr1                              | Ikr linear temperature coefficient                      | 1/°C                | 0                 |
| Tikr2                              | Ikr quadratic temperature coefficient                   | 1/(°C) <sup>2</sup> | 0                 |
| Tirb1                              | Irb linear temperature coefficient                      | 1/°C                | 0                 |
| Tirb2                              | Irb quadratic temperature coefficient                   | 1/(°C) <sup>2</sup> | 0                 |
| Tis1                               | Is/Ibe/Ibc linear temperature coefficient               | 1/°C                | 0                 |
| Tis2                               | Is/Ibe/Ibc quadratic temperature coefficient            | 1/(°C) <sup>2</sup> | 0                 |
|                                    | Tao linear hannan tao officiant                         | 1/°C                | 0                 |
| Tisc1                              | Isc linear temperature coefficient                      | 1/ 0                | •                 |
| Tisc1<br>Tisc2                     | Isc quadratic temperature coefficient                   | 1/(°C) <sup>2</sup> |                   |

Advanced Design System 2011.01 - Nonlinear Devices

| Tise2 | Advanced Design System 2011.01 - Nonl<br>Ise quadratic temperature coefficient | 1                   | 0 |
|-------|--------------------------------------------------------------------------------|---------------------|---|
| Tiss1 | Iss linear temperature coefficient                                             | 1/°C                | 0 |
| Tiss2 | Iss quadratic temperature coefficient                                          | 1/(°C) <sup>2</sup> | 0 |
| Titf1 | Itf linear temperature coefficient                                             | 1/°C                | 0 |
| Titf2 | Itf quadratic temperature coefficient                                          | 1/(°C) <sup>2</sup> | 0 |
| Tmjc1 | Mjc linear temperature coefficient                                             | 1/°C                | 0 |
| Tmjc2 | Mjc quadratic temperature coefficient                                          | 1/(°C) <sup>2</sup> | 0 |
| Tmje1 | Mje linear temperature coefficient                                             | 1/°C                | 0 |
| Tmje2 | Mje quadratic temperature coefficient                                          | 1/(°C) <sup>2</sup> | 0 |
| Tmjs1 | Mjs linear temperature coefficient                                             | 1/°C                | 0 |
| Tmjs2 | Mjs quadratic temperature coefficient                                          | 1/(°C) <sup>2</sup> | 0 |
| Tnc1  | Nc linear temperature coefficient                                              | 1/°C                | 0 |
| Tnc2  | Nc quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Tne1  | Ne linear temperature coefficient                                              | 1/°C                | 0 |
| Tne2  | Ne quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Tnf1  | Nf linear temperature coefficient                                              | 1/°C                | 0 |
| Tnf2  | Nf quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Tnr1  | Nr linear temperature coefficient                                              | 1/°C                | 0 |
| Tnr2  | Nr quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Tns1  | Ns linear temperature coefficient                                              | 1/°C                | 0 |
| Tns2  | Ns quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Trb1  | Rb linear temperature coefficient                                              | 1/°C                | 0 |
| Trb2  | Rb quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Trc1  | Rc linear temperature coefficient                                              | 1/°C                | 0 |
| Trc2  | Rc quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Tre1  | Re linear temperature coefficient                                              | 1/°C                | 0 |
| Tre2  | Re quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Trm1  | Rbm linear temperature coefficient                                             | 1/°C                | 0 |
| Trm2  | Rbm quadratic temperature coefficient                                          | 1/(°C) <sup>2</sup> | 0 |
| Ttf1  | Tf linear temperature coefficient                                              | 1/°C                | 0 |
| Ttf2  | Tf quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Ttr1  | Tr linear temperature coefficient                                              | 1/°C                | 0 |
| Ttr2  | Tr quadratic temperature coefficient                                           | 1/(°C) <sup>2</sup> | 0 |
| Tvaf1 | Vaf linear temperature coefficient                                             | 1/°C                | 0 |
| Tvaf2 | Vaf quadratic temperature coefficient                                          | 1/(°C) <sup>2</sup> | 0 |
| Tvar1 | Var linear temperature coefficient                                             | 1/°C                | 0 |
| Tvar2 | Var quadratic temperature coefficient                                          | 1/(°C) <sup>2</sup> | 0 |
| Tvjc  | Vjc linear temperature coefficient                                             | 1/°C                | 0 |
| Tvje  | Vje linear temperature coefficient                                             | 1/°C                | 0 |
| Tvjs  | Vjs linear temperature coefficient                                             | 1/°C                | 0 |
| Tvtf1 | Vtf linear temperature coefficient                                             | 1/°C                | 0 |

Advanced Design System 2011.01 - Nonlinear Devices

|                       | 5                                                                                                          |                     |      |
|-----------------------|------------------------------------------------------------------------------------------------------------|---------------------|------|
| Tvtf2                 | Vtf quadratic temperature coefficient                                                                      | 1/(°C) <sup>2</sup> | 0    |
| Txtf1                 | Xtf linear temperature coefficient                                                                         | 1/°C                | 0    |
| Txtf2                 | Xtf quadratic temperature coefficient                                                                      | 1/(°C) <sup>2</sup> | 0    |
| Xtb (Tb)              | temperature exponent for forward- and reverse-beta. Xtb partly defines dependence of base current on temp. | None                | 0.0  |
| Xti (Pt)              | temperature exponent for saturation current                                                                | None                | 3.0  |
| wVsubfwd<br>(Vsubfwd) | substrate junction forward bias (warning)                                                                  | V                   | None |
| wBvsub<br>(Bvsub)     | substrate junction reverse breakdown voltage (warning)                                                     | V                   | None |
| wBvbe (Bvbe)          | base-emitter reverse breakdown voltage (warning)                                                           | V                   | None |
| wBvbc (Bvbc)          | base-collector reverse breakdown voltage (warning)                                                         | V                   | None |
| wVbcfwd<br>(Vbcfwd)   | base-collector forward bias (warning)                                                                      | V                   | None |
| wIbmax                | maximum base current (warning)                                                                             | A                   | None |
| wIcmax                | maximum collector current (warning)                                                                        | A                   | None |
| wPmax                 | maximum power dissipation (warning)                                                                        | W                   | None |
| AllParams             | Data Access Component (DAC) Based Parameters                                                               | None                | None |

<sup>+</sup> A value of 0.0 is interpreted as infinity. <sup>++</sup> This parameter value varies with temperature based on model Tnom and device Temp. <sup>+++</sup> This parameter value scales with Area.<sup>‡</sup> This parameter value scales with 1/Area.

### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelname BJT [parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *BJT*. Use either parameter NPN=yes or PNP=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

### Example:

```
model Npn1 BJT \
    NPN=yes Is=1.5e- Cjc=2.0e-13
```

### Notes/Equations

1. BJT\_Model supplies values for BJT devices (BJT4 devices include a substrate terminal). Adapted from the integral charge control model of Gummel and Poon, it includes several effects at high bias levels. It reduces to the simpler Ebers-Moll model when certain parameters required for Gummel-Poon are not specified.

The DC characteristics of a modified Gummel-Poon BJT are defined by:

- Is, Bf, Ikf, Nf, Ise, and Ne, which determine forward-current gain characteristics.
- Is, Br, Ikr, Nr, Isc, and Nc, which determine reverse-current gain characteristics
- Vaf and Var, which determine output conductances for forward and reverse regions.
- Is (saturation current). Eg and Xti partly determine temperature dependence of Is.
- Xtb determines base current temperature dependence.
- Rb, Rc, and Re are ohmic resistances. Rb is current dependent. The nonlinear depletion layer capacitances are determined by:
- Cje, Vje, and Mje for the base-emitter junction.
- Cjc, Vjc, and Mjc for the base-collector junction.
- Cjs, Vjs, and Mjs for the collector-substrate junction (if vertical BJT), or for the base-substrate junction (if lateral BJT)

The collector or base to substrate junction is modeled as a PN junction.

2. Substrate Terminal

Five model parameters control the substrate junction modeling: Cjs, Vjs and Mjs model the nonlinear substrate junction capacitance; Iss and Ns model the nonlinear substrate P-N junction current.

When BJT4\_NPN or BJT4\_PNP devices are used, explicitly connect the substrate terminal as required. When 3-terminal BJT\_NPN or BJT\_PNP devices are used, the substrate terminal is implicitly grounded. This should not affect the simulation if the substrate model parameters Cjs and Iss are not specified, as they default to 0. The model Lateral parameter changes the connection of the substrate junction. At its default setting of no, the substrate junction models a vertical bipolar transistor with the substrate junction connected to the collector. When Lateral=yes, a lateral bipolar transistor is modeled with the substrate junction connected to the base.

3. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

# **DC Equations**

There are two components of base current associated with the bias on each junction. For the emitter junction, an ideal exponential voltage term *Ibei* arises due to recombination in the inactive base region and carrier injected into the emitter. A non-ideal exponential voltage term *Iben* predominates at low bias due to recombination in the emitter junction spaced charge region.

$$Ibei = Is\left(\exp\left(\frac{Vbe}{Nf \times V_T}\right) - 1\right)$$
$$Iben = Ise\left(\exp\left(\frac{Vbe}{Ne \times V_T}\right) - 1\right)$$

Similarly, emission and recombination near the collector junction result in similar terms.  $Ibci = Is\left(\exp\left(\frac{Vbc}{Nr \times V_T}\right) - 1\right)$  $Ibcn = Isc\left(\exp\left(\frac{Vbc}{Nc \times V_T}\right) - 1\right)$ 

### **Collector Leakage Current**

If Vbo is specified, when Vbc < 0 the collector leakage current Icbo is modeled by  $Icbo = (-Cbo + Gbo \times Vbc) \left[ 1 - \exp\left(\frac{Vbc}{Vbo}\right) \right]$ 

**Base Terminal Current (without substrate current)** 

$$Ib = \frac{Ibei}{Bf} + Iben + \frac{Ibci}{Br} + Ibcn$$

**Collector Terminal Current (without substrate current)** 

$$Ic = \frac{Ibei - Ibci}{Qb} - \frac{Ibci}{Br} - Ibcn$$

### **Collector-Emitter Current**

$$Ice = \frac{Ibei - Ibci}{Qb}$$

where the normalized base charge is Qb. If Approxqb = yes

$$Qb = \frac{Q1}{2} \times \left(1 + \left(1 + 4\left(\frac{Ibei}{Ikf} + \frac{Ibci}{Ikr}\right)\right)^{Nk}\right)$$

where

$$Q1 = \frac{1}{1 - \frac{Vbc}{Vaf} - \frac{Vbe}{Var}}$$

if neither Ke nor Kc is specified otherwise

$$Q1 = 1 + \int_{0}^{Vbc} f(Ke, Vje, Mje) dv + \int_{0}^{Vbc} f(Kc, Vjc, Mjc) dv$$

where *f*( ) is defined as:

$$f(K, V, M) = \begin{cases} K \left(1 - \frac{v}{V}\right)^{-M} & \text{if } v < Fc \times V \\ K \left(\frac{1 - Fc(1 + M) + M\left(\frac{v}{V}\right)}{(1 - Fc)^{(1 + M)}}\right) & \text{if } v \ge Fc \times V \end{cases}$$

If Approxqb = no

$$Qb = \frac{1 + \frac{Vbc}{Vaf} + \frac{Vbc}{Var}}{2} \times \left(1 + \left(1 + 4\left(\frac{Ibei}{Ikf} + \frac{Ibci}{Ikr}\right)\right)^{Nk}\right)$$

### Substrate Current

Lateral = no (Vertical BJT)  

$$Isc = Iss\left(\exp\left(\frac{Vsc}{Ns \times V_T}\right) - 1\right)$$
  
Lateral = yes (Lateral BJT)  
 $Ibs = Iss\left(\exp\left(\frac{Vbs}{Ns \times V_T}\right) - 1\right)$ 

### **Base Resistance**

The base resistance *RBb* consists of two separate resistances. The contact and sheet resistance *Rbm* and the resistance of the internal (active) base register, *vbi*, which is a function of the base current.

If Rbm is zero or IB < 0, RBb = Rb If *Ivb* is not specified

$$RBb = Rbm + \frac{Rb - Rbm}{Qb}$$

If Ivb is specified RBb = Rbm + vbiThere are two equations for vbi; *RbModel* determines which equations to use. If RbModel = Spice

$$vbi = 3(Rb - Rbm)\left(\frac{\tan(z) - z}{z \tan^2(z)}\right)$$

where

$$z = \frac{\sqrt{1 + \frac{144}{\pi^2} \times \frac{Ib}{Irb}} - 1}{\frac{\frac{24}{\pi^2} \sqrt{\frac{Ib}{Irb}}}{\sqrt{\frac{1}{\pi^2} \sqrt{\frac{Ib}{Irb}}}}$$
  
If RbModel = MDS  
 $vbi = \frac{Rb - Rbm}{\sqrt{1 + 3\left(\frac{Ib}{Irb}\right)^{0.852}}}$ 

### **Nonlinear Collector Resistance**

If Rcv is specified

$$Rc = Rcv \left( \frac{1 + \left(\frac{Ic}{CCo}\right)^{Cex}}{1 + \left(\frac{ni}{Dope}\right)^{2} \exp\left(\frac{Vbc}{vt}\right)} \right) + Rcm$$

where *ni* is intrinsic carrier concentration for \_Si vt\_ is thermal voltage

### **Capacitance Equations**

Capacitances in the small-signal model contain the junction depletion layer capacitance and the diffusion capacitance due to the minority charge storage in the base region.

### **Base-Emitter Depletion Capacitances**

$$Vbe < Fc \times Vje$$

$$Cbedep = Cje \left(1 - \frac{Vbe}{vje}\right)^{-Mje}$$

$$Cbedep = Cje\left(\frac{1 - Fc(1 + Mje) + Mje\left(\frac{Vbe}{Vje}\right)}{(1 - fc)^{(1 + Mje)}}\right)$$

**Base-Emitter Diffusion Capacitance** 

$$Cbediff = \frac{d(Qbediff)}{d(Vbe)}$$

where the transit charge

$$Qbdiff = Tf \left(1 + xtf \times \exp\left(\frac{Vbc}{1.442695Vtf}\right) \left(\frac{Ibei}{Ibei + Itf}\right)^2 \times \frac{Ibei}{Qb}\right)$$

Cbe = Cbedep + Cbediff

### **Base-Collector Depletion Capacitances**

When Xcjc is not equal to one, the base-collector depletion capacitance is modeled as a distributed capacitance.

The internal base-internal collector depletion capacitance  $Vbc < Fc \times Vjc$ 

$$Cbcdep = Xcjc \times Cjc \left(1 - \frac{Vbc}{Vjc}\right)^{-Mj}$$

 $Vbc \ge Fc \ge Vjc$ 

$$Cbcdep = Xcjc \times Cje \left( \frac{1 - Fc(1 + Mjc) + Mjc\left(\frac{Vbc}{Vjc}\right)}{(1 - fc)^{(1 + Mjc)}} \right)$$

The external base-internal collector depletion capacitance  $VBc < fc \times Vjc$ 

$$Cbcdep = (1 - Xcjc)Cjc \left(1 - \frac{Vbc}{Vjc}\right)^{-Mjc}$$

 $VBc \ge Fc \ge Vjc$ 

$$Cbcdep = (1 - Xcjc)Cjc \left(\frac{1 - Fc(1 + Mjc) + Mjc\left(\frac{Vbc}{Vjc}\right)}{(1 - fc)^{(1 + Mjc)}}\right)$$

CBc = CBcdep

**Base-Collector Diffusion Capacitances** 

$$Cbcdiff = \frac{d(Qbcdiff)}{d(Vbc)}$$

where the transit charge  $Qbcdiff = Tr \times Ibci$ Cbc = Cbcdep + Cbcdiff

# **Base-Collector Substrate Capacitance**

Lateral = no (vertical BJT) Vsc < 0

$$Csc = Cjs\left(1 - \frac{Vsc}{Vjs}\right)^{-Mjs}$$

$$Vsc \ge 0$$

$$Csc = Cjs\left(1 + Mjs \times \frac{Vsc}{Vjs}\right)$$

$$Lateral = yes (Lateral BJT)$$

$$Vbs < 0$$

$$Cbs = Cjs\left(1 - \frac{Vbs}{Vjs}\right)^{-Mjs}$$

$$Vbs \ge 0$$

$$Cbs = Cjs\left(1 + Mjs \times \frac{Vbs}{Vjs}\right)$$

### **Excess Phase**

An additional phase shift at high frequencies is added to the transconductance model to account for the distributed phenomena in the transistor. The effective phase shift added to the *Ibei* item in the *Ic* equation is calculated as follows for *Ibei* (with excess phase):

$$Ibei = \frac{3\omega_0^2}{s^2 + 3\omega_0 s + 3\omega_0^2} \times Ibei$$

where

$$\omega_0 = \frac{1}{Ptf \times Tf \times \frac{\pi}{180}}$$

The current implementation in ADS applies the shifting factor to collector current IC.

#### **Temperature Scaling**

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device Temp parameter. (Temperatures in the following equations are in Kelvin.)

The energy bandgap  $E_G$  varies as:

$$E_{G}(T) = 1.16 - \frac{7.02 \times 10^{-4} T^{2}}{T + 1108}$$
  

$$T/ev = 0, 1, 3$$
  

$$E_{G}(T) = E_{g} - \frac{E_{g}AlphaT^{2}}{T + E_{g}Beta}$$
  

$$T/ev = 2$$

The intrinsic carrier concentration  $n_i$  for silicon varies as:

$$n_i(T) = 1.45 \times 10^{10} \left(\frac{T}{300.15}\right)^{3/2} \exp\left(\frac{E_G(300.15)}{2k300.15/q} - \frac{E_G(T)}{2k(T/q)}\right)$$

Saturation currents Is, Ise, Isc, and Iss scale as: if Tlev=0  $NEW = (Temp)^{-Xtb}$  [ Eq. Eq. Eq.

$$Ise^{NEW} = Ise \left(\frac{Temp}{Tnom}\right)^{-Xtb} \exp\left[\frac{Eg}{NekTnom/q} - \frac{Eg}{NekTemp/q} + \frac{Xti}{Ne} \ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Isc^{NEW} = Isc \left(\frac{Temp}{Tnom}\right)^{-Xtb} \exp\left[\frac{Eg}{NckTnom/q} - \frac{Eg}{NckTemp/q} + \frac{Xti}{Nc} \ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Iss^{NEW} = Iss \left(\frac{Temp}{Tnom}\right)^{-Xtb} \exp\left[\frac{Eg}{NskTnom/q} - \frac{Eg}{NskTemp/q} + \frac{Xti}{Ns} \ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Is^{NEW} = Is \exp\left[\frac{E_G}{kTnom/q} - \frac{E_G}{kTemp/q} + Xti \ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$if Tlev=1$$

$$Ise^{NEW} = \frac{Ise}{1 + Xtb(Temp - Tnom)} exp \left[ \frac{Eg}{NekTnom/q} - \frac{Eg}{NekTemp/q} + \frac{Xti}{Ne} ln\left(\frac{Temp}{Tnom}\right) \right]$$

$$Isc^{NEW} = \frac{Isc}{1 + Xtb(Temp - Tnom)} \exp\left[\frac{Eg}{NckTnom/q} - \frac{Eg}{NckTemp/q} + \frac{Xti}{Nc}\ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Iss^{NEW} = \frac{Iss}{1 + Xtb(Temp - Tnom)} \exp\left[\frac{Eg}{NskTnom/q} - \frac{Eg}{NskTemp/q} + \frac{Xti}{Ns} \ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Is^{NEW} = Is \exp\left[\frac{Eg}{kTnom/q} - \frac{Eg}{kTemp/q} + Xti \ln\left(\frac{Temp}{Tnom}\right)\right]$$

if Tlev=2

$$Ise^{NEW} = Ise \left(\frac{Temp}{Tnom}\right)^{-Xtb} \exp\left[\frac{E_G(Tnom)}{NekTnom/q} - \frac{E_G(Temp)}{NekTemp/q} + \frac{Xti}{Ne} \ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Isc^{NEW} = Isc \left(\frac{Temp}{Tnom}\right)^{-Xtb} \exp\left[\frac{E_G(Tnom)}{NckTnom/q} - \frac{E_G(Temp)}{NckTemp/q} + \frac{Xti}{Nc} \ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Iss^{NEW} = Iss \left(\frac{Temp}{Tnom}\right)^{-Xtb} \exp\left[\frac{E_G(Tnom)}{NskTnom/q} - \frac{E_G(Temp)}{NskTemp/q} + \frac{Xti}{Ns} ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Is^{NEW} = Is \exp \left[\frac{E_G(Tnom)}{kTnom/q} - \frac{E_G(Temp)}{kTemp/q} + Xtiln\left(\frac{Temp}{Tnom}\right)\right]$$

if Tlev=3  

$$Ise^{NEW} = Ise^{(1+Tise1(Temp-Tnom) + Tise2(Temp-Tnom)^2)}$$
  
 $Isc^{NEW} = Isc^{(1+Tisc1(Temp-Tnom) + Tisc2(Temp-Tnom)^2)}$   
 $Iss^{NEW} = Iss^{(1+Tiss1(Temp-Tnom) + Tiss2(Temp-Tnom)^2)}$ 

$$Is^{NEW} = Is^{(1+Tis1(Temp-Tnom)+Tis2(Temp-Tnom)^2)}$$

Series resistances Rc, Re, Rb, and Rbm scale as:  

$$Rc^{NEW} = Rc[1 + Trc1(Temp-Tnom) + Trc2(Temp-Tnom)^2]$$
  
 $Re^{NEW} = Rc[1 + Trc1(Temp-Tnom) + Trc2(Temp-Tnom)^2]$   
 $Rb^{NEW} = Rb[1 + Trb1(Temp-Tnom) + Trb2(Temp-Tnom)^2]$   
 $Rbm^{NEW} = Rbm[1 + Trm1(Temp-Tnom) + Trm2(Temp-Tnom)^2]$   
Emission coefficients Nc, Ne, Nf, Nr, and Ns scale as:  
 $Nc^{NEW} = Nc[1 + Tnc1(Temp-Tnom) + Tnc2(Temp-Tnom)^2]$   
 $Ne^{NEW} = Nc[1 + Tnc1(Temp-Tnom) + Tnc2(Temp-Tnom)^2]$   
 $Nf^{NEW} = Nc[1 + Tnc1(Temp-Tnom) + Tnc2(Temp-Tnom)^2]$   
 $Nf^{NEW} = Nf[1 + Tnf1(Temp-Tnom) + Tnf2(Temp-Tnom)^2]$   
 $Nr^{NEW} = Nr[1 + Tnr1(Temp-Tnom) + Tnr2(Temp-Tnom)^2]$   
 $Nr^{NEW} = Ns[1 + Tns1(Temp-Tnom) + Tns2(Temp-Tnom)^2]$   
 $Transmit times Tf and Tr scale as:
 $Tf^{NEW} = Tf[1 + Ttf1(Temp-Tnom) + Ttf2(Temp-Tnom)^2]$   
High current effect on transit time Itf scales as:  
 $Itf^{NEW} = Itf[1 + Tif1(Temp-Tnom) + Tif2(Temp-Tnom)^2]$$ 

 $\begin{aligned} &Vtf^{NEW} = Vtf[1 + Tvtf1(Temp-Tnom) + Tvtf2(Temp-Tnom)^2] \\ &\text{Bias dependence on transmit time Xtf scales as:} \\ &Xtf^{NEW} = Xtf[1 + Txtf1(Temp-Tnom) + Txtf2(Temp-Tnom)^2] \\ &\text{Early voltage Vaf and Var scale as:} \\ &Vaf^{NEW} = Vaf[1 + Tvaf1(Temp-Tnom) + Tvaf2(Temp-Tnom)^2] \end{aligned}$ 

$$Var^{NEW} = Var[1 + Tvar1(Temp-Tnom) + Tvar2(Temp-Tnom)^{2}]$$

Forward and reverse beta Bf and Br scale as:

 $if Tlev = 0 \\ Bf^{NEW} = Bf \left(\frac{Temp}{Tnom}\right)^{Xtb} (1 + Tbf1(Temp - Tnom) + Tbf2(Temp - Tnom)^2)$ 

$$Br^{NEW} = Br \left(\frac{Temp}{Tnom}\right)^{Xtb} (1 + Tbr1(Temp - Tnom) + Tbr2(Temp - Tnom)^2)$$

if Tlev = 1

$$Bf^{NEW} = Bf(1 + Xtb(Temp - Tnom))(1 + Tbf1(Temp - Tnom) + Tbf2(Temp - Tnom)^2)$$
$$Br^{NEW} = Br(1 + Xtb(Temp - Tnom))(1 + Tbr1(Temp - Tnom) + Tbr2(Temp - Tnom)^2)$$

$$if Tlev = 2 \\ Bf^{NEW} = Bf \left(\frac{Temp}{Tnom}\right)^{Xtb} (1 + Tbf1(Temp - Tnom) + Tbf2(Temp - Tnom)^2)$$

$$Br^{NEW} = Br\left(\frac{Temp}{Tnom}\right)^{Xtb} (1 + Tbr1(Temp - Tnom) + Tbr2(Temp - Tnom)^2)$$

if Tlev = 3  

$$Bf^{NEW} = Bf(1 + Tbf1(Temp-Tnom) + Tbf2(Temp - Tnom)^2)$$
  
 $Br^{NEW} = Br(1 + Tbr1(Temp-Tnom) + Tbr2(Temp - Tnom)^2)$ 

Currents Ikf, Ikr, and Irb scale as:  
if Tlev = 0, 1, 2  

$$Ikf^{NEW} = Ikf(1 + Tikf1(Temp-Tnom) + Tikf2(Temp - Tnom)^2)$$
  
 $Ikr^{NEW} = Ikr(1 + Tikr1(Temp-Tnom) + Tikr2(Temp - Tnom)^2)$ 

$$Irb^{NEW} = Irb(1 + Tirb1(Temp - Tnom) + Tirb2(Temp - Tnom)^2)$$

if Tlev = 3  

$$Ikf^{NEW} = Ikf^{(1+Tikf1(Temp-Tnom)+Tikf2(Temp-Tnom)^2)}$$

$$Ikr^{NEW} = Ikr^{(1+Tikr1(Temp-Tnom)+Tikr2(Temp-Tnom)^2)}$$

$$Irb^{NEW} = Irb^{(1+Tirb1(Temp-Tnom)+Tirb2(Temp-Tnom)^2)}$$

Junction depletion capacitance Cjo and Cjsw and junction potentials Vje, Vjc, and Vjs vary as: if The c = 0

$$\begin{aligned} \text{NHEVC} &= 0 \\ \text{Vj}e^{\text{NEW}} &= \text{Vj}e\frac{\text{Temp}}{\text{Tnom}} + \frac{2k\text{Temp}}{q}\ln\left(\frac{n_i(\text{Tnom})}{n_i(\text{Temp})}\right) \\ \text{Vj}e^{\text{NEW}} &= \text{Vj}e\frac{\text{Temp}}{\text{Tnom}} + \frac{2k\text{Temp}}{q}\ln\left(\frac{n_i(\text{Tnom})}{n_i(\text{Temp})}\right) \\ \text{Vj}es^{\text{NEW}} &= \text{Vj}s\frac{\text{Temp}}{\text{Tnom}} + \frac{2k\text{Temp}}{q}\ln\left(\frac{n_i(\text{Tnom})}{n_i(\text{Temp})}\right) \\ \text{Cj}e^{\text{NEW}} &= \text{Cj}e\left(1 + Mje\left[1 + 4 \times 10^{-4}(\text{Temp} - \text{Tnom}) - \frac{\text{Vj}e^{\text{NEW}}}{\text{Vj}e}\right]\right) \end{aligned}$$

Advanced Design System 2011.01 - Nonlinear Devices  $Cjc^{NEW} = Cjc \left(1 + Mjc \left[1 + 4 \times 10^{-4} (Temp - Tnom) - \frac{Vjc^{NEW}}{Vic}\right]\right)$  $Cjs^{NEW} = Cjs \left(1 + Mjs \left[1 + 4 \times 10^{-4} (Temp - Tnom) - \frac{Vjs^{NEW}}{Vis}\right]\right)$ if Tlevc = 1  $Vje^{NEW} = Vje - Tvje(Temp - Tnom)$  $Vic^{NEW} = Vic - Tvic(Temp - Tnom)$  $Vjs^{NEW} = Vjs - Tvjs(Temp - Tnom)$  $Cje^{NEW} = Cje[1 + Tcje(Temp - Tnom)]$  $Cjc^{NEW} = Cjc[1 + Tcjc(Temp - Tnom)]$  $C_{js}^{NEW} = C_{js}[1 + T_{cjs}(Temp - Tnom)]$ if Tlevc = 2  $Vje^{NEW} = Vje - Tvje(Temp - Tnom)$  $Vjc^{NEW} = Vjc - Tvjc(Temp - Tnom)$  $Vis^{NEW} = Vjs - Tvjs(Temp - Tnom)$  $Cje^{NEW} = Cje \left(\frac{Vje}{Vie^{NEW}}\right)^{Mje}$  $Cjc^{NEW} = Cjc \left(\frac{Vjc}{Vjc^{NEW}}\right)^{Mjc}$ 

$$Cjs^{NEW} = Cjs \left(\frac{Vjs}{Vjs^{NEW}}\right)^{Mjs}$$

If Theve = 3  
if Thev = 0, 1, 3  

$$dVjedT = -\left(E_G(Tnom) + \frac{3kTnom}{q} + (1.16 - E_G(Tnom))\frac{Tnom + 2 \times 1108}{Tnom + 1108} - Vje\right)\frac{1}{Tnom}$$

$$dVjedT = -\left(E_G(Tnom) + \frac{3kTnom}{q} + (1.16 - E_G(Tnom))\frac{Tnom + 2 \times 1108}{Tnom + 1108} - Vje\right)\frac{1}{Tnom}$$

$$dVjsdT = -\left(E_G(Tnom) + \frac{3kTnom}{q} + (1.16 - E_G(Tnom))\frac{Tnom + 2 \times 1108}{Tnom + 1108} - Vje\right)\frac{1}{Tnom}$$

if Tlev = 2

$$dVjedT = -\left(E_{G}(Tnom) + \frac{3kTnom}{q} + (E_{g} - E_{G}(Tnom))\frac{Tnom + 2E_{g}Beta}{Tnom + E_{g}Beta} - Vje\right)\frac{1}{Tnom}$$

$$dVjedT = -\left(E_{G}(Tnom) + \frac{3kTnom}{q} + (E_{g} - E_{G}(Tnom))\frac{Tnom + 2E_{g}Beta}{Tnom + E_{g}Beta} - Vje\right)\frac{1}{Tnom}$$

$$dVjsdT = -\left(E_{G}(Tnom) + \frac{3kTnom}{q} + (E_{g} - E_{G}(Tnom))\frac{Tnom + 2E_{g}Beta}{Tnom + E_{g}Beta} - Vje\right)\frac{1}{Tnom}$$

$$VjedT = -\left(E_{G}(Tnom) + \frac{3kTnom}{q} + (E_{g} - E_{G}(Tnom))\frac{Tnom + 2E_{g}Beta}{Tnom + E_{g}Beta} - Vje\right)\frac{1}{Tnom}$$

$$Vje^{NEW} = Vje + dVjedT(Temp - Tnom)$$

$$Vje^{NEW} = Vje + dVjedT(Temp - Tnom)$$

$$Vje^{NEW} = Vje + dVjedT(Temp - Tnom)$$

$$Cje^{NEW} = Cje\left(1 - \frac{dVjedT(Temp - Tnom)}{2Vje}\right)$$

$$Cje^{NEW} = Cje\left(1 - \frac{dVjedT(Temp - Tnom)}{2Vje}\right)$$

$$Cjs^{NEW} = Cjs\left(1 - \frac{dVjedT(Temp - Tnom)}{2Vjs}\right)$$
Dunction grading coefficients Mje, Mjc, and Mjs scale as:  

$$Mje^{NEW} = Mje[1 + Tmje1(Temp - Tnom) + Tmje2(Temp - Tnom)^{2}]$$

$$Mjc^{NEW} = Mjc[1 + Tmjc1(Temp - Tnom) + Tmjc2(Temp - Tnom)^{2}]$$
$$Mjs^{NEW} = Mjs[1 + Tmjs1(Temp - Tnom) + Tmjs2(Temp - Tnom)^{2}]$$

Base-collector leakage current parameters Cbo and Gbo scale as:  $Cbo^{NEW} = Cbo \times Exp[Tcbo(Temp-Tnom)]$ 

 $Gbo^{NEW} = Gbo \times Exp[Tgbo(Temp-Tnom)]$ 

### **Noise Model**

Thermal noise generated by resistors Rb, Rc, and Re is characterized by the spectral density:

$$\frac{\langle i_{Rc}^{2} \rangle}{\Delta f} = \frac{4kT}{Rc}$$
$$\frac{\langle i_{Rb}^{2} \rangle}{\Delta f} = \frac{4kT}{Rb} \frac{Rbnoi}{Rb}$$

$$\frac{\langle i_{Re}^{2} \rangle}{\Delta f} = \frac{4kT}{Re}$$

Shot noise, flicker noise (Kf, Af, Ffe), and burst noise (Kb, Ab, Fb) generated by the DC base current is characterized by the spectral density:

$$\frac{\langle i_{be}^2 \rangle}{\Delta f} = 2qI_{BE} + Kf \frac{I_{BE}^{Af}}{f^{Ffe}} + Kb \frac{IBE^{Ab}}{1 + (f/Fb)^2}$$

Shot noise generated by the DC collector-to-emitter current is characterized by the spectral density:

$$\frac{\langle i_{ce}^2 \rangle}{\Delta f} = 2qI_{CE}$$

Shot noise generated by the DC collector-to-substrate current (BJT4 only) is characterized by the spectral density:

$$\frac{\langle i_{cs}^2 \rangle}{\Delta f} = 2qI_{CS}$$

In the preceding expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge,  $k_f$ ,  $a_f$ ,  $f_{fe}$ ,  $k_b$ ,  $a_b$ , and  $f_b$  are model parameters, f is the

simulation frequency, and  $\Delta f$  is the noise bandwidth.

### Area Dependence of the BJT Model Parameters

The AREA factor used for the BJT model determines the number of equivalent parallel devices of a specified model. The BJT model parameters affected by the AREA factor are:

The default value for the AREA parameter is 1.

**DC Operating Point Device Information** 

# Definitions

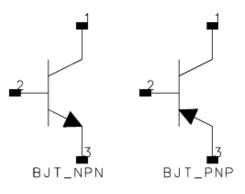
- Ic (collector current)
- Ib (base current)
- Ie (emitter current)
- Is (substrate current)
- Ice (collection-emitter current)
- power (dissipated power) BetaDc Ic/Ib where  $Ib = \text{sign}(ib) \times \text{Max} (Abs(Ib), ie-20)$  $Gm = \frac{dIce}{dVbe} + \frac{dIce}{dVbc}$

$$Rpi = \frac{1}{\left(\frac{dIb}{dVbc}\right)}$$

$$Rmu = \frac{1}{\left(\frac{dIb}{dVbc}\right)}$$

$$Rx = RBb$$
$$Ro = \frac{-1}{\left(\frac{dIce}{dVbc}\right)}$$

Cpi = Cbe Cmu = Cbc Cbx = CBx Ccs = Ccs if vertical BJT = Cbs if lateral BJT  $BetAc = Gm \times Rpi$   $Ft = \frac{1}{(2\pi(tau + (Rc + Re)(Cmu + Cbx)))}$ where  $tau = \frac{Max(Cpi + Cnm + Cbx, ie - 20)}{Max(Gm, ie - 20)}$  Vbe = v(B) - v(E) Vbc = v(B) - v(C) Vce = v(BC) - v(E)


#### References

<sup>1.</sup> P. Antognetti and G. Massobrio, Semiconductor device modeling with SPICE, New

Advanced Design System 2011.01 - Nonlinear Devices York: McGraw-Hill, Second Edition 1993.

# BJT\_NPN, BJT\_PNP (Bipolar Junction Transistors NPN, PNP)

#### Symbol



#### **Parameters**

| Name   | Description                                                       | Units | Default   |
|--------|-------------------------------------------------------------------|-------|-----------|
| Model  | Model instance name                                               | None  | BJTM1     |
| Area   | Scaling Factor                                                    | None  | 1.0       |
| Region | DC operating region: $0 = off$ , $1 = on$ , $2 = rev$ , $3 = sat$ | None  | on        |
| Temp   | device operating temperature                                      | °C    | 25        |
| Trise  | temperature rise over ambient                                     | °C    | 0         |
| Mode   | simulation mode: Nonlinear, Linear, Standard (refer to note 2)    | None  | Nonlinear |
| Noise  | noise generation option: yes=1, no=0                              | None  | yes       |
| _M     | number of devices in parallel                                     | None  | 1         |

#### **Notes/Equations**

- The Temp parameter specifies the physical (operating) temperature of the device; if different than the temperature at which the model parameters are valid or extracted (specified by Tnom of the associated model) certain model parameters are scaled such that the device is simulated at its operating temperature. Refer to the model to see which parameter values are scaled.
- 2. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 3. The substrate terminal is connected to ground. The substrate current is affected by the ISS and CJS model parameters. There should be no problems with this except perhaps in a PNP transistor where the ISS model parameter is specified. This could cause excess current flow as the substrate PN junction might end up being forward biased. If the connection of the substrate terminal to ground is not acceptable, use

the BJT4 component and connect its substrate terminal to the appropriate place.

- 4. For information on area dependence, refer to the section Area Dependence of the BJT Model Parameters (ccnld).
- 5. DC operating point parameters that can be sent to the dataset are listed in the following tables according to model.

## DC Operating Point Information Model = BJT\_Model or EE\_BJT2\_Model

| Name   | Description                                 | Units   |
|--------|---------------------------------------------|---------|
| Ic     | Collector current                           | amperes |
| Ib     | Base current                                | amperes |
| Ie     | Emitter current                             | amperes |
| Is     | Substrate current                           | amperes |
| Power  | DC power dissipation                        | watts   |
| BetaDc | DC current gain                             |         |
| Gm     | Forward transconductance (dIce/dVbe)        | siemens |
| Rpi    | Input resistance 1/(dIbe/dVbe)              | ohms    |
| Rmu    | Feedback resistance 1/(dIbe/dVbc)           | ohms    |
| Rx     | Base resistance                             | ohms    |
| Ro     | Output resistance 1/(dIbe/dVbc - dIce/dVbc) | ohms    |
| Срі    | Base-emitter capacitance                    | farads  |
| Cmu    | Base-internal collector capacitance         | farads  |
| Cbx    | Base-external collector capacitance         | farads  |
| Ccs    | Substrate capacitance                       | farads  |
| BetaAc | AC current gain                             |         |
| Ft     | Unity current gain frequency                | hertz   |
| Vbe    | Base-emitter voltage                        | volts   |
| Vbc    | Base-collector voltage                      | volts   |
| Vce    | Collector-emitter voltage                   | volts   |

DC Operating Point Information Model = STBJT\_Model

Advanced Design System 2011.01 - Nonlinear Devices

| Name   | Description                                                   | Units   |
|--------|---------------------------------------------------------------|---------|
| Ic     | Collector current                                             | amperes |
| Is     | Substrate current                                             | amperes |
| Ib     | Base current                                                  | amperes |
| Ie     | Emitter current                                               | amperes |
| Power  | DC power dissipation                                          | watts   |
| BetaDc | DC current gain                                               |         |
| BetaAc | AC current gain                                               |         |
| fTreal | Unity current gain frequency, full formula                    | hertz   |
| fTappr | Unity current gain frequency, approximate formula gm/(2*PI*C) | hertz   |
| Gm     | Forward transconductance (dIce/dVbe)                          | siemens |
| Rpi    | Input resistance 1/(dIbe/dVbe)                                | ohms    |
| Rmu    | Reedback resistance 1/(dIbe/dVbc)                             | ohms    |
| Rx     | Base resistance                                               | ohms    |
| Ro     | Output resistance 1/(dIbe/dVbc - dIce/dVbc)                   | ohms    |
| Rcv    | Collector resistance                                          | ohms    |
| Срі    | Base-emitter capacitance                                      | farads  |
| Cmu    | Base-internal collector capacitance                           | farads  |
| Cbx    | Base-external collector capacitance                           | farads  |
| Ccs    | Internal collector-substrate capacitance                      | farads  |
| Cbs    | Internal base-substrate capacitance                           | farads  |
| Cxs    | External base-substrate capacitance                           | farads  |
| Vbe    | Base-emitter voltage                                          | volts   |
| Vbc    | Base-collector voltage                                        | volts   |
| Vce    | Collector-emitter voltage                                     | volts   |

DC Operating Point Information Model = MEXTRAM\_Model (503)

| Name          | Description               | Units   |
|---------------|---------------------------|---------|
| Ic            | Collector current         | amperes |
| Ib            | Base current              | amperes |
| Ie            | Emitter current           | amperes |
| Is            | Substrate current         | amperes |
| Power         | DC power dissipated       | watts   |
| dIc2e1_dVb2e1 | (dIc2e1/dVb2e1)           | siemens |
| Gb2e1         | (dIb2e1/dVb2e1)           | siemens |
| Gb1b2         | (dIb1b2/dVb1b2)           | siemens |
| Gb1c1         | (dIb1c1/dVb1c1)           | siemens |
| Gbc1          | (dIbc1/dVbc1)             | siemens |
| Gb2c2         | (dIb2c2/dVb2c2)           | siemens |
| Cb2e1         | (dIb2e1/dVb2e1)           | siemens |
| Cb2c2         | (dIb2c2/dVb2c2)           | siemens |
| Gb1e1         | (dIb1e1/dVb1e1)           | siemens |
| Gc1s          | (dIc1s/dVc1s)             | siemens |
| dIc2e1_dVb2c2 | (dIc2e1/dVb2c2)           | siemens |
| dIc2e1_dVb2c1 | (dIc2e1/dVb2c1)           | siemens |
| dIc1c2_dVb2e1 | (dIc1c2/dVb2e1)           | siemens |
| dIc1c2_dVb2c2 | (dIc1c2/dVb2c2)           | siemens |
| dIc1c2_dVb2c1 | (dIc1c2/dVb2c1)           | siemens |
| dIb2c2_dVb2e1 | (dIb2c2/dVb2e1)           | siemens |
| dIb2c2_dVb2c1 | (dIb2c2/dVb2c1)           | siemens |
| dIb1b2_dVb2e1 | (dIb1b2/dVb2e1)           | siemens |
| dIb1b2_dVb2c2 | (dIb1b2/dVb2c2)           | siemens |
| dIb1b2_dVb2c1 | (dIb1b2/dVb2c1)           | siemens |
| dIc1s_dVb1c1  | (dIc1s/dVb1c1)            | siemens |
| dIc1s_dVbc1   | (dIc1s/dVbc1)             | siemens |
| Cb1b2         | (dQb1b2/dVb1b2)           | farads  |
| Cc1s          | (dQc1s/dVc1s)             | farads  |
| Cb1c1         | (dQb1c1/dVb1c1)           | farads  |
| Cbc1          | (dQbc1/dVbc1)             | farads  |
| dQb2e1_dVb2c2 | (dQb2e1/dVb2c2)           | farads  |
| dQb2e1_dVb2c1 | (dQb2e1/dVb2c1)           | farads  |
| dQc2b2_dVb2e1 | (dQc2b2/dVb2e1)           | farads  |
| dQb2c2_dVb2c1 | (dQb2c2/dVb2c1)           | farads  |
| dQb1b2_dVb2e1 | (dQb1b2/dVb2e1)           | farads  |
| dQb1e1_dVb2e1 | (dQb1e1/dVb2e1)           | farads  |
| Vbe           | Base-emitter voltage      | volts   |
| Vbc           | Base-collector voltage    | volts   |
| Vce           | Collector-emitter voltage | volts   |

6. This device has no default artwork associated with it.

# References

1. I. E. Getreu, CAD of Electronic Circuits, 1; Modeling the Bipolar Transistor , Elsevier

Scientific Publishing Company, 1978.
P. Antognetti and G. Massobrio. *Semiconductor Device Modeling with SPICE*, Second Edition, McGraw-Hill, Inc., 1993.

# EE\_BJT2\_Model (EEsof Bipolar Transistor Model)

#### Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name | Description                                                                                                                                      | Units | Default                           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------|
| Туре | Model type: 1=NPN or 2=PNP                                                                                                                       | None  | NPN                               |
| Nf   | forward current emission coefficient                                                                                                             | None  | 1.0                               |
| Ne   | base emitter leakage emission coefficient                                                                                                        | None  | 1.5                               |
| Nbf  | forward base ideality factor                                                                                                                     | None  | 1.06                              |
| Vaf  | forward early voltage                                                                                                                            | V     | fixed at infinity <sup>†</sup>    |
| Ise  | base emitter leakage saturation current                                                                                                          | А     | 0.0                               |
| Tf   | ideal forward transit time (Tr and Tf, along with the depletion-layer capacitances, model base charge storage effects; Tf may be bias-dependent) | sec   | 0.0                               |
| Ikf  | corner for forward-beta high current roll-off                                                                                                    | A     | fixed at infinity $^{\dagger}$    |
| Xtf  | coefficient of bias-dependence for Tf                                                                                                            | None  | 0.0                               |
| Vtf  | voltage dependence of Tf on base-collector voltage                                                                                               | V     | fixed at infinity <sup>†</sup>    |
| Itf  | parameter for high-current effect on Tf                                                                                                          | A     | 0.0                               |
| Nbr  | reverse base ideality factor                                                                                                                     | None  | 1.04                              |
| Nr   | reverse current emission coefficient                                                                                                             | None  | 1.0                               |
| Nc   | base collector leakage emission coefficient                                                                                                      | None  | 2.0                               |
| Isc  | base-collector leakage saturation current                                                                                                        | А     | 0.0                               |
| Ikr  | corner for reverse-beta high-current roll-off                                                                                                    | A     | fixed at infinity <sup>†</sup>    |
| Var  | reverse early voltage                                                                                                                            | V     | fixed at<br>infinity <sup>†</sup> |
| Tr   | ideal reverse transit time (Tr and Tf, along with the depletion-layer capacitances, model base charge storage effects)                           | sec   | 0.0                               |
| Isf  | forward saturation current                                                                                                                       | А     | 9.53e-15                          |

| Ibif     | Advanced Design System 2011.01 - Nonlinear Devices<br>forward base saturation current                                                          | A    | 1.48e-16     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|
| Isr      | reverse saturation current                                                                                                                     | А    | 1.01e-14     |
| Ibir     | reverse base saturation current                                                                                                                | А    | 6.71e-16     |
| Tamb     | ambient temperature of measurement and model parameter extraction                                                                              | °C   | 25           |
| Cje      | base-emitter zero-bias depletion capacitance (Cje, Vje, and Mje determine nonlinear depletion-layer capacitance for base-emitter junction)     | F    | 0.0          |
| Vje      | base-emitter junction built-in potential (Cje, Vje, and Mje determine nonlinear depletion-layer capacitance for base-emitter junction)         | V    | 0.75         |
| Мје      | base-emitter junction exponential factor (Cje, Vje, and Mje determine nonlinear depletion-layer capacitance for base-emitter junction)         | None | fixed at 1/3 |
| Cjc      | base-collector zero-bias depletion capacitance (Cjc, Vjc, and Mjc determine nonlinear depletion-layer capacitance for base-collector junction) | F    | 0.0          |
| Vjc      | base-collector junction built-in potential (Cjc, Vjc, and Mjc determine nonlinear depletion-layer capacitance for base-collector junction)     | V    | 0.75         |
| Мјс      | base-collector junction exponential factor (Cjc, Vjc, and Mjc determine nonlinear depletion-layer capacitance for base-collector junction)     | None | fixed at 1/3 |
| Rb       | Zero-bias base resistance                                                                                                                      | Ohm  | 1e-4         |
| Re       | emitter resistance                                                                                                                             | Ohm  | 1e-4         |
| Rc       | collector resistance                                                                                                                           | Ohm  | 1e-4         |
| Fc       | forward-bias depletion capacitance coefficient                                                                                                 | None | 0.5          |
| wVsubfwd | substrate junction forward bias (warning)                                                                                                      | V    | None         |
| wBvsub   | substrate junction reverse breakdown voltage (warning)                                                                                         | V    | None         |
| wBvbe    | base emitter reverse breakdown voltage (warning)                                                                                               | V    | None         |
| wBvbc    | base collector reverse breakdown voltage (warning)                                                                                             | V    | None         |
| wVbcfwd  | base collector forward bias (warning)                                                                                                          | V    | None         |
| wIbmax   | maximum base current (warning)                                                                                                                 | A    | None         |
| wIcmax   | maximum collector current (warning)                                                                                                            | A    | None         |
| wPmax    | maximum power dissipation (warning)                                                                                                            | W    | None         |
|          | Data Access Component (DAC) Based Parameters                                                                                                   | None | None         |

## **Notes/Equations**

- 1. This model specifies values for BJT\_NPN or BJT\_PNP devices.
- 2. EEBJT2 is the second generation BJT model designed by Agilent EEsof. The model has been created specifically for automatic parameter extraction from measured data including DC and S-parameter measurements. The goal of this model is to overcome some of the problems associated with EEBJT1 or Gummel-Poon models limited accuracy and parameter extraction difficulty with regard to silicon rf/microwave transistors. EEBJT2 is not generally equivalent or compatible with the Gummel-Poon or EEBJT1 models. EEBJT2 can provide a reasonably accurate reproduction of transistor behavior, including DC bias solution, bias-dependent S-parameters including the effects of package parasitics, and true nonlinear harmonic output power. The model is quasi-static, analytical, and isothermal. The model does not scale with area because parameters are intended to be extracted directly from measured data and not from layout considerations. Default values of some parameters are chosen from an average of the first EEBJT2 library model parameters.
- 3. To prevent numerical problems, the setting of some model parameters is trapped by

the simulator. The parameter values are changed internally:

- Mjc and Mje must be  $\leq 0.99$
- Fc must be  $\leq 0.9999$
- Rb, Rc, and Re must be  $\geq 10^{-4}$
- 4. The Temp parameter is only used to calculate the noise performance of this device. Temperature scaling of model parameters is not performed for this device.
- 5. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent (Data Access Component)* (ccsim) in *Introduction to Circuit Components* (ccsim)). Note that model parameters that are explicitly specified take precedence over those via AllParams.
- 6. This device has no default artwork associated with it.

# Equations

# **Base-Emitter and Base-Collector Current**

The base-emitter current in the BJT has been changed significantly from the Gummel-Poon and other earlier models. These models assume that the non-leakage base-emitter current is related to the collector-emitter current by a simple constant, known as beta. Observation of base-emitter current in both silicon and AlGaAs devices has shown that this assumption is incorrect. Difficulties with this method of modeling base current have been observed for many years. A large, very bias-dependent base resistance in the modified Gummel-Poon model in Berkeley SPICE has been used to attempt to correct the problem with the base-emitter current expressions. This base resistance value and its variation is often extracted from DC data only, with the result that the behavior of the device over frequency is often poorly modeled. This problem is then *solved* by assigning some fraction of the base-collector capacitance to either side of the base in a distributed manner.

Agilent EEsof's experience with EEBJT2 has shown that properly modeled base-emitter current and conductance renders both the large bias-dependent base resistance and distributed base-collector capacitance unnecessary and greatly improves both the DC and AC accuracy of the resulting model.

EE\_BJT2 models the base-emitter current with two non-ideal exponential expressions, one for the bulk recombination current (usually dominant in silicon devices), and one for other recombination currents (usually attributed to surface leakage).

$$Ibe = \left(Ibif\left(exp\left(\frac{Vbe}{(NbfV_T)}\right) - 1.0\right)\right) + \left(Ise\left(exp\left(\frac{Vbe}{(Ne \times V_T)}\right) - 1.0\right)\right)$$

where

$$V_T = \frac{k \times Tamb}{q}$$

where

k is Boltzmann's constant, and q is deviceary charge.

Note that Nbf is not necessarily 1.0, which is effectively the case in the Gummel-Poon model.

Advanced Design System 2011.01 - Nonlinear Devices The base-collector current is similarly modeled:

$$Ibc = \left(Ibir\left(exp\left(\frac{Vbc}{(NbrV_T)}\right) - 1.0\right)\right) + \left(Isc\left(exp\left(\frac{Vbc}{(Nc \times V_T)}\right) - 1.0\right)\right)$$

Virtually all silicon rf/microwave transistors are vertical planar devices, so the second current term containing Isc and Nc is usually negligible.

The total base current Ib is the sum of Ibe and Ibc. Note that this method of modeling base current obsoletes the concept of a constant beta.

## **Collector-Emitter Current**

The forward and reverse components of the collector-emitter current are modeled in a manner similar to the Gummel-Poon model, but with more flexibility. Observation of collector-emitter current behavior has shown that the forward and reverse components do not necessarily share identical saturation currents, as in the Gummel-Poon model. The basic expressions in EE\_BJT2, not including high-level injection effects and Early effects, are:

$$Icf = Isf \times \left(exp(\frac{Vbe}{(Nf \times V_T)}) - 1.0\right)$$

$$Icr = Isr \times \left(exp(\frac{Vbc}{(Nr \times V_T)}) - 1.0\right)$$

where Isf and Isr are not exactly equal but are usually very close. Nf and Nr are not necessarily equal or 1.0, but are usually very close. Careful control of ambient temperature during device measurement is required for precise extraction of all of the saturation currents and emission coefficients in the model.

The effects of high-level injection and bias-dependent base charge storage are modeled via a normalized base charge, similar to the Gummel-Poon model:

$$Ice = \frac{(Icf - Icr)}{Qb}$$

where

$$Qb = \left(\frac{Q1}{2.0}\right) \times (1.0 + \sqrt{1.0 + (4.0 \times Q2)})$$

and

$$Q1 = \frac{1.0}{\left(1.0 - \left(\frac{Vbc}{Vaf}\right) - \left(\frac{Vbe}{Var}\right)\right)}$$
$$Q2 = \left(\left(\frac{Isf}{Ikf}\right) \times \left(exp\left(\frac{Vbe}{(Nf \times V_T)}\right) - 1.0\right)\right) + \left(\left(\frac{Isf}{Ikf}\right) \times \left(exp\left(\frac{Vbc}{(Nr \times V_T)}\right) - 1.0\right)\right)$$

## \rm Note

All calculations of the exponential expressions used in the model are linearized to prevent numerical overflow or underflow at large forward or reverse bias conditions, respectively.

#### **Base-Emitter and Base-Collector Capacitances**

Diffusion and depletion capacitances are modeled for both junctions of the transistor model in a manner very similar to the Gummel-Poon model.

for Vbc  $\leq$  Fc  $\times$  Vjc

$$\begin{split} Cbc &= Cbc_{diffusion} + Cbc_{depletion} \\ \text{where} \\ Cbc_{diffusion} &= \frac{Tr \times Icr}{Nr \times V_T} \\ \text{and} \\ Cbc_{depletion} &= \frac{Cjc}{\left(1.0 - \left(\frac{Vbc}{Vjc}\right)\right)^{Mjc}} \\ \text{for Vbc > Fc × Vjc} \\ Cbc_{depletion} &= \left(\frac{Cjc}{(1.0 - Fc)^{Mjc}}\right) \times \left(1.0 + \left(\frac{Mjc(Vbc - Fc \times Vjc)}{VJjc(1.0 - Fc)}\right)\right) \\ \text{for Vbe $\leq Fc \times Vje} \\ Cbe &= Cbe_{diffusion} + Cbe_{depletion} \\ \text{where} \\ Cbe_{depletion} &= \frac{Cje}{\left(1.0 - \left(\frac{Vbe}{Vje}\right)\right)^{Mje}} \\ \text{for Vbe > Fc × Vje} \\ Cbe &= Cbe_{diffusion} + Cbe_{depletion} \\ \text{where} \\ Cbe_{depletion} &= \frac{Cje}{\left(1.0 - \left(\frac{Vbe}{Vje}\right)\right)^{Mje}} \\ \text{for Vbe > Fc × Vje} \\ Cbe_{depletion} &= \left(\frac{Cje}{(1.0 - Fc)^{Mje}}\right) \times \left(1.0 + \left(\frac{Mje(Vbe - (Fc \times Vje))}{Vje(1.0 - Fc)}\right)\right) \\ \end{split}$$

The diffusion capacitance for Cbe is somewhat differently formulated vs. that of Cbc. The transit time is not a constant for the diffusion capacitance for Cbe, but is a function of both junction voltages, formulated in a manner similar to the modified Gummel-Poon model. The total base-emitter charge is equal to the sum of the base-emitter depletion charge (which is a function of Vbe only) and the so-called transit charge (which is a function of both Vbe and Vbc).

$$Q_{transit} = Tff \times \left(\frac{Icf}{Qb}\right)$$

where

$$Tff = Tf \times \left(1.0 + Xtf\left(\frac{Icf}{Icf + Itf}\right)^{2.0} \times exp\left(\frac{Vbc}{1.44 \times Vtf}\right)\right)$$

and

$$Cbe_{diffusion}(Vbe) = \frac{\partial Q_{transit}}{\partial Vbe}$$

and

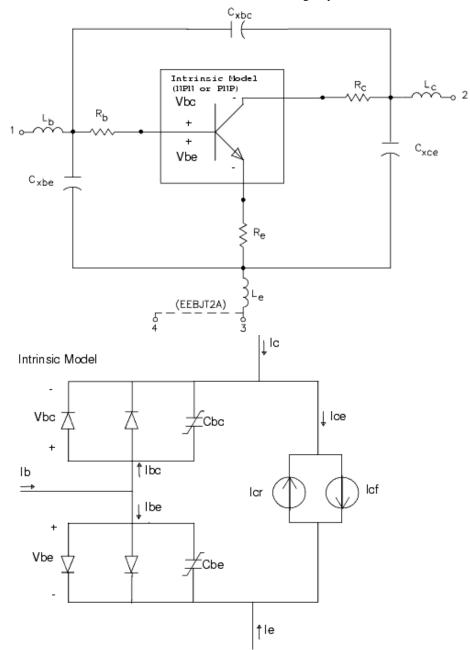
$$Cbe_{diffusion}(Vbc) = \frac{\partial Q_{transit}}{\partial Vbc}$$

# **Noise Model**

Thermal noise generated by resistors Rb, Rc, and Re is characterized by the following spectral density:

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

Shot noise generated by each of the DC currents flowing from base to emitter, base to collector, and collector to emitter is characterized by the following spectral density:


$$\frac{\langle i^2 \rangle}{\Delta f} = 2qI_{DC}$$

In the previous expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge, and  $\Delta f$  is the noise bandwidth.

Flicker and burst noise for this device is not modeled in this version of the simulator. However, the bias-dependent noise sources I\_NoiseBD and V\_NoiseBD can be connected external to the device to model flicker or burst noise.

# References

- 1. J. J. Ebers and J. L. Moll. "Large Signal Behaviour of Junction Transistors," Proc. I.R.E. 42, 1761 (1954).
- 2. H. K. Gummel and H. C. Poon. "An Integral Charge-Control Relation for Bipolar Transistors," Bell Syst. Techn. J. 49, 1 (1970).
- 3. SPICE2: A Computer Program to Simulate Semiconductor Circuits, University of California, Berkeley.
- 4. P. C. Grossman and A. Oki. "A Large Signal DC Model for GaAs/GaxAl1-xAs Heterojunction Bipolar Transistors," Proceedings of the 1989 IEEE Bipolar Circuits and Technology Meeting, pp. 258-262, September 1989.



# HICUM0\_1\_12 (HICUM Level 0, Version 1.12 Instance)

#### Parameters

| Name  | Description                                  | Units | Default |
|-------|----------------------------------------------|-------|---------|
| Mode  | Nonlinear spectral model on/off              |       | 1       |
| Noise | Noise generation on/off                      |       | 1       |
| dt    | Temperature change for particular transistor | K     | 0       |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

ModelName [:Name] c b e s

The model statement starts with the required keyword model. It is followed by the modelname that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is HICUM0\_1\_12. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

# Example:

```
Npn3:Ql c b e s t
model Npn3 HICUM0_1_12 is=5e-16 vef=250
Notes/Equations
```

1. DC operating point parameters that can be sent to the dataset:

| Name  | Description                              | Units |
|-------|------------------------------------------|-------|
| ic    | collector terminal current               | Α     |
| ib    | base terminal current                    | A     |
| ie    | emitter terminal current                 | A     |
| is    | substrate terminal current               | A     |
| vce   | external voltage collector-emitter       | V     |
| vbe   | external voltage base-emitter            | V     |
| vbei  | internal voltage between nodes bi and ei | V     |
| vsc   | external substrate-collector voltage     | V     |
| temp  | device temperature                       | К     |
| tf    | total forward transit time               | s     |
| tr    | total reverse transit time               | s     |
| qf    | minority charge forward component        | coul  |
| qr    | minority charge reverse component        | coul  |
| qpt   | modified hole charge                     | coul  |
| it    | transfer current                         | A     |
| itf   | forward transfer current                 | A     |
| itr   | reverse transfer current                 | A     |
| iavl  | avalanche generation current             | A     |
| ibici | current between bi and ci                | A     |
| ijsc  | current for si-ci diode                  | A     |
| gm    | Gm                                       | S     |
| rbi   | internal base resistance                 | Ohm   |
| rbx   | external base resistance                 | Ohm   |
| rcx   | external collector resistance            | Ohm   |
| re    | external emittor resistance              | Ohm   |
| pwr   | power dissipation                        | W     |
| qjcx  | charge between b and ci                  | coul  |
| qbci  | charge between b and ci                  | coul  |
| cbe   | capacitance between b and e              | F     |
| qbici | charge between bi and ci                 | coul  |
| qbiei | charge between bi and ei                 | coul  |
| qjs   | charge between si and ci                 | coul  |
| cjs   | capacitance between si and ci            | F     |
| qjei  | junction charge between bi and ei        | coul  |
| cjei  | junction capacitance between bi and ei   | F     |
| cbici | dqjci/d_V_BCI                            | F     |

# HICUM0\_1\_12\_model (HICUM Level 0, Version 1.12 Model)

## **Parameters**

| Name  | Description                                           | Units | Default |
|-------|-------------------------------------------------------|-------|---------|
| Tnom  | Parameter measurement temperature                     | deg C | 27      |
| is    | (Modified) saturation current                         | A     | 1e-16   |
| mcf   | Non-ideality coefficient of forward collector current |       | 1       |
| mcr   | Non-ideality coefficient of reverse collector current |       | 1       |
| vef   | forward Early voltage (normalization volt.)           | V     | 1e+10   |
| iqf   | forward d.c. high-injection toll-off current          | A     | 1e+10   |
| iqr   | inverse d.c. high-injection roll-off current          | A     | 1e+10   |
| iqfh  | high-injection correction current                     | A     | 1e+10   |
| tfh   | high-injection correction factor                      |       | 1e+10   |
| ibes  | BE saturation current                                 | A     | 1e-18   |
| mbe   | BE non-ideality factor                                |       | 1       |
| ires  | BE recombination saturation current                   | A     | 0       |
| mre   | BE recombination non-ideality factor                  |       | 2       |
| ibcs  | BC saturation current                                 | A     | 0       |
| mbc   | BC non-ideality factor                                |       | 1       |
| cje0  | Zero-bias BE depletion capacitance                    | F     | 1e-20   |
| vde   | BE built-in voltage                                   | V     | 0.9     |
| ze    | BE exponent factor                                    |       | 0.5     |
| aje   | Ratio of maximum to zero-bias value                   |       | 2.5     |
| t0    | low current transit time at Vbici=0                   | s     | 0       |
| dt0h  | Base width modulation contribution                    |       | 0       |
| tbvl  | SCR width modulation contribution                     | s     | 0       |
| tef0  | Storage time in neutral emitter                       | s     | 0       |
| gte   | Exponent factor for emitter transit time              |       | 1       |
| thcs  | Saturation time at high current densities             | s     | 0       |
| ahc   | Smoothing factor for current dependence               |       | 0.1     |
| tr    | Storage time at inverse operation                     | s     | 0       |
| rci0  | Low-field collector resistance under emitter          | Ohm   | 150     |
| vlim  | Voltage dividing ohmic and satur.region               | V     | 0.5     |
| vpt   | Punch-through voltage                                 | V     | 100     |
| vces  | Saturation voltage                                    | V     | 0.1     |
| cjci0 | Total zero-bias BC depletion capacitance              | F     | 1e-20   |
| vdci  | BC built-in voltage                                   | V     | 0.7     |
| zci   | BC exponent factor                                    |       | 0.333   |
| vptci | Punch-through voltage of BC junction                  | V     | 100     |
| cjcx0 | Zero-bias external BC depletion capacitance           | F     | 1e-20   |
| vdcx  | External BC built-in voltage                          | V     | 0.7     |
| zcx   | External BC exponent factor                           |       | 0.333   |
| vptcx | Punch-through voltage                                 | V     | 100     |
| fbc   | Split factor = Cjci0/Cjc0                             |       | 1       |

|                                                           | Devices<br>Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| forward Early voltage (normalization volt.)               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| forward Early voltage (normalization volt.)               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1e+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Geometry factor                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| External base series resistance                           | Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Emitter series resistance                                 | Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| External collector series resistance                      | Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Substrate transistor transfer saturation current          | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Substrate transistor transfer current non-ideality factor |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SC saturation current                                     | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SC non-ideality factor                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Zero-bias SC depletion capacitance                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1e-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SC built-in voltage                                       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| External SC exponent factor                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SC punch-through voltage                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Collector-base isolation (overlap) capacitance            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Exponent factor                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Prefactor                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| flicker noise coefficient                                 | M1-AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| flicker noise exponent factor                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                           | V/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.000102377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00043215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| First-order TC of tf0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | 1/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | 1/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | K/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| model type flag for npn                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| model type flag for pnp                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                           | Internal base resistance at zero-bias<br>forward Early voltage (normalization volt.)<br>forward Early voltage (normalization volt.)<br>Geometry factor<br>External base series resistance<br>Emitter series resistance<br>External collector series resistance<br>Substrate transistor transfer saturation current<br>Substrate transistor transfer current non-ideality factor<br>SC saturation current<br>SC non-ideality factor<br>Zero-bias SC depletion capacitance<br>SC built-in voltage<br>External SC exponent factor<br>SC punch-through voltage<br>Collector-base isolation (overlap) capacitance<br>Emitter-base oxide capacitance<br>Exponent factor<br>Prefactor<br>flicker noise coefficient<br>flicker noise exponent factor<br>Bandgap-voltage<br>Effective emitter bandgap-voltage<br>Effective substrate bandgap-voltage<br>Effective substrate bandgap-voltage<br>Coefficient K1 in T-dependent bandgap equation<br>Coefficient K2 in T-dependent bandgap equation | forward Early voltage (normalization volt.)Vforward Early voltage (normalization volt.)VGeometry factorIExternal base series resistanceOhmEmitter series resistanceOhmSubstrate transistor transfer saturation currentASubstrate transistor transfer current non-ideality factorISC saturation currentASC non-ideality factorIZero-bias SC depletion capacitanceFSC built-in voltageVCollector-base isolation (overlap) capacitanceFExternal SC exponent factorISc punch-through voltageVCollector-base isolation (overlap) capacitanceFExponent factorIPrefactorIflicker noise coefficientM1-AFflicker noise exponent factorIBandgap-voltageVEffective collector bandgap-voltageVCoefficient K1 in T-dependent bandgap equationV/KFirst-order TC of tf01/KSecond-order TC of tf01/KRelative TC of sexes current temperature dependenceExponent coefficient in transfer current temperature dependenceExponent coefficient in Tables existanceITC of external base resistanceITC of external base resistanceITC of external base resistanceITC of avalanche prefactorI/KFlag for self-heating calculationI/KFlag for self-heating calculationI/KFlag for self-heating calculationI/K |

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

#### model ModelName [:Name] c b e s

The model statement starts with the required keyword model. It is followed by the modelname that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is HICUM0\_1\_12. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

# Example:

Npn3:Ql c b e s t model Npn3 HICUM0\_1\_12 is=5e-16 vef=250

## **Notes/Equations**

- 1. For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's HICUM, A Scalable Physics-based Compact Bipolar Transistor Model at: <u>http://www.iee.et.tu-</u><u>dresden.de/iee/eb/hic\_new/hic\_start.html</u>.
- 2. The thermal pin can be optionally specified externally. Therefore the instance can be defined either as a 4-pin device (collector, base, emitter, substrate) or a 5-pin device (collector, base, emitter, substrate, thermal).

# HICUM0\_1\_2 (HICUM Level 0, Version 1.2)

## Parameters

| Name (Alias)  | Description                                  | Units | Default |
|---------------|----------------------------------------------|-------|---------|
| Temp          | Device operating temperature                 | °C    | 25      |
| Trise (Dtemp) | Temperature rise over ambient                | °C    | 0       |
| Mode          | Nonlinear spectral model on/off              |       | 1       |
| Noise         | Noise generation on/off                      |       | 1       |
| dt            | Temperature change for particular transistor | K     | 0       |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

ModelName [:Name] c b e s

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUMO\_1\_2*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

# Example:

```
model Npn3 HICUM0_1_2 \
is=8e-15 t0=5e-12
Notes/Equations
```

- 1. For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's HICUM, A Scalable Physics-based Compact Bipolar Transistor Model at: <u>http://www.iee.et.tu-</u><u>dresden.de/iee/eb/hic\_new/hic\_start.html</u>.
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.

## **DC Operating Point Information**

| Name  | Description                              | Units |
|-------|------------------------------------------|-------|
| ic    | collector terminal current               | Α     |
| ib    | base terminal current                    | A     |
| ie    | emitter terminal current                 | Α     |
| is    | substrate terminal current               | A     |
| vce   | external voltage collector-emitter       | V     |
| vbe   | external voltage base-emitter            | V     |
| vbei  | internal voltage between nodes bi and ei | V     |
| vsc   | external substrate-collector voltage     | V     |
| temp  | device temperature                       | K     |
| tf    | total forward transit time               | s     |
| tr    | total reverse transit time               | s     |
| qf    | minority charge forward component        | coul  |
| qr    | minority charge reverse component        | coul  |
| qpt   | modified hole charge                     | coul  |
| it    | transfer current                         | A     |
| itf   | forward transfer current                 | A     |
| itr   | reverse transfer current                 | A     |
| iavl  | avalanche generation current             | A     |
| ibici | current between bi and ci                | Α     |
| ijsc  | current for si-ci diode                  | A     |
| gm    | gm                                       | S     |
| rbi   | internal base resistance                 | Ohm   |
| rbx   | external base resistance                 | Ohm   |
| rcx   | external collector resistance            | Ohm   |
| re    | external emitter resistance              | Ohm   |
| pwr   | power dissipation                        | W     |
| qjcx  | charge between b and ci                  | coul  |
| qbci  | charge between b and ci                  | coul  |
| cbe   | capacitance between b and e              | F     |
| qbici | charge between bi and ci                 | coul  |
| qbiei | charge between bi and ei                 | coul  |
| qjs   | charge between si and ci                 | coul  |
| cjs   | capacitance between si and ci            | F     |
| qjei  | junction charge between bi and ei        | coul  |
| cjei  | junction capacitance between bi and ei   | F     |
| cbici | dqjci/d_V_BCI                            | F     |

# HICUM0\_1\_2 model (HICUM Level 0, Version 1.2)

## **Parameters**

| Name<br>(Alias) | Description                                                                     | Units | Default    |
|-----------------|---------------------------------------------------------------------------------|-------|------------|
| Gender          | +1=N-type, -1=P-type                                                            |       | 1(n),-1(p) |
| Tnom            | Parameter measurement temperature                                               | °C    | 27         |
| Secured         | Secured model parameters                                                        |       | 0          |
| is              | (Modified) saturation current                                                   | A     | 1e-016     |
| mcf             | Non-ideal coefficient of forward collector current                              |       | 1          |
| mcr             | Non-ideal coefficient of reverse collector current                              |       | 1          |
| vef             | forward Early voltage (normalization volt.)                                     | V     | 1e+030     |
| ver             | reverse Early voltage (normalization volt.)                                     | V     | 1e+030     |
| iqf             | forward d.c. high-injection toll-off current                                    | A     | 1e+030     |
| fiqf            | flag for turning on base related critical current                               |       | 0          |
| iqr             | inverse d.c. high-injection roll-off current                                    | A     | 1e+030     |
| iqfh            | high-injection correction current                                               | A     | 1e+030     |
| tfh             | high-injection correction factor                                                |       | 0          |
| ahq             | Smoothing factor for the d.c. injection width                                   |       | 0          |
| ibes            | BE saturation current                                                           | A     | 1e-018     |
| mbe             | BE non-ideal factor                                                             |       | 1          |
| ires            | BE recombination saturation current                                             | Α     | 0          |
| mre             | BE recombination non-ideal factor                                               |       | 2          |
| ibcs            | BC saturation current                                                           | A     | 0          |
| mbc             | BC non-ideal factor                                                             |       | 1          |
| cje0            | Zero-bias BE depletion capacitance                                              | F     | 1e-020     |
| vde             | BE built-in voltage                                                             | V     | 0.9        |
| ze              | BE exponent factor                                                              |       | 0.5        |
| aje             | Ratio of maximum to zero-bias value                                             |       | 2.5        |
| vdedc           | BE charge built-in voltage for d.c. transfer current                            | V     | 0.9        |
| zedc            | charge BE exponent factor for d.c. transfer current                             |       | 0.5        |
| ajedc           | BE capacitance ratio Ratio maximum to zero-bias value for d.c. transfer current |       | 2.5        |
| t0              | low current transit time at Vbici=0                                             | S     | 0          |
| dt0h            |                                                                                 |       | 0          |
| tbvISCR         | width modulation contribution                                                   | s     | 0          |
| tef0            | Storage time in neutral emitter                                                 | s     | 0          |
| gte             | Exponent factor for emmiter transit time                                        |       | 1          |
| thcs            | Saturation time at high current densities                                       | s     | 0          |
| ahc             | Smoothing facor for current dependence                                          |       | 0.1        |
| tr              | Storage time at inverse operation                                               | s     | 0          |
| rci0            | Low-field collector resistance under emitter                                    | Ohm   | 150        |
| vlim            | Voltage dividing ohmic and satur.region                                         | V     | 0.5        |
| vpt             | Punch-through voltage                                                           | V     | 100        |
| vces            | Saturation voltage                                                              | V     | 0.1        |
| cjci0           | Total zero-bias BC depletion capacitance                                        | F     | 1e-020     |

| vdci    | BC built-in voltage                                                | V     | 0.7              |
|---------|--------------------------------------------------------------------|-------|------------------|
| zci     | BC exponent factor                                                 |       | 0.333            |
| vptci   | Punch-through voltage of BC junction                               | V     | 100              |
| cjcx0   | Zero-bias external BC depletion capacitance                        | F     | 1e-020           |
| vdcx    | External BC built-in voltage                                       | V     | 0.7              |
| ZCX     | External BC exponent factor                                        |       | 0.333            |
| vptcx   | Punch-through voltage                                              | V     | 100              |
| fbc     | Split factor = Cjci0/Cjc0                                          |       | 1                |
| rbi0    | Internal base resistance at zero-bias                              | Ohm   | 0                |
| vr0e    | forward Early voltage (normalization volt.)                        | V     | 2.5              |
| vr0c    | forward Early voltage (normalization volt.)                        | V     | 1e+030           |
| fgeo    | Geometry factor                                                    |       | 0.656            |
| rbx     | External base series resistance                                    | Ohm   | 0                |
| rcx     | Emitter series resistance                                          | Ohm   | 0                |
| re      | External collector series resistance                               | Ohm   | 0                |
| itss    | Substrate transistor transfer saturation current                   | A     | 0                |
| msf     | Substrate transistor transfer current non-ideal factor             |       | 1                |
| iscs    | SC saturation current                                              | A     | 0                |
| msc     | SC non-ideal factor                                                |       | 1                |
| cjs0    | Zero-bias SC depletion capacitance                                 | F     | 1e-020           |
| vds     | SC built-in voltage                                                | V     | 0.3              |
| ZS      | External SC exponent factor                                        |       | 0.3              |
| vpts    | SC punch-through voltage                                           | V     | 100              |
| cbcpar  | Collector-base isolation (overlap) capacitance                     | F     | 0                |
| cbepar  | Emitter-base oxide capacitance                                     | F     | 0                |
| eavl    | Exponent factor                                                    |       | 0                |
| kavl    | Prefactor                                                          |       | 0                |
| kf      | flicker noise coefficient                                          | M^(1- | 0                |
|         |                                                                    | AF)   |                  |
| af      | flicker noise exponent factor                                      |       | 2                |
| vgb     | Bandgap-voltage                                                    | V     | 1.2              |
| vge     | Effective emitter bandgap-voltage                                  | V     | 1.17             |
| vgc     | Effective collector bandgap-voltage                                | V     | 1.17             |
| vgs     | Effective substrate bandgap-voltage                                | V     | 1.17             |
| f1vg    | Coefficient K1 in T-dependent bandgap equation                     | V/K   | -<br>0.000102377 |
| f2vg    | Coefficient K2 in T-dependent bandgap equation                     | V/K   | 0.00043215       |
| alt0    | Frist-order TC of tf0                                              | 1/K   | 0                |
| kt0     | Second-order TC of tf0                                             | 1/K^2 | 0                |
| zetact  | Exponent coefficient in transfer current temperature dependence    |       | 3                |
| zetabet | Exponent coefficient in BE junction current temperature dependence |       | 3.5              |
| zetaci  | TC of epi-collector diffusivity                                    |       | 0                |
| alvs    | Relative TC of satur.drift velocity                                | 1/K   | 0                |
| alces   | Relative TC of vces                                                | 1/K   | 0                |
| zetarbi | TC of internal base resistance                                     |       | 0                |
| zetarbx | TC of external base resistance                                     |       | 0                |
| zetarcx | TC of external collector resistance                                |       | 0                |
| zetare  | TC of emitter resistances                                          |       | 0                |

| TC of iqf                                                    |                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                        |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TC of avalanche prefactor                                    | 1/K                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                        |
| TC of avalanche exponential factor                           | 1/K                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                        |
| Exponent factor for temperature dependent thermal resistance |                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                        |
| Flag for self-heating calculation                            |                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                        |
| Thermal resistance                                           | K/W                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                        |
| Thermal capacitance                                          | Ws/K                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                        |
| model type flag for npn                                      |                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                        |
| model type flag for pnp                                      |                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                        |
|                                                              | TC of avalanche prefactor<br>TC of avalanche exponential factor<br>Exponent factor for temperature dependent thermal resistance<br>Flag for self-heating calculation<br>Thermal resistance<br>Thermal capacitance<br>model type flag for npn | TC of avalanche prefactor1/KTC of avalanche exponential factor1/KExponent factor for temperature dependent thermal resistance1/KFlag for self-heating calculationK/WThermal resistanceK/WThermal capacitanceWs/Kmodel type flag for npnI |

**Netlist Format** 

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelname HICUM0\_1\_2 [parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUMO\_1\_2*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, sub-circuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in *Using Circuit Simulators* (cktsim).

# Example:

model Npn3 HICUM0\_1\_2 \
is=8e-15 t0=5e-12
Notes/Equations

1. For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's HICUM, A Scalable Physics-based Compact Bipolar Transistor Model at: <u>http://www.iee.et.tu-</u><u>dresden.de/iee/eb/hic\_new/hic\_start.html</u>

# HICUM0 (HICUM Level 0 Model Instance)

#### **Parameters**

| Name  | Description                                  | Units | Default |
|-------|----------------------------------------------|-------|---------|
| Mode  | Nonlinear spectral model on/off              |       | 1       |
| Noise | Noise generation on/off                      |       | 1       |
| dt    | Temperature change for particular transistor | K     | 0       |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

ModelName [:Name] c b e s

The model statement starts with the required keyword *ModelName*. It is followed by the *[:name]* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUM* 0. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

Example:

```
model Npn3 HICUM0 \
Alfav=8e-5 T0=5e-12
```

#### **Notes/Equations**

- For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's *HICUM*, *A* Scalable Physics-based Compact Bipolar Transistor Model at: <u>"http://www.iee.et.tu-</u> <u>dresden.de/iee/eb/hic\_new/hic\_start.html"</u>.
- 2. <u>DC Operating Point Information</u> lists the DC operating point parameters that can be sent to the dataset.

#### **DC Operating Point Information**

| Name  | Description                              | Units |
|-------|------------------------------------------|-------|
| ic    | collector terminal current               | A     |
| ib    | base terminal current                    | A     |
| ie    | emitter terminal current                 | A     |
| is    | substrate terminal current               | A     |
| vce   | external voltage collector-emitter       | V     |
| vbe   | external voltage base-emitter            | V     |
| vbei  | internal voltage between nodes bi and ei | V     |
| VSC   | external substrate-collector voltage     | V     |
| temp  | device temperature                       | K     |
| tf    | total forward transit time               | s     |
| tr    | total reverse transit time               | s     |
| qf    | minority charge forward component        | coul  |
| qr    | minority charge reverse component        | coul  |
| qpt   | modified hole charge                     | coul  |
| it    | transfer current                         | A     |
| itf   | forward transfer current                 | A     |
| itr   | reverse transfer current                 | A     |
| iavl  | avalanche generation current             | A     |
| ibici | current between bi and ci                | A     |
| ijsc  | current for si-ci diode                  | A     |
| gm    | gm                                       | S     |
| rbi   | internal base resistance                 | Ohm   |
| rbx   | external base resistance                 | Ohm   |
| rcx   | external collector resistance            | Ohm   |
| re    | external emittor resistance              | Ohm   |
| pwr   | power dissipation                        | W     |
| qjcx  | charge between b and ci                  | coul  |
| qbci  | charge between b and ci                  | coul  |
| cbe   | capacitance between b and e              | F     |
| qbici | charge between bi and ci                 | coul  |
| qbiei | charge between bi and ei                 | coul  |
| qjs   | charge between si and ci                 | coul  |
| cjs   | capacitance between si and ci            | F     |
| qjei  | junction charge between bi and ei        | coul  |
| cjei  | junction capacitance between bi and ei   | F     |
| cbici | dqjci/d_V_BCI                            | F     |

# HICUM0\_model (HICUM Level 0 Model)

#### **Parameters**

| Name    | Description                                           | Units | Default |
|---------|-------------------------------------------------------|-------|---------|
| Tnom    | Parameter measurement temperature                     | °C    | 27      |
| Secured | Secured model parameters                              | 0     |         |
| is      | (Modified) saturation current                         | A     | 1e-016  |
| mcf     | Non-ideality coefficient of forward collector current |       | 1       |
| mcr     | Non-ideality coefficient of reverse collector current |       | 1       |
| vef     | forward Early voltage (normalization volt.)           | V     | 1e+006  |
| iqf     | forward d.c. high-injection toll-off current          | А     | 1e+006  |
| iqr     | inverse d.c. high-injection toll-off current          | А     | 1e+006  |
| iqfh    | high-injection correction current                     | А     | 1e+006  |
| tfh     | high-injection correction factor                      |       | 1e+006  |
| ibes    | BE saturation current                                 | А     | 1e-018  |
| mbe     | BE non-ideality factor                                |       | 1       |
| ires    | BE recombination saturation current                   | A     | 0       |
| mre     | BE recombination non-ideality factor                  |       | 2       |
| ibcs    | BC saturation current                                 | A     | 0       |
| mbc     | BC non-ideality factor                                |       | 1       |
| cje0    | Zero-bias BE depletion capacitance                    | F     | 1e-020  |
| vde     | BE built-in voltage                                   | V     | 0.9     |
| ze      | BE exponent factor                                    |       | 0.5     |
| aje     | Ratio of maximum to zero-bias value                   |       | 2.5     |
| t0      | low current transit time at Vbici=0                   | S     | 0       |
| dt0h    |                                                       |       | 0       |
| tbvl    | SCR width modulation contribution                     | s     | 0       |
| tef0    | Storage time in neutral emitter                       | s     | 0       |
| gte     | Exponent factor for emitter transit time              |       | 1       |
| thcs    | Saturation time at high current densities             | s     | 0       |
| ahc     | Smoothing factor for current dependence               |       | 0.1     |
| tr      | Storage time at inverse operation                     | s     | 0       |
| rci0    | Low-field collector resistance under emitter          | Ohm   | 150     |
| vlim    | Voltage dividing ohmic and satur.region               | V     | 0.5     |
| vpt     | Punch-through voltage                                 | V     | 100     |
| vces    | Saturation voltage                                    | V     | 0.1     |
| cjci0   | Total zero-bias BC depletion capacitance              | F     | 1e-020  |
| vdci    | BC built-in voltage                                   | V     | 0.7     |
| zci     | BC exponent factor                                    |       | 0.333   |
| vptci   | Punch-through voltage of BC junction                  | V     | 100     |
| cjcx0   | Zero-bias external BC depletion capacitance           | F     | 1e-020  |
| vdcx    | External BC built-in voltage                          | V     | 0.7     |

Advanced Design System 2011.01 - Nonlinear Devices

| zcx     | External BC exponent factor                                        |                     | 0.333       |
|---------|--------------------------------------------------------------------|---------------------|-------------|
| vptcx   | Punch-through voltage                                              | V                   | 100         |
| fbc     | Split factor = Cjci0/Cjc0                                          |                     | 1           |
| rbi0    | Internal base resistance at zero-bias                              | Ohm                 | 0           |
| vr0e    | forward Early voltage (normalization volt.)                        | V                   | 2.5         |
| vr0c    | forward Early voltage (normalization volt.)                        | V                   | 1e+006      |
| fgeo    | Geometry factor                                                    |                     | 0.656       |
| rbx     | External base series resistance                                    | Ohm                 | 0           |
| rcx     | Emitter series resistance                                          | Ohm                 | 0           |
| re      | External collector series resistance                               | Ohm                 | 0           |
| iscs    | SC saturation current                                              | A                   | 0           |
| msc     | SC non-ideality factor                                             |                     | 1           |
| cjs0    | Zero-bias SC depletion capacitance                                 | F                   | 1e-020      |
| vds     | SC built-in voltage                                                | V                   | 0.3         |
| zs      | External SC exponent factor                                        |                     | 0.3         |
| vpts    | SC punch-through voltage                                           | V                   | 100         |
| cbcpar  | Collector-base isolation (overlap) capacitance                     | F                   | 0           |
| cbepar  | Emitter-base oxide capacitance                                     | F                   | 0           |
| eavl    | Exponent factor                                                    |                     | 0           |
| kavl    | Prefactor                                                          |                     | 0           |
| kf      | flicker noise coefficient                                          | M <sup>(1-AF)</sup> | 0           |
| af      | flicker noise exponent factor                                      |                     | 2           |
| vgb     | Bandgap-voltage                                                    | V                   | 1.2         |
| vge     | Effective emitter bandgap-voltage                                  | V                   | 1.17        |
| vgc     | Effective collector bandgap-voltage                                | V                   | 1.17        |
| vgs     | Effective substrate bandgap-voltage                                | V                   | 1.17        |
| f1vg    | Coefficient K1 in T-dependent bandgap equation                     | V/K                 | 0.000102377 |
| f2vg    | Coefficient K2 in T-dependent bandgap equation                     | V/K                 | 0.00043215  |
| alt0    | First-order TC of tf0                                              | 1/K                 | 0           |
| kt0     | Second-order TC of tf0                                             | 1/K <sup>2</sup>    | 0           |
| zetact  | Exponent coefficient in transfer current temperature dependence    |                     | 3           |
|         | Exponent coefficient in BE junction current temperature dependence |                     | 3.5         |
| zetaci  | TC of epi-collector diffusivity                                    |                     | 0           |
| alvs    | Relative TC of satur.drift velocity                                | 1/K                 | 0           |
| alces   | Relative TC of vces                                                | 1/K                 | 0           |
| zetarbi | TC of internal base resistance                                     |                     | 0           |
|         | TC of external base resistance                                     |                     | 0           |
|         | TC of external collector resistance                                |                     | 0           |
| zetare  | TC of emitter resistances                                          |                     | 0           |
| alkav   | TC of avalanche prefactor                                          | 1/K                 | 0           |
| aleav   | TC of avalanche exponential factor                                 | 1/K                 | 0           |
| rth     | Thermal resistance                                                 | K/W                 | 0           |
| cth     | Thermal capacitance                                                | Ws/K                | 0           |
| npn     | model type flag for npn                                            |                     | 1           |
| pnp     | model type flag for ppp                                            |                     | 0           |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname HICUM0 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUM0*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

model Npn3 HICUM0 \
Alfav=8e-5 T0=5e-12

## **Notes/Equations**

 For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's *HICUM*, *A* Scalable Physics-based Compact Bipolar Transistor Model at: <u>"http://www.iee.et.tu-</u> <u>dresden.de/iee/eb/hic\_new/hic\_start.html"</u>.

# HICUM2\_21 (HICUM Bipolar Junction Transistor Version 2.21)

#### **Parameters**

| Name                  | Description                                                                                     | Units | Default |
|-----------------------|-------------------------------------------------------------------------------------------------|-------|---------|
| Temp                  | Device operating temperature                                                                    | °C    | 25      |
| Trise                 | Temperature rise over ambient                                                                   | °C    | 0       |
| Mode                  | Nonlinear spectral model on/off                                                                 |       | 1       |
| Noise                 | Noise generation on/off                                                                         |       | 1       |
| Flsh<br>(Selfheating) | flag for turning on $(1 = main currents, 2 = all currents)$ or off (0) self-<br>heating effects |       | 0       |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

ModelName [:Name] c b e s

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUM2\_21*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

#### Example:

```
model Npn3 HICUM2_21 \
Alfav=8e-5 T0=5e-12
```

#### **Notes/Equations**

- For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's *HICUM*, *A* Scalable Physics-based Compact Bipolar Transistor Model at: <u>"http://www.iee.et.tu-</u> dresden.de/iee/eb/hic\_new/hic\_start.html".
- 2. The following table lists the DC operating point parameters that can be sent to the

# **DC Operating Point Information**

| Name   | Description                                             | Units |
|--------|---------------------------------------------------------|-------|
| IC     | Collector terminal current                              | A     |
| IB     | Base terminal current                                   | A     |
| IE     | Emitter terminal current                                | A     |
| IS     | Substrate terminal current                              | A     |
| Power  | Total dissipated power                                  | W     |
| Temp   | intrinsic device temperature                            | °C    |
| VBE    | External BE voltage                                     | V     |
| VBC    | External BC voltage                                     | V     |
| VCE    | External CE voltage                                     | V     |
| VSC    | External SC voltage                                     | V     |
| BETADC | Common emitter forward current gain                     |       |
| GM     | Transconductance                                        | A/V   |
| GMAVL  | Transconductance for avalanche current                  | A/V   |
| GMS    | Transconductance of the parasitic substrate PNP         | A/V   |
| RPIi   | Intrinsic input resistance                              | Ohm   |
| RPIx   | Extrinsic input resistance                              | Ohm   |
| RMUi   | Intrinsic feedback resistance                           | Ohm   |
| RMUx   | Extrinsic feedback resistance                           | Ohm   |
| RMUs   | Intrinsic substrate feedback resistance                 | Ohm   |
| RO     | Output resistance                                       | Ohm   |
| ROs    | Output resistance for the parasitic substrate PNP       | Ohm   |
| CPIi   | Total intrinsic BE capacitance                          | F     |
| CPIx   | Total extrinsic BE capacitance                          | F     |
| CMUi   | Total intrinsic BC capacitance                          | F     |
| CMUx   | Total extrinsic BC capacitance                          | F     |
| CCS    | CS junction capacitance                                 | F     |
| RBI    | Internal base resistance as calculated in the model     | Ohm   |
| CRBI   | Shunt capacitance across RBI as calculated in the model | F     |
| TF     | Total forward transit time as calculated in the model   | S     |
| FT     | Transit frequency                                       | Hz    |
| VEF    | Effective forward Early voltage                         | V     |
| VER    | Effective inverse Early voltage                         | V     |

# HICUM2\_21\_model (HICUM Bipolar Junction Transistor Version 2.21 Model)

#### **Parameters**

| Name        | Description                                                                        | Units           | Default |
|-------------|------------------------------------------------------------------------------------|-----------------|---------|
| Tnom        | Parameter measurement temperature                                                  | °C              | 27      |
| Trise (Dt ) | Temperature rise over ambient                                                      | °C              | 0       |
| Secured     | Secured model parameters                                                           |                 | 0       |
| C10         | GICCR constant (C10=IS*QP0)                                                        | AC              | 2e-030  |
| Qp0         | Zero-bias hole charge                                                              | С               | 2e-014  |
| Ich         | High-current correction for 2D and 3D effects                                      | A               | 0       |
| Hfe         | Emitter minority charge weighting factor in HBTs                                   |                 | 1       |
| Hfc         | Collector minority charge weighting factor in HBTs                                 |                 | 1       |
| Hjei        | B-E depletion charge weighting factor in HBTs                                      |                 | 1       |
| Hjci        | B-C depletion charge weighting factor in HBTs                                      |                 | 1       |
| Ibeis       | Internal B-E saturation current                                                    | A               | 1e-018  |
| Mbei        | Internal B-E current ideality factor                                               |                 | 1       |
| Ireis       | Internal B-E recombination saturation current                                      | A               | 0       |
| Mrei        | Internal B-E recombination current ideality factor                                 |                 | 2       |
| Ibeps       | Peripheral B-E saturation current                                                  | A               | 0       |
| Mbep        | Peripheral B-E current ideality factor                                             |                 | 1       |
| Ireps       | Peripheral B-E recombination saturation current                                    | A               | 0       |
| Mrep        | Peripheral B-E recombination current ideality factor                               |                 | 2       |
| Mcf         | Non-ideality factor for III-V HBTs                                                 |                 | 1       |
| Tbhrec      | Base current recombination time constant at B-C barrier for high forward injection | S               | 0       |
| Ibcis       | Internal B-C saturation current                                                    | A               | 1e-016  |
| Mbci        | Internal B-C current ideality factor                                               |                 | 1       |
| Ibcxs       | External B-C saturation current                                                    | A               | 0       |
| Mbcx        | External B-C current ideality factor                                               |                 | 1       |
| Ibets       | B-E tunneling saturation current                                                   | A               | 0       |
| Abet        | Exponent factor for tunneling current                                              |                 | 40      |
| Tunode      | Specifies the base node connection for the tunneling current                       |                 | 1       |
| Favl        | Avalanche current factor                                                           | V <sup>-1</sup> | 0       |
| Qavl        | Exponent factor for avalanche current                                              | С               | 0       |
| Alfav       | Relative temperature coefficient for Favl                                          | K <sup>-1</sup> | 0       |
| Alqav       | Relative temperature coefficient for QAVL                                          | K <sup>-1</sup> | 0       |
| Rbi0        | Zero bias internal base resistance                                                 | Ohms            | 0       |
| Rbx         | External base series resistance                                                    | Ohms            | 0       |
| Fgeo (Fge0) | Factor for geometry dependence of emitter current crowding                         |                 | 0.6557  |
|             |                                                                                    |                 | 1       |

| Fdqr0 (Fdqro ) | Advanced Design System 2011.01 - Nonlinear Devices<br>Correction factor for modulation by B-E and B-C space charge |      | 0      |
|----------------|--------------------------------------------------------------------------------------------------------------------|------|--------|
|                | layer                                                                                                              |      | Ŭ      |
| Fcrbi          | Ratio of HF shunt to total internal capacitance (lateral NQS effect)                                               |      | 0      |
| Fqi            | Ratio of internal to total minority charge                                                                         |      | 1      |
| Re             | Emitter series resistance                                                                                          | Ohms | 0      |
| Rcx            | External collector series resistance                                                                               | Ohms | 0      |
| itss           | Substrate transistor transfer saturation current                                                                   | Α    | 0      |
| Msf            | Forward ideality factor of substrate transfer current                                                              |      | 1      |
| lscs           | C-S diode saturation current                                                                                       | Α    | 0      |
| Чsc            | Ideality factor of C-S diode current                                                                               |      | 1      |
| Tsf            | Transit time for forward operation of substrate transistor                                                         | s    | 0      |
| Rsu            | Substrate series resistance                                                                                        | Ohms | 0      |
| Csu            | Substrate shunt capacitance                                                                                        | F    | 0      |
| Cjei0 (Cjeio ) | Internal B-E zero-bias depletion capacitance                                                                       | F    | 1e-020 |
| /dei           | Internal B-E built-in potential                                                                                    | V    | 0.9    |
| Zei            | Internal B-E grading coefficient                                                                                   |      | 0.5    |
| Ajei (Aljei )  | Ratio of maximum to zero-bias value of internal B-E capacitance                                                    |      | 2.5    |
| Cjep0 (Cjepo ) | Peripheral B-E zero-bias depletion capacitance                                                                     | F    | 1e-020 |
| Vdep           | Peripheral B-E built-in potential                                                                                  | V    | 0.9    |
| Zep            | Peripheral B-E grading coefficient                                                                                 |      | 0.5    |
| Ajep (Aljep )  | Ratio of maximum to zero-bias value of peripheral B-E capacitance                                                  |      | 2.5    |
| Cjci0 (Cjcio ) | Internal B-C zero-bias depletion capacitance                                                                       | F    | 1e-020 |
| /dci           | Internal B-C built-in potential                                                                                    | V    | 0.7    |
| Zci            | Internal B-C grading coefficient                                                                                   |      | 0.4    |
| Vptci          | Internal B-C punch-through voltage                                                                                 | V    | 100    |
| Cjcx0 (Cjcxo ) | External B-C zero-bias depletion capacitance                                                                       | F    | 1e-020 |
| Vdcx           | External B-C built-in potential                                                                                    | V    | 0.7    |
| Zcx            | External B-C grading coefficient                                                                                   |      | 0.4    |
| Vptcx          | External B-C punch-through voltage                                                                                 | V    | 100    |
| Fbcpar (Fbc )  | Partitioning factor of parasitic B-C cap                                                                           |      | 0      |
| Fbepar         | Partitioning factor of parasitic B-E cap                                                                           |      | 1      |
| Cjs0 (Cjso )   | C-S zero-bias depletion capacitance                                                                                | F    | 0      |
| Vds            | C-S built-in potential                                                                                             | V    | 0.6    |
| Zs             | C-S grading coefficient                                                                                            |      | 0.5    |
| Vpts           | C-S punch-through voltage                                                                                          | V    | 100    |
| ГО             | Low current forward transit time at VBC=0V                                                                         | s    | 0      |
| Dt0h           | Time constant for base and B-C space charge layer width modulation                                                 | s    | 0      |
| Tbvl           | Time constant for modelling carrier jam at low VCE                                                                 | s    | 0      |
| Fef0 (Tefo )   | Neutral emitter storage time                                                                                       | s    | 0      |
| Gtfe           | Exponent factor for current dependence of neutral emitter storage time                                             |      | 1      |
| Thcs           | Saturation time constant at high current densities                                                                 | s    | 0      |
| Ahc (Alhc )    | Smoothing factor for current dependence of base and collector transit time                                         |      | 0.1    |
| Fthc           | Partitioning factor for base and collector portion                                                                 |      | 0      |
| Rci0           | Internal collector resistance at low electric field                                                                | Ohms | 150    |

|                             | Advanced Design System 2011.01 - Nonnnear Devices                           |                  | -                |
|-----------------------------|-----------------------------------------------------------------------------|------------------|------------------|
| Vlim                        | Voltage separating ohmic and saturation velocity regime                     | V                | 0.5              |
| Vces                        | Internal C-E saturation voltage                                             | V                | 0.1              |
| Vpt                         | Collector punch-through voltage                                             | V                | 0                |
| Tr                          | Storage time for inverse operation                                          | S                | 0                |
| Cbepar                      | Total parasitic B-E capacitance                                             | F                | 0                |
| Cbcpar (Ccox )              | Total parasitic B-C capacitance                                             | F                | 0                |
| Alqf                        | Factor for additional delay time of minority charge                         |                  | 0                |
| Alit                        | Factor for additional delay time of transfer current                        |                  | 0                |
| Flnqs                       | Flag for turning on and off of vertical NQS effect                          |                  | 0                |
| Kf                          | Flicker noise coefficient                                                   |                  | 0                |
| Af                          | Flicker noise exponent factor                                               |                  | 2                |
| Cfbe                        | Flag for determining where to tag the flicker noise source                  |                  | -1               |
| Latb                        | Scaling factor for collector minority charge in direction of emitter width  |                  | 0                |
| Latl                        | Scaling factor for collector minority charge in direction of emitter length |                  | 0                |
| Vgb                         | Bandgap voltage extrapolated to 0 K                                         | V                | 1.17             |
| Alt0                        | First order relative temperature coefficient of parameter T0                | K-1              | 0                |
| Kt0 (Kto )                  | Second order relative temperature coefficient of parameter T0               | 1/K <sup>2</sup> | 0                |
| Zetaci                      | Temperature exponent for RCI0                                               |                  | 0                |
| Alvs                        | Relative temperature coefficient of saturation drift velocity               | K <sup>-1</sup>  | 0                |
| Alces                       | Relative temperature coefficient of VCES                                    | K <sup>-1</sup>  | 0                |
| Zetarbi                     | Temperature exponent of internal base resistance                            |                  | 0                |
| Zetarbx                     | Temperature exponent of external base resistance                            |                  | 0                |
| Zetarcx                     | Temperature exponent of external collector resistance                       |                  | 0                |
| Zetare                      | Temperature exponent of emitter resistance                                  |                  | 0                |
| Zetacx                      | Temperature exponent of mobility in substrate transistor transit<br>time    |                  | 1                |
| Vge                         | Effective emitter bandgap voltage                                           | V                | 1.17             |
| Vgc                         | Effective collector bandgap voltage                                         | V                | 1.17             |
| Vgs                         | Effective substrate bandgap voltage                                         | V                | 1.17             |
| F1vg                        | Coefficient K1 in T-dependent band-gap equation                             | V/K              | -<br>0.000102377 |
| F2vg                        | Coefficient K2 in T-dependent band-gap equation                             | V/K              | 0.00043215       |
| Zetact                      | Exponent coefficient in transfer current temperature dependence             | -                | 3                |
| Zetabet                     | Exponent coefficient in B-E junction current temperature dependence         |                  | 3.5              |
| Alb                         | Relative temperature coefficient of forward current gain for V2.1 model     |                  | 0                |
| Flsh (SelfheatingModel<br>) | Flag for turning on and off self-heating effect                             |                  | 0                |
| Rth                         | Thermal resistance                                                          | K/W              | 0                |
| Cth                         | Thermal capacitance                                                         | Ws/K             | 0                |
| Flcomp                      | Flag for compatibility with v2.1 model (0=v2.1)                             |                  | 0                |
| NPN                         | For backward compatibility                                                  |                  | 1                |
| PNP                         | For backward compatibility                                                  |                  | 0                |
| ModelLevel                  | For backward compatibility                                                  |                  | 1                |
| ApproxLevel                 | For backward compatibility                                                  |                  | 1                |

| AcModel  | For backward compatibility | 1 |
|----------|----------------------------|---|
| wBvbc    | For backward compatibility | 0 |
| wBvbe    | For backward compatibility | 0 |
| wBvsub   | For backward compatibility | 0 |
| wIbmax   | For backward compatibility | 0 |
| wIcmax   | For backward compatibility | 0 |
| wPmax    | For backward compatibility | 0 |
| wVbcfwd  | For backward compatibility | 0 |
| wVsubfwd | For backward compatibility | 0 |
| Imax     | For backward compatibility | 0 |
| Imelt    | For backward compatibility | 0 |

## **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname HICUM2_21 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUM2\_21*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

## Example:

```
model Npn3 HICUM2_21 \
Alfav=8e-5 T0=5e-12
```

#### **Notes/Equations**

 For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's *HICUM*, *A* Scalable Physics-based Compact Bipolar Transistor Model at: <u>"http://www.iee.et.tu-</u> dresden.de/iee/eb/hic\_new/hic\_start.html".

# HICUM2\_22 (HICUM Bipolar Junction Transistor Version 2.22)

#### **Parameters**

| Name                  | Description                                                                                     | Units | Default |
|-----------------------|-------------------------------------------------------------------------------------------------|-------|---------|
| Temp                  | Device operating temperature                                                                    | °C    | 25      |
| Trise                 | Temperature rise over ambient                                                                   | °C    | 0       |
| Mode                  | Nonlinear spectral model on/off                                                                 |       | 1       |
| Noise                 | Noise generation on/off                                                                         |       | 1       |
| Flsh<br>(Selfheating) | flag for turning on $(1 = main currents, 2 = all currents)$ or off (0) self-<br>heating effects |       | 0       |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

ModelName [:Name] c b e s

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUM2\_22*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

#### Example:

```
model Npn3 HICUM2_22 \
Alfav=8e-5 T0=5e-12
```

# **Notes/Equations**

- 1. For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's *HICUM, A* Scalable Physics-based Compact Bipolar Transistor Model at: <u>http://www.iee.et.tu-</u> dresden.de/iee/eb/hic\_new/hic\_start.html .
- 2. The following table lists the DC operating point parameters that can be sent to the

# **DC Operating Point Information**

| Name   | Description                                             | Units |
|--------|---------------------------------------------------------|-------|
| IC     | Collector terminal current                              | A     |
| IB     | Base terminal current                                   | A     |
| IE     | Emitter terminal current                                | A     |
| IS     | Substrate terminal current                              | A     |
| Power  | Total dissipated power                                  | W     |
| Temp   | Intrinsic device temperature                            | °C    |
| VBE    | External BE voltage                                     | V     |
| VBC    | External BC voltage                                     | V     |
| VCE    | External CE voltage                                     | V     |
| VSC    | External SC voltage                                     | V     |
| BETADC | Common emitter forward current gain                     |       |
| GM     | Transconductance                                        | A/V   |
| GMAVL  | Transconductance for avalanche current                  | A/V   |
| GMS    | Transconductance of the parasitic substrate PNP         | A/V   |
| RPIi   | Intrinsic input resistance                              | Ohm   |
| RPIx   | Extrinsic input resistance                              | Ohm   |
| RMUi   | Intrinsic feedback resistance                           | Ohm   |
| RMUx   | Extrinsic feedback resistance                           | Ohm   |
| RMUs   | Intrinsic substrate feedback resistance                 | Ohm   |
| RO     | Output resistance                                       | Ohm   |
| ROs    | Output resistance for the parasitic substrate PNP       | Ohm   |
| CPIi   | Total intrinsic BE capacitance                          | F     |
| CPIx   | Total extrinsic BE capacitance                          | F     |
| CMUi   | Total intrinsic BC capacitance                          | F     |
| CMUx   | Total extrinsic BC capacitance                          | F     |
| CCS    | CS junction capacitance                                 | F     |
| RBI    | Internal base resistance as calculated in the model     | Ohm   |
| CRBI   | Shunt capacitance across RBI as calculated in the model | F     |
| TF     | Total forward transit time as calculated in the model   | S     |
| FT     | Transit frequency                                       | Hz    |
| VEF    | Effective forward Early voltage                         | V     |
| VER    | Effective inverse Early voltage                         | V     |

### HICUM2\_22\_model (HICUM Bipolar Junction Transistor Version 2.22 Model)

#### **Parameters**

| Name           | Description                                                                        | Units           | Default |
|----------------|------------------------------------------------------------------------------------|-----------------|---------|
| Tnom           | Parameter measurement temperature                                                  | °C              | 27      |
| Trise (Dt )    | Temperature rise over ambient                                                      | °C              | 0       |
| Secured        | Secured model parameters                                                           |                 | 0       |
| C10            | GICCR constant                                                                     | A <sup>2s</sup> | 2e-030  |
| Qp0            | Zero-bias hole charge                                                              | Coul            | 2e-014  |
| Ich            | High-current correction for 2D and 3D effects                                      | A               | 0       |
| Hfe            | Emitter minority charge weighting factor in HBTs                                   |                 | 1       |
| Hfc            | Collector minority charge weighting factor in HBTs                                 |                 | 1       |
| Hjei           | B-E depletion charge weighting factor in HBTs                                      |                 | 1       |
| Нјсі           | B-C depletion charge weighting factor in HBTs                                      |                 | 1       |
| Ibeis          | Internal B-E saturation current                                                    | A               | 1e-018  |
| Mbei           | Internal B-E current ideality factor                                               |                 | 1       |
| Ireis          | Internal B-E recombination saturation current                                      | А               | 0       |
| Mrei           | Internal B-E recombination current ideality factor                                 |                 | 2       |
| Ibeps          | Peripheral B-E saturation current                                                  | A               | 0       |
| Mbep           | Peripheral B-E current ideality factor                                             |                 | 1       |
| Ireps          | Peripheral B-E recombination saturation current                                    | A               | 0       |
| Мгер           | Peripheral B-E recombination current ideality factor                               |                 | 2       |
| Mcf            | Non-ideality factor for III-V HBTs                                                 |                 | 1       |
| Tbhrec         | Base current recombination time constant at B-C barrier for high forward injection | s               | 0       |
| Ibcis          | Internal B-C saturation current                                                    | A               | 1e-016  |
| Mbci           | Internal B-C current ideality factor                                               |                 | 1       |
| Ibcxs          | External B-C saturation current                                                    | A               | 0       |
| Mbcx           | External B-C current ideality factor                                               |                 | 1       |
| Ibets          | B-E tunneling saturation current                                                   | A               | 0       |
| Abet           | Exponent factor for tunneling current                                              |                 | 40      |
| tunode         | Specifies the base node connection for the tunneling current                       |                 | 1       |
| Favl           | Avalanche current factor                                                           | 1/V             | 0       |
| Qavl           | Exponent factor for avalanche current                                              | Coul            | 0       |
| Alfav          | Relative TC for Favl                                                               | 1/K             | 0       |
| Alqav          | Relative TC for Qavl                                                               | 1/K             | 0       |
| Rbi0           | Zero bias internal base resistance                                                 | Ohm             | 0       |
| Rbx            | External base series resistance                                                    | Ohm             | 0       |
| Fgeo (Fge0 )   | Factor for geometry dependence of emitter current crowding                         |                 | 0.6557  |
| Fdqr0 (Fdqro ) | Correction factor for modulation by B-E and B-C space charge                       |                 | 0       |

| Fcrbi          | layer<br>Ratio of HF shunt to total internal capacitance (lateral NQS      |      | 0      |
|----------------|----------------------------------------------------------------------------|------|--------|
|                | effect)                                                                    |      |        |
| Fqi            | Ratio of internal to total minority charge                                 |      | 1      |
| Re             | Emitter series resistance                                                  | Ohm  | 0      |
| Rcx            | External collector series resistance                                       | Ohm  | 0      |
| Itss           | Substrate transistor transfer saturation current                           | Α    | 0      |
| Msf            | Forward ideality factor of substrate transfer current                      |      | 1      |
| Iscs           | C-S diode saturation current                                               | Α    | 0      |
| Msc            | Ideality factor of C-S diode current                                       |      | 1      |
| Tsf            | Transit time for forward operation of substrate transistor                 | S    | 0      |
| Rsu            | Substrate series resistance                                                | Ohm  | 0      |
| Csu            | Substrate shunt capacitance                                                | F    | 0      |
| Cjei0 (Cjeio ) | Internal B-E zero-bias depletion capacitance                               | F    | 1e-020 |
| Vdei           | Internal B-E built-in potential                                            | V    | 0.9    |
| Zei            | Internal B-E grading coefficient                                           |      | 0.5    |
| Ajei (Aljei )  | Ratio of maximum to zero-bias value of internal B-E capacitance            |      | 2.5    |
| Cjep0 (Cjepo ) | Peripheral B-E zero-bias depletion capacitance                             | F    | 1e-020 |
| Vdep           | Peripheral B-E built-in potential                                          | V    | 0.9    |
| Zep            | Peripheral B-E grading coefficient                                         |      | 0.5    |
| Ajep (Aljep )  | Ratio of maximum to zero-bias value of peripheral B-E capacitance          |      | 2.5    |
| Cjci0 (Cjcio ) | Internal B-C zero-bias depletion capacitance                               | F    | 1e-020 |
| Vdci           | Internal B-C built-in potential                                            | V    | 0.7    |
| Zci            | Internal B-C grading coefficient                                           |      | 0.4    |
| Vptci          | Internal B-C punch-through voltage                                         | V    | 100    |
| Cjcx0 (Cjcxo ) | External B-C zero-bias depletion capacitance                               | F    | 1e-020 |
| Vdcx           | External B-C built-in potential                                            | V    | 0.7    |
| Zcx            | External B-C grading coefficient                                           |      | 0.4    |
| Vptcx          | External B-C punch-through voltage                                         | V    | 100    |
| Fbcpar (Fbc )  | Partitioning factor of parasitic B-C cap                                   |      | 0      |
| Fbepar         | Partitioning factor of parasitic B-E cap                                   |      | 1      |
| Cjs0 (Cjso )   | C-S zero-bias depletion capacitance                                        | F    | 0      |
| Vds            | C-S built-in potential                                                     | V    | 0.6    |
| Zs             | C-S grading coefficient                                                    |      | 0.5    |
| Vpts           | C-S punch-through voltage                                                  | V    | 100    |
| ТО             | Low current forward transit time at VBC=0V                                 | S    | 0      |
| Dt0h           | Time constant for base and B-C space charge layer width modulation         | s    | 0      |
| Tbvl           | Time constant for modelling carrier jam at low VCE                         | S    | 0      |
| Tef0 (Tefo )   | Neutral emitter storage time                                               | S    | 0      |
| Gtfe           | Exponent factor for current dependence of neutral emitter storage time     |      | 1      |
| Thcs           | Saturation time constant at high current densities                         | S    | 0      |
| Ahc (Alhc )    | Smoothing factor for current dependence of base and collector transit time |      | 0.1    |
| Fthc           | Partitioning factor for base and collector portion                         |      | 0      |
| Rci0           | Internal collector resistance at low electric field                        | Ohms | 150    |

| Vlim                       | Advanced Design System 2011.01 - Nonlinear Devices<br>Voltage separating ohmic and saturation velocity regime | V   | 0.5              |
|----------------------------|---------------------------------------------------------------------------------------------------------------|-----|------------------|
| Vces                       | Internal C-E saturation voltage                                                                               | V   | 0.1              |
| Vpt                        | Collector punch-through voltage                                                                               | V   | 0                |
| Tr                         | Storage time for inverse operation                                                                            | s   | 0                |
| Cbepar                     | Total parasitic B-E capacitance                                                                               | F   | 0                |
| Cbcpar (Ccox )             | Total parasitic B-C capacitance                                                                               | F   | 0                |
| Alqf                       | Factor for additional delay time of minority charge                                                           |     | 0                |
| Alit                       | Factor for additional delay time of transfer current                                                          |     | 0                |
| Flnqs                      | Flag for turning on and off of vertical NQS effect                                                            |     | 0                |
| Kf                         | Flicker noise coefficient                                                                                     |     | 0                |
| Af                         | Flicker noise exponent factor                                                                                 |     | 2                |
| Cfbe                       | Flag for determining where to tag the flicker noise source                                                    |     | -1               |
| Latb                       | Scaling factor for collector minority charge in direction of emitter width                                    |     | 0                |
| Latl                       | Scaling factor for collector minority charge in direction of emitter length                                   |     | 0                |
| Vgb                        | Bandgap voltage extrapolated to 0 K                                                                           | V   | 1.17             |
| AltO                       | First order relative temperature coefficient of parameter T0                                                  | 1/K | 0                |
| Kt0 (Kto )                 | Second order relative TC of parameter T0                                                                      |     | 0                |
| Zetaci                     | Temperature exponent for RCI0                                                                                 |     | 0                |
| Alvs                       | Relative TC of saturation drift velocity                                                                      | 1/K | 0                |
| Alces                      | Relative TC of VCES                                                                                           | 1/K | 0                |
| Zetarbi                    | Temperature exponent of internal base resistance                                                              |     | 0                |
| Zetarbx                    | Temperature exponent of external base resistance                                                              |     | 0                |
| Zetarcx                    | Temperature exponent of external collector resistance                                                         |     | 0                |
| Zetare                     | Temperature exponent of emitter resistance                                                                    |     | 0                |
| Zetacx                     | Temperature exponent of mobility in substrate transistor transit time                                         |     | 1                |
| Vge                        | Effective emitter bandgap voltage                                                                             | V   | 1.17             |
| Vgc                        | Effective collector bandgap voltage                                                                           | V   | 1.17             |
| Vgs                        | Effective substrate bandgap voltage                                                                           | V   | 1.17             |
| F1vg                       | Coefficient K1 in T-dependent band-gap equation                                                               |     | -<br>0.000102377 |
| F2vg                       | Coefficient K2 in T-dependent band-gap equation                                                               |     | 0.00043215       |
| Zetact                     | Exponent coefficient in transfer current temperature dependence                                               |     | 3                |
| Zetabet                    | Exponent coefficient in B-E junction current temperature dependence                                           |     | 3.5              |
| Alb                        | Relative TC of forward current gain for V2.1 model                                                            | 1/K | 0                |
| Flsh<br>(SelfheatingModel) | Flag for turning on and off self-heating effect                                                               |     | 0                |
| Rth                        | Thermal resistance                                                                                            | K/W | 0                |
| Cth                        | Thermal capacitance                                                                                           | J/W | 0                |
| Flcomp                     | Flag for compatibility with v2.1 model $(0=v2.1)$                                                             |     | 0                |
| NPN                        | For backward compatibility                                                                                    |     | 1                |
| PNP                        | For backward compatibility                                                                                    |     | 0                |
| ModelLevel                 | For backward compatibility                                                                                    |     | 1                |
| ApproxLevel                | For backward compatibility                                                                                    |     | 1                |
| AcModel                    | For backward compatibility                                                                                    |     | 1                |
| wBvbc                      | For backward compatibility                                                                                    |     | 0                |

| wBvbe    | For backward compatibility | 0 |
|----------|----------------------------|---|
| wBvsub   | For backward compatibility | 0 |
| wIbmax   | For backward compatibility | 0 |
| wIcmax   | For backward compatibility | 0 |
| wPmax    | For backward compatibility | 0 |
| wVbcfwd  | For backward compatibility | 0 |
| wVsubfwd | For backward compatibility | 0 |
| Imax     | For backward compatibility | 0 |
| Imelt    | For backward compatibility | 0 |
| Ceox     | For backward compatibility | 0 |
| Krbi     | For backward compatibility | 1 |
| Msr      | For backward compatibility | 1 |

### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname HICUM2_22 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUM2\_22*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

Example:

```
model Npn3 HICUM2_22 \
Alfav=8e-5 T0=5e-12
```

### Notes/Equations

 For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's *HICUM*, *A* Scalable Physics-based Compact Bipolar Transistor Model at: <u>"http://www.iee.et.tu-</u> <u>dresden.de/iee/eb/hic\_new/hic\_start.html"</u>.

# HICUM2\_23 (HICUM Bipolar Junction Transistor Version 2.23)

### Parameters

| Name               | Description                                     | Units | Default |
|--------------------|-------------------------------------------------|-------|---------|
| Temp               | Device operating temperature                    | °C    | 25      |
| Trise (Dtemp)      | Temperature rise over ambient                   | °C    | 0       |
| Mode               | Nonlinear spectral model on/off                 |       | 1       |
| Noise              | Noise generation on/off                         |       | 1       |
| flsh (Selfheating) | Flag for turning on and off self-heating effect |       | 0       |

**Netlist Format** 

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

ModelName [:Name] c b e s [t]

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUM2\_23*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

### Example:

```
model Npn3 HICUM2_23 \
  alfav=8e-5 t0=5e-12
Notes/Equations
```

- 1. For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's HICUM, A Scalable Physics-based Compact Bipolar Transistor Model at: <u>http://www.iee.et.tu-</u><u>dresden.de/iee/eb/hic\_new/hic\_start.html</u>.
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.

### **DC Operating Point Information**

| Name   | Description                                             | Units |
|--------|---------------------------------------------------------|-------|
| IC     | Collector terminal current                              | A     |
| IB     | Base terminal current                                   | A     |
| IE     | Emitter terminal current                                | A     |
| IS     | Substrate terminal current                              | A     |
| Power  | Total dissipated power                                  | W     |
| Temp   | intrinsic device temperature                            | °C    |
| VBE    | External BE voltage                                     | V     |
| VBC    | External BC voltage                                     | V     |
| VCE    | External CE voltage                                     | V     |
| VSC    | External SC voltage                                     | V     |
| BETADC | Common emitter forward current gain                     |       |
| GM     | Transconductance                                        | A/V   |
| GMAVL  | Transconductance for avalanche current                  | A/V   |
| GMS    | Transconductance of the parasitic substrate PNP         | A/V   |
| RPIi   | Intrinsic input resistance                              | Ohm   |
| RPIx   | Extrinsic input resistance                              | Ohm   |
| RMUi   | Intrinsic feedback resistance                           | Ohm   |
| RMUx   | Extrinsic feedback resistance                           | Ohm   |
| RMUs   | Intrinsic substrate feedback resistance                 | Ohm   |
| RO     | Output resistance                                       | Ohm   |
| ROs    | Output resistance for the parasitic substrate PNP       | Ohm   |
| CPIi   | Total intrinsic BE capacitance                          | F     |
| CPIx   | Total extrinsic BE capacitance                          | F     |
| CMUi   | Total intrinsic BC capacitance                          | F     |
| CMUx   | Total extrinsic BC capacitance                          | F     |
| CCS    | CS junction capacitance                                 | F     |
| RBI    | Internal base resistance as calculated in the model     | Ohm   |
| CRBI   | Shunt capacitance across RBI as calculated in the model | F     |
| TF     | Total forward transit time as calculated in the model   | S     |
| FT     | Transit frequency                                       | Hz    |
| VEF    | Effective forward Early voltage                         | V     |
| VER    | Effective inverse Early voltage                         | V     |

### HICUM2\_23 model (HICUM Bipolar Junction Transistor Version 2.23)

### **Parameters**

| Name (Alias)  | Description                                                                        | Units | Default    |
|---------------|------------------------------------------------------------------------------------|-------|------------|
| Gender        | +1=N-type, -1=P-type                                                               |       | 1(n),-1(p) |
| Tnom          | Parameter measurement temperature                                                  | °C    |            |
| Trise (dt)    | Temperature rise over ambient                                                      | °C    | 0          |
| Secured       | Secured model parameters                                                           |       | 0          |
| c10           | GICCR constant                                                                     | A^2s  | 2e-030     |
| qp0           | Zero-bias hole charge                                                              | Coul  | 2e-014     |
| ich           | High-current correction for 2D and 3D effects                                      | A     | 0          |
| hfe           | Emitter minority charge weighting factor in HBTs                                   |       | 1          |
| hfc           | Collector minority charge weighting factor in HBTs                                 |       | 1          |
| hjei          | B-E depletion charge weighting factor in HBTs                                      |       | 1          |
| hjci          | B-C depletion charge weighting factor in HBTs                                      |       | 1          |
| ibeis         | Internal B-E saturation current                                                    | A     | 1e-018     |
| mbei          | Internal B-E current ideal factor                                                  |       | 1          |
| ireis         | Internal B-E recombination saturation current                                      | A     | 0          |
| mrei          | Internal B-E recombination current ideal factor                                    |       | 2          |
| ibeps         | Peripheral B-E saturation current                                                  | A     | 0          |
| mbep          | Peripheral B-E current ideal factor                                                |       | 1          |
| ireps         | Peripheral B-E recombination saturation current                                    | A     | 0          |
| mrep          | Peripheral B-E recombination current ideal factor                                  |       | 2          |
| mcf           | Non-ideal factor for III-V HBTs                                                    |       | 1          |
| tbhrec        | Base current recombination time constant at B-C barrier for high forward injection | S     | 0          |
| bcis          | Internal B-C saturation current                                                    | A     | 1e-016     |
| mbci          | Internal B-C current ideal factor                                                  |       | 1          |
| bcxs          | External B-C saturation current                                                    | A     | 0          |
| mbcx          | External B-C current ideal factor                                                  |       | 1          |
| ibets         | B-E tunneling saturation current                                                   | A     | 0          |
| abet          | Exponent factor for tunneling current                                              |       | 40         |
| tunode        | Specifies the base node connection for the tunneling current                       |       | 1          |
| favl          | Avalanche current factor                                                           | 1/V   | 0          |
| qavl          | Exponent factor for avalanche current                                              | Coul  | 0          |
| alfav         | Relative TC for FAVL                                                               | 1/K   | 0          |
| alqav         | Relative TC for QAVL                                                               | 1/K   | 0          |
| rbi0          | Zero bias internal base resistance                                                 | Ohm   | 0          |
| rbx           | External base series resistance                                                    | Ohm   | 0          |
| fgeo (fge0)   | Factor for geometry dependence of emitter current crowding                         |       | 0.6557     |
| fdqr0 (fdqro) | Correction factor for modulation by B-E and B-C space charge layer                 |       | 0          |
| fcrbi         | Ratio of HF shunt to total internal capacitance (lateral NQS effect)               |       | 0          |
| fqi           | Ratio of internal to total minority charge                                         |       | 1          |
| re            | Emitter series resistance                                                          | Ohm   | 0          |

|               | Advanced Design System 2011.01 - Nonlinear Devices                         |     |        |
|---------------|----------------------------------------------------------------------------|-----|--------|
| rcx           | External collector series resistance                                       | Ohm | 0      |
| tss           | Substrate transistor transfer saturation current                           | A   | 0      |
| msf           | Forward ideal factor of substrate transfer current                         |     | 1      |
| SCS           | C-S diode saturation current                                               | A   | 0      |
| msc           | Ideal factor of C-S diode current                                          |     | 1      |
| tsf           | Transit time for forward operation of substrate transistor                 | s   | 0      |
| rsu           | Substrate series resistance                                                | Ohm | 0      |
| csu           | Substrate shunt capacitance                                                | F   | 0      |
| cjei0 (cjeio) | Internal B-E zero-bias depletion capacitance                               | F   | 1e-020 |
| vdei          | Internal B-E built-in potential                                            | V   | 0.9    |
| zei           | Internal B-E grading coefficient                                           |     | 0.5    |
| ajei (aljei ) | Ratio of maximum to zero-bias value of internal B-E capacitance            |     | 2.5    |
| cjep0 (cjepo) | Peripheral B-E zero-bias depletion capacitance                             | F   | 1e-020 |
| vdep          | Peripheral B-E built-in potential                                          | V   | 0.9    |
| zep           | Peripheral B-E grading coefficient                                         |     | 0.5    |
| ajep (aljep)  | Ratio of maximum to zero-bias value of peripheral B-E capacitance          |     | 2.5    |
| cjci0 (cjcio) | Internal B-C zero-bias depletion capacitance                               | F   | 1e-020 |
| vdci          | Internal B-C built-in potential                                            | V   | 0.7    |
| zci           | Internal B-C grading coefficient                                           |     | 0.4    |
| vptci         | Internal B-C punch-through voltage                                         | V   | 100    |
| cjcx0 (cjcxo) | External B-C zero-bias depletion capacitance                               | F   | 1e-020 |
| vdcx          | External B-C built-in potential                                            | V   | 0.7    |
| zcx           | External B-C grading coefficient                                           |     | 0.4    |
| vptcx         | External B-C punch-through voltage                                         | V   | 100    |
| fbcpar (fbc)  | Partitioning factor of parasitic B-C cap                                   |     | 0      |
| fbepar        | Partitioning factor of parasitic B-E cap                                   |     | 1      |
| cjs0 (cjso)   | C-S zero-bias depletion capacitance                                        | F   | 0      |
| vds           | C-S built-in potential                                                     | V   | 0.6    |
| zs            | C-S grading coefficient                                                    |     | 0.5    |
| vpts          | C-S punch-through voltage                                                  | V   | 100    |
| tO            | Low current forward transit time at VBC=0V                                 | s   | 0      |
| dt0h          | Time constant for base and B-C space charge layer width modulation         | S   | 0      |
| tbvl          | Time constant for modeling carrier jam at low VCE                          | s   | 0      |
| tef0 (tefo)   | Neutral emitter storage time                                               | s   | 0      |
| gtfe          | Exponent factor for current dependence of neutral emitter storage time     |     | 1      |
| thcs          | Saturation time constant at high current densities                         | s   | 0      |
| ahc (alhc)    | Smoothing factor for current dependence of base and collector transit time |     | 0.1    |
| fthc          | Partitioning factor for base and collector portion                         |     | 0      |
| rci0          | Internal collector resistance at low electric field                        | Ohm | 150    |
| vlim          | Voltage separating ohmic and saturation velocity regime                    | V   | 0.5    |
| vces          | Internal C-E saturation voltage                                            | V   | 0.1    |
| vpt           | Collector punch-through voltage                                            | V   | 0      |
| tr            | Storage time for inverse operation                                         | s   | 0      |
| cbepar        | Total parasitic B-E capacitance                                            | F   | 0      |

| cbcpar (ccox)              | Advanced Design System 2011.01 - Nonlinear Devices<br>Total parasitic B-C capacitance | F   | 0                |
|----------------------------|---------------------------------------------------------------------------------------|-----|------------------|
| alqf                       | Factor for additional delay time of minority charge                                   |     | 0                |
| alit                       | Factor for additional delay time of transfer current                                  |     | 0                |
| flnqs                      | Flag for turning on and off of vertical NQS effect                                    |     | 0                |
| kf                         | Flicker noise coefficient                                                             |     | 0                |
| af                         | Flicker noise exponent factor                                                         |     | 2                |
| cfbe                       | Flag for determining where to tag the flicker noise source                            |     | -1               |
| latb                       | Scaling factor for collector minority charge in direction of emitter width            |     | 0                |
| latl                       | Scaling factor for collector minority charge in direction of emitter length           |     | 0                |
| vgb                        | Bandgap voltage extrapolated to 0 K                                                   | V   | 1.17             |
| alt0                       | First order relative TC of parameter T0                                               | 1/K | 0                |
| kt0 (kto)                  | Second order relative TC of parameter T0                                              |     | 0                |
| zetaci                     | Temperature exponent for RCI0                                                         |     | 0                |
| alvs                       | Relative TC of saturation drift velocity                                              | 1/K | 0                |
| alces                      | Relative TC of VCES                                                                   | 1/K | 0                |
| zetarbi                    | Temperature exponent of internal base resistance                                      |     | 0                |
| zetarbx                    | Temperature exponent of external base resistance                                      |     | 0                |
| zetarcx                    | Temperature exponent of external collector resistance                                 |     | 0                |
| zetare                     | Temperature exponent of emitter resistance                                            |     | 0                |
| zetacx                     | Temperature exponent of mobility in substrate transistor transit time                 |     | 1                |
| vge                        | Effective emitter bandgap voltage                                                     | V   | 1.17             |
| vgc                        | Effective collector bandgap voltage                                                   | V   | 1.17             |
| vgs                        | Effective substrate bandgap voltage                                                   | V   | 1.17             |
| f1vg                       | Coefficient K1 in T-dependent band-gap equation                                       |     | -<br>0.000102377 |
| f2vg                       | Coefficient K2 in T-dependent band-gap equation                                       |     | 0.00043215       |
| zetact                     | Exponent coefficient in transfer current temperature dependence                       |     | 3                |
| zetabet                    | Exponent coefficient in B-E junction current temperature dependence                   |     | 3.5              |
| alb                        | Relative TC of forward current gain for V2.1 model                                    | 1/K | 0                |
| flsh<br>(SelfheatingModel) | Flag for turning on and off self-heating effect                                       |     | 0                |
| rth                        | Thermal resistance                                                                    | K/W | 0                |
| cth                        | Thermal capacitance                                                                   | J/W | 0                |
| flcomp                     | Flag for compatibility with v2.1 model $(0=v2.1)$                                     |     | 0                |

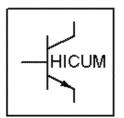
### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

### model modelname HICUM2\_23 [parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUM2\_23*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The

name of the model parameter must appear exactly as shown in the parameters tablethese names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.


### Example:

model Npn3 HICUM2\_23 \
 alfav=8e-5 t0=5e-12
Notes/Equations

1. For detailed physical and electrical effects, as well as model equations and documentation, refer to Michael Schroter's HICUM, A Scalable Physics-based Compact Bipolar Transistor Model at: <u>http://www.iee.et.tu-dresden.de/iee/eb/hic\_new/hic\_start.html</u>

## HICUM\_Model (Bipolar Transistor Model)

Symbol



### **Parameters**

| Name  | Description                                                                 | Units          | Default  |
|-------|-----------------------------------------------------------------------------|----------------|----------|
| NPN   | NPN model type: yes, no                                                     | None           | yes      |
| PNP   | PNP model type: yes, no                                                     | None           | no       |
| C10   | ICCR constant (=ISQp0)                                                      | $A^2 \times s$ | 2e-30    |
| Qp0   | zero-bias hole charge                                                       | $A^2 \times s$ | 2.0e-14  |
| Ich   | high-current correction for 2D/3D-ICCR                                      | A              | infinity |
| Hfe   | GICCR weighing factor for QEf in HBTs                                       | None           | 1.0      |
| Hfc   | GICCR weighing factor for Qfc (mainly for HBTs)                             | None           | 1.0      |
| Hjei  | GICCR weighing factor for Qjei in HBTs                                      | None           | 1.0      |
| Hjci  | GICCR weighing factor for Qjci in HBTs                                      | None           | 1.0      |
| Mcf   | GICCR weighing factor for Qjci in HBTs                                      | None           | 1.0      |
| Alit  | factor for additional delay time of iT                                      | None           | 0.0      |
| Cjei0 | Internal B-E zero-bias depletion capacitance                                | F              | 0.0      |
| Vdei  | Internal B-E built-in voltage                                               | V              | 0.9      |
| Zei   | Internal B-E grading coefficient                                            | None           | 0.5      |
| Aljei | Ratio of maximum to zero-bias value of internal B-E capacitance             | None           | 2.5      |
| Cjci0 | Internal B-C zero-bias depletion capacitance                                | F              | 0.0      |
| Vdci  | Internal B-C built-in voltage                                               | V              | 0.7      |
| Zci   | Internal B-C grading coefficient                                            | None           | 0.4      |
| Vptci | Internal B-C punch-through voltage (=qNCi <sup>w2</sup> <sub>Ci</sub> /(2ε) | V              | 1e20     |
| ТО    | Low-current forward transit time at VBC=0                                   | sec            | 0.0      |
| Dt0h  | Time constant for base and B-C space charge layer width modulation          | sec            | 0.0      |
| Tbvl  | Time constant for modeling carrier jam at low VCE                           | sec            | 0.0      |
| Tef0  | neutral emitter storage time                                                | sec            | 0.0      |
| Gtfe  | exponent factor for current dependent emitter storage time                  | None           | 1.0      |
| Thcs  | saturation time constant at high current densities                          | sec            | 0.0      |
| Alhc  | smoothing factor for current dependent C and B transit time                 | sec            | 0.1      |
| Fthc  | partitioning factor for base and collector portion                          | None           | 0.0      |
| Alqf  | factor for additional delay time of Qf                                      | None           | 0.0      |

| Rci0       | Advanced Design System 2011.01 - Nonlinear Devices<br>low-field resistance of internal collector region (including scaling) | Ohm  | 150.0   |
|------------|-----------------------------------------------------------------------------------------------------------------------------|------|---------|
| Vlim       | Voltage separating ohmic and saturation velocity regime                                                                     | V    | 0.5     |
| Vpt        | Collector punch-through voltage                                                                                             | V    | 3.0     |
| Vces       | internal C-E saturation voltage                                                                                             | V    | 0.1     |
| Tr         | Storage time for inverse operation                                                                                          | sec  | 0.0     |
| Ibeis      | Internal B-E saturation current                                                                                             | A    | 1e-18   |
| Mbei       | Internal B-E non-ideality factor                                                                                            | None | 1.0     |
| Ireis      | Internal B-E recombination saturation current                                                                               | A    | 0.0     |
| Mrei       | Internal B-E recombination saturation current ideality factor                                                               | None | 2.0     |
| Ibcis      | Internal B-C saturation current                                                                                             | A    | 1.0e-16 |
| Mbci       | Internal B-C non-ideality factor                                                                                            | None | 1.0     |
| Favl       | Avalanche current factor                                                                                                    | 1/V  | 0.0     |
| Qavl       | Exponent factor for avalanche current                                                                                       | C    | 0.0     |
| Rbi0       | Zero-bias internal base resistance                                                                                          | Ohm  | 0.0     |
| Fdqr0      | correction factor for modulation by BE and BC SCR                                                                           | None | 0.0     |
| Fgeo       | Factor for geometry dependence of emitter current crowding (default value corresponds to long emitter stripe)               | None | 0.6557  |
| Fqi        | ratio of internal to total minority charge                                                                                  | None | 1.0     |
| -<br>Fcrbi | ration of HF shunt to total internal capacitance                                                                            | None | 0.0     |
| Latb       | scaling factor for QfC in bE direction                                                                                      | None | 0.0     |
| _atl       | scaling factor for QfC in IE direction                                                                                      | None | 0.0     |
| Cjep0      | Peripheral B-E zero-bias depletion capacitacance                                                                            | F    | 0.0     |
| Vdep       | Peripheral B-E built-in voltage                                                                                             | V    | 0.9     |
| Zep        | Peripheral B-E grading coefficient                                                                                          | None | 0.5     |
| Aljep      | factor for adjusting maximum value of Cjep0                                                                                 | None | 2.5     |
| Ibeps      | Peripheral B-E saturation current                                                                                           | A    | 0.0     |
| Mbep       | Peripheral B-E current ideality factor                                                                                      | None | 1.0     |
| Ireps      | Peripheral B-E recombination saturation current                                                                             | A    | 0.0     |
| Mrep       | Peripheral B-E recombination current ideality factor                                                                        | None | 2.0     |
| lbets      | B-E tuneling saturation current                                                                                             | A    | 0.0     |
| Abet       | Exponent factor for tuneling current                                                                                        | None | 40.0    |
| Cjcx0      | External B-C zero-bias depletion capacitance                                                                                | F    | 0.0     |
| Vdcx       | External B-C built-in voltage                                                                                               | V    | 0.7     |
| Zcx        | External B-C grading coefficient                                                                                            | None | 0.4     |
| Vptcx      | External B-C punch-through voltage                                                                                          | V    | 1.0e20  |
| Ccox       | B-C overlap capacitance                                                                                                     | F    | 0.0     |
| Fbc        | partitioning factor for Ccbx=Cjcx0+Ccox                                                                                     | None | 0.0     |
| Ibcxs      | External B-C saturation current                                                                                             | A    | 0.0     |
| Mbcx       | External B-C current ideality factor                                                                                        | None | 1.0     |
| Ceox       | B-E isolation capacitance                                                                                                   | F    | 0.0     |
| Rbx        | External base series resistance                                                                                             | Ohm  | 0.0     |
| Re         | Emitter series resistance                                                                                                   | Ohm  | 0.0     |
| Rcx        | External collector series resistance                                                                                        | Ohm  | 0.0     |
| Itss       | Saturation current of substrate transistor transfer current                                                                 | A    | 0.0     |
| Msf        | Forward ideality factor of substrate transfer current                                                                       | None | 1.0     |
| Msr        | Reverse ideality factor of substrate transfer current                                                                       | None | 1.0     |
| Iscs       | Saturation current of C-S diode (latch-up modeling)                                                                         | A    | 0.0     |

| Msc                                                                                                                         | Advanced Design System 2011.01 - Nonlinear Devices<br>Ideality factor of C-S diode                                                                | None             | 1.0                 |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| Tsf                                                                                                                         | Transit time (forward operation) for minority charge                                                                                              | sec              | 0.0                 |
| Cjs0                                                                                                                        | C-S zero-bias depletion capacitance                                                                                                               | F                | 0.0                 |
| Vds                                                                                                                         | C-S built-in voltage                                                                                                                              | V                | 0.6                 |
| Zs                                                                                                                          | C-S grading coefficient                                                                                                                           | None             | 0.5                 |
| Vpts                                                                                                                        | C-S punch-through voltage                                                                                                                         | V                | 1.0e20              |
| Rsu                                                                                                                         | Substrate series resistance                                                                                                                       | Ohm              | 0.0                 |
| Csu                                                                                                                         | Substrate cap. given by permittivity of bulk material                                                                                             | F                | 0.0                 |
| Kf                                                                                                                          | Flicker noise factor, no unit only for Af=2                                                                                                       | None             | 0.0                 |
| Af                                                                                                                          | Flicker noise exponent                                                                                                                            | None             | 2.0                 |
| Krbi                                                                                                                        | Factor for internal base resistance                                                                                                               | None             | 1.0                 |
| Vgb                                                                                                                         | Bandgap-voltage extrapolated to 0K                                                                                                                | V                | 1.17                |
| Alb                                                                                                                         | Relative temperature coefficient of current gain                                                                                                  | 1/K              | 5.0e-3              |
| Zetaci                                                                                                                      | Temperature coefficient for Rci0                                                                                                                  | None             | 0.0                 |
| Alvs                                                                                                                        | Relative temperature coefficient of saturation drift velocity                                                                                     | 1/K              | 0.0                 |
| AltO                                                                                                                        | First-order relative temperature coefficient of parameter T0                                                                                      | 1/K              | 0.0                 |
| <t0< td=""><td>Second-order relative temperature coefficient of parameter T0</td><td>1/K<sup>2</sup></td><td>0.0</td></t0<> | Second-order relative temperature coefficient of parameter T0                                                                                     | 1/K <sup>2</sup> | 0.0                 |
| Alces                                                                                                                       | Relative temperature coefficient of Vces                                                                                                          | 1/K              | 0.0                 |
| Zetarbi                                                                                                                     | Temperature exponent of internal base resistance                                                                                                  | None             | 0.0                 |
| Zetarbx                                                                                                                     | Temperature exponent of external base resistance                                                                                                  | None             | 0.0                 |
| Zetarcx                                                                                                                     | Temperature exponent of external collector resistance                                                                                             | None             | 0.0                 |
| Zetare                                                                                                                      | Temperature exponent of emitter resistance                                                                                                        | None             | 0.0                 |
| Alfav                                                                                                                       | Relative temperature coefficient for avalanche breakdown Favl                                                                                     | 1/K              | 0.0                 |
| Alqav                                                                                                                       | Relative temperature coefficient for avalanche breakdown Qavl                                                                                     |                  | 0.0                 |
| Tnom                                                                                                                        | Temperature at which parameters are specified                                                                                                     | °C               | 25                  |
| Trise                                                                                                                       | Temperature rise over ambient                                                                                                                     | °C               | 0                   |
| Rth                                                                                                                         | Thermal resistance                                                                                                                                | K/W              | 0.0                 |
| Cth                                                                                                                         | Thermal capacitance                                                                                                                               | W ×<br>s/K       | 0.0                 |
| Imax                                                                                                                        | Explosion current                                                                                                                                 | A                | 1e4                 |
| Imelt                                                                                                                       | Explosion current (similar to Imax; refer to note 4); defaults to Imax                                                                            | A                | defaults to<br>Imax |
| AcModel                                                                                                                     | Selects which small signal models to use for ac and S-parameter<br>analyses: Small signal=1, consistent with charge model=2; (refer to<br>note 5) | None             | 1                   |
| SelfheatingModel                                                                                                            | Selects which power dissipation equations to use for modeling self-<br>heating effect: Simplified model=1, full model=2; (refer to note 6)        | None             | 1                   |
| wVsubfwd                                                                                                                    | Substrate junction forward bias (warning)                                                                                                         | V                | None                |
| wBvsub                                                                                                                      | Substrate junction reverse breakdown voltage (warning)                                                                                            | V                | None                |
| wBvbe                                                                                                                       | Base-emitter reverse breakdown voltage (warning)                                                                                                  | V                | None                |
| wBvbc                                                                                                                       | Base-collector reverse breakdown voltage (warning)                                                                                                | V                | None                |
| wVbcfwd                                                                                                                     | Base-collector forward bias (warning)                                                                                                             | V                | None                |
| wIbmax                                                                                                                      | Maximum base current (warning)                                                                                                                    | A                | None                |
| wIcmax                                                                                                                      | Maximum collector current (warning)                                                                                                               | A                | None                |
| wPmax                                                                                                                       | Maximum power dissipation (warning)                                                                                                               | w                | None                |
| AllParams                                                                                                                   | Data Access Component (DAC) Based Parameters                                                                                                      | None             | None                |

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname HICUM [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *HICUM*. Use either parameter NPN=yes or PNP=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

### Example:

```
model Npn3 HICUM \
  NPN=yes Alfav=8e-5 T0=5e-12
```

### **Notes/Equations**

- 1. This model (version 2.1) supplies values for a HICUM device.
- 2. The important physical and electrical effects taken into account by HICUM are summarized:
  - high-current effects (including quasi-saturation)
  - distributed high-frequency model for the external base-collector region
  - emitter periphery injection and associated charge storage
  - emitter current crowding (through a bias-dependent internal base resistance
  - 2- and 3-dimensional collector current spreading
  - parasitic (bias independent) capacitances between base-emitter and basecollector terminal
  - vertical non-quasi-static (NQS) effects for transfer current and minority charge
  - temperature dependence and self-heating
  - weak avalanche breakdown at the base-collector junction
  - tunneling in the base-emitter junction
  - parasitic substrate transistor
  - bandgap differences (occurring in HBTs)
  - lateral scalability

For detailed physical and electrical effects, as well as model equations, refer to Michael Schroter's *HICUM, A* Scalable Physics-based Compact Bipolar Transistor Model *, Description of model version 2.1* , December, 2000; a pdf file is available at: <u>"http://www.iee.et.tu-dresden.de/iee/eb/comp\_mod.html"</u>.

3. Constant transit time Tf (at dc bias) is used in harmonic balance analysis for It current delay.

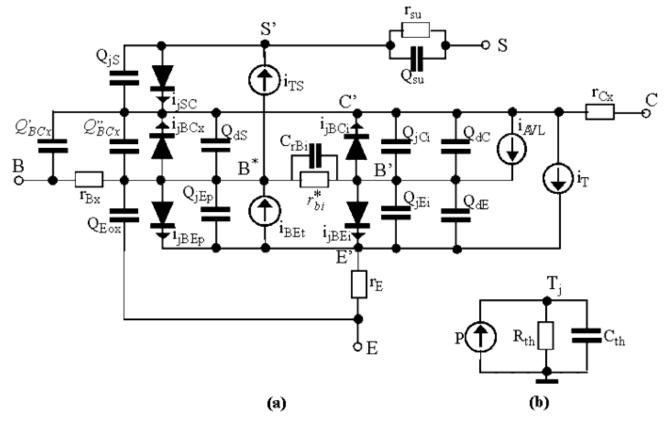
4. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

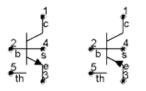
If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

5. Small-signal ac model given in the reference cited in <u>note 1</u> is a derivation of the large-signal charge model. However, it is not fully compatible with the charge model with the small input. The AcModel parameter can be set to either the small-signal model (AcModel=1) or the charge model compatible model (AcModel=2) for small-signal ac and S-parameter analyses.


The AcModel parameter has no effect on large-signal analysis.

- 6. Two power dissipation formulas for modeling the self-heating effect have been implemented in ADS.
  - When SelfheatingModel = 1, the simplified formula power = It × vce Iave × vbc will be used.
  - When SelfheatingModel = 2, formula 2.1.16-1 from Schroter's document at: <u>"http://www.iee.et.tu-dresden.de/iee/eb/comp\_mod.html"</u> will be used; the formula can be found under *General Description* > *HICUM-Equations* > section 2.1.16, equation 2.1.16-1.

The simplified formula is implemented in Dr. Schroter's DEVICE program.


7. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams.

**Equivalent Circuit** 



# HICUM\_NPN, HICUM\_PNP (HICUM Bipolar Transistors, NPN, PNP)

#### Symbol



HICUM\_NPN HICUM\_PNP

### **Parameters**

| Name        | Description                                                    | Units | Default   |
|-------------|----------------------------------------------------------------|-------|-----------|
| Model       | Model instance name of a HICUM_Model                           | None  | HUCUMM1   |
| Temp        | device operating temperature                                   | °C    | 25        |
| Trise       | temperature rise over ambient                                  | °C    | 0         |
| Mode        | simulation mode: Nonlinear, Linear, Standard (refer to note 2) | None  | Nonlinear |
| Noise       | noise generation option: yes=1, no=0                           | None  | yes       |
| Selfheating | Include selfheating effects on/off: yes, no (refer to note 3)  | None  | No        |
| _M          | number of devices in parallel                                  | None  | 1         |

### **Notes/Equations**

- 1. The Temp parameter specifies the physical (operating) temperature of the device. If this is different than the temperature at which the model parameters are valid or extracted (specified by the Tnom parameter of the associated HICUM\_Model) certain model parameters are scaled such that the device is simulated at its operating temperature.
- 2. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 3. The HICUM implements self-heating. As the transistor dissipates power, it causes its temperature to rise above ambient. The model parameters Rth and Cth control this:  $\Delta T = Pdiss \times Rth$ . To enable this, set the Selfheating flag to yes or leave it blank, and ensure that the model parameter Rth is > 0. When self-heating is enabled, it may be necessary to increase the maximum number of iterations due to the additional unknown (temperature rise) that must be solved for. Simulation using self-heating may take 50 to 100% more time than the same simulation without self-heating. Self-heating can be used with either an internal or external thermal node.
  - If the *th* (fifth) node is either connected to ground or not given in the netlist, HICUM\_NPN and HICUM\_PNP use an internal node to keep track of the

- If the *th* (fifth) node is either left open (unconnected) or connected to a thermal coupling network, then HICUM\_NPN and HICUM\_PNP use this node to keep track of the temperature rise of the transistor.
- 4. The following table lists the DC operating point parameters that can be sent to the dataset.

| Name     | Description                     | Units   |
|----------|---------------------------------|---------|
| Ic       | Collector current               | amperes |
| Ib       | Base current                    | amperes |
| Ie       | Emitter current                 | amperes |
| Is       | Substrate current               | amperes |
| Power    | DC power dissipated             | watts   |
| Gbiei    | (dIbiei/dVbiei)                 | siemens |
| Cbiei    | Base-emitter capacitance        | farads  |
| Gbici    | (dIbici/dVbici)                 | siemens |
| Cbici    | Base-collector capacitance      | farads  |
| Gbcx     | (dI/dV)                         | siemens |
| Gbep     | (dI/dV)                         | siemens |
| Cbep     | (dQ/dV)                         | farads  |
| Gbet     | (dI/dV)                         | siemens |
| Gsc      | (dI/dV)                         | siemens |
| dIt_dVbi | (dIt/dVbi)                      | siemens |
| dIt_dVci | (dIt/dVci)                      | siemens |
| dIt_dVei | (dIt/dVei)                      | siemens |
| Sfbav    | (dI/dV)                         | siemens |
| Sfcav    | (dI/dV)                         | siemens |
| Cjs      | Substrate-collector capacitance | farads  |
| C1bcx    | Base-collector capacitance      | farads  |
| C2bcx    | Base-collector capacitance      | farads  |
| Vbe      | Base-emitter voltage            | volts   |
| Vbc      | Base-collector voltage          | volts   |
| Vce      | Collector-emitter voltage       | volts   |

### **DC Operating Point Information**

5. This device has no default artwork associated with it.

### M504\_BJT4\_NPN, M504\_BJT4\_PNP (Mextram 504 Nonlinear Bipolar Transistors with Substrate Terminal, NPN, PNP)

**Symbol** 

BJT4 NPN

### **Parameters**

| Name        | Description                                                    | Units | Default   |
|-------------|----------------------------------------------------------------|-------|-----------|
| Model       | name of MEXTRAM_504_Model                                      | None  | BJTM1     |
| Temp        | device operating temperature                                   | °C    | 25        |
| Trise (Dta) | temperature rise above ambient                                 | °C    | 0         |
| Mode        | simulation mode: Nonlinear, Linear, Standard (refer to note 2) | None  | Nonlinear |
| Noise       | noise generation option: yes=1, no=0                           | None  | yes       |
| Selfheating | include selfheating effects: no, yes                           | None  | no        |
| _M          | number of devices in parallel                                  | None  | 1         |

### **Notes/Equations**

- 1. The Temp parameter specifies the physical (operating) temperature of the device; if different than the temperature at which the model parameters are valid or extracted (specified by Tnom of the associated model) certain model parameters are scaled such that the device is simulated at its operating temperature. Refer to the model to see which parameter values are scaled.
- 2. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 3. The fourth terminal (substrate) is available for connection to an external circuit.
- 4. The MEXTRAM 504 implements self-heating. As the transistor dissipates power, it causes its temperature to rise above ambient. Model parameters Rth and Cth control this:  $\Delta T = Pdiss \times Rth$ . To enable this, set the Selfheating flag to yes, and ensure that the model parameter Rth is > 0. When self-heating is enabled, it may be necessary to increase the maximum number of iterations due to the additional unknown (temperature rise) that must be solved for. Simulation using self-heating may take 50 to 100% more time than the same simulation without self-heating. Self-heating can be used with either an internal or external thermal node.
  - M504\_BJT\_NPN, M504\_BJT\_PNP, M504\_BJT4\_NPN, and M504\_BJT4\_PNP use an

internal node to keep track of the temperature rise of the transistor.

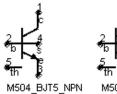
- M504\_BJT5\_NPN and M504\_BJT5\_PNP make this thermal node externally available as the fifth terminal. This node can then be used for additional thermal modeling.
- 5. The following table, lists the DC operating point parameters that can be sent to the dataset.

| Name  | Description                                                | Units   |
|-------|------------------------------------------------------------|---------|
| Ic    | Collector current                                          | amperes |
| Ib    | Base current                                               | amperes |
| Ie    | Emitter current                                            | amperes |
| Is    | Substrate current                                          | amperes |
| Power | DC power dissipated                                        | watts   |
| In    | Main current from C2-E1                                    | amperes |
| Ic1c2 | Epilayer current from C1-C2                                | amperes |
| Ib1b2 | Pinched-base current from B1-B2                            | amperes |
| Ib1   | Ideal forward base current from B2-E1                      | amperes |
| SIb1  | Ideal sidewall base current from B1-E1                     | amperes |
| Ib2   | Nonideal forward base current from B2-E1                   | amperes |
| Ib3   | Nonideal reverse base current from B1-C1                   | amperes |
| Iavl  | Avalanche current from C2-B2                               | amperes |
| Iex   | Extrinsic reverse base current from B1-C1                  | amperes |
| XIex  | Extrinsic reverse base current from B-C1                   | amperes |
| Isub  | Substrate current from B1-S                                | amperes |
| XIsub | Substrate current from B-S                                 | amperes |
| Isf   | Substrate failure current from S-C1                        | amperes |
| Ire   | Emitter current from E1-E                                  | amperes |
| Irbc  | Base current from B-B1                                     | amperes |
| Ircc  | Collector current from C-C1                                | amperes |
| Vc    | External collector voltage                                 | volts   |
| Vc1   | Internal collector1 voltage                                | volts   |
| Vc2   | Internal collector2 voltage                                | volts   |
| Vb    | External base voltage                                      | volts   |
| Vb1   | Internal base1 voltage                                     | volts   |
| Vb2   | Internal base2 voltage                                     | volts   |
| Ve    | External emitter voltage                                   | volts   |
| Ve1   | External emitter1 voltage                                  | volts   |
| Vs    | Substrate voltage                                          | volts   |
| gx    | Forward transconductance (dIn/dVb2e2)                      | siemens |
| gy    | Reverse transconductance (dIn/dVb2c2)                      | siemens |
| gz    | Reverse transconductance (dIn/dVb2c1)                      | siemens |
| Sgpi  | Base-emitter sidewall conductance (dSIb1/dVb1e1)           | siemens |
| gpix  | Base-emitter conductance (d(Ib1 + Ib2)/dVb2e1)             | siemens |
| gpiy  | Early effect on recombination base current (dIb1/dVb2c2)   | siemens |
| gpiz  | Early effect on recombination base current (dIb1/dVb2c1)   | siemens |
| gmux  | Early effect on avalanche current limiting (-dIavl/dVb2e1) | siemens |

### **DC Operating Point Information**

Advanced Design System 2011.01 - Nonlinear Devices

|        | Auvalieeu Desigii System 2011.01 - Nommear I                  |          |
|--------|---------------------------------------------------------------|----------|
| gmuy   | Avalanche current conductance (-dIavl/dVb2c2)                 | siemens  |
| gmuz   | Avalanche current conductance (-dIavl/dVb2c1)                 | siemens  |
| gmuex  | Extrinsic base-collector conductance (d(Iex + Ib3)/dVb1c1)    | siemens  |
| Xgmuex | Extrinsic base-collector conductance (dXIex/dVbc1)            | siemens  |
| grcvy  | Epilayer conductance (dIc1c2/dVb2c2)                          | siemens  |
| grcvz  | Epilayer conductance (dIc1c2/dVb2c1)                          | siemens  |
| rbv    | Base resistance (1/(dIb1b2/dVb1b2))                           | ohms     |
| grbvx  | Early effect on base resistance (dIb1b2/dVb2e1)               | siemens  |
| grbvy  | Early effect on base resistance (dIb1b2/dVb2c2)               | siemens  |
| grbvz  | Early effect on base resistance (dIb1b2/dVb2c1)               | siemens  |
| gs     | Parasitic PNP transistor conductance (dIsub/dVb1c1)           | siemens  |
| Xgs    | Parasitic PNP transistor conductance (dXIsub/dVbc1)           | siemens  |
| gsf    | Substrate failure conductance (dIsf/dVsc1)                    | siemens  |
| Qe     | Emitter or emitter neutral charge                             | coulombs |
| Qte    | Base-emitter depletion charge                                 | coulombs |
| SQte   | Sidewall base-emitter depletion charge                        | coulombs |
| Qbe    | Base-emitter diffusion charge                                 | coulombs |
| Qbc    | Base-collector diffusion charge                               | coulombs |
| Qtc    | Base-collector depletion charge                               | coulombs |
| Qepi   | Epilayer diffusion charge                                     | coulombs |
| Qb1b2  | AC current crowding charge                                    | coulombs |
| Qtex   | Extrinsic base-collector depletion charge                     | coulombs |
| XQtex  | Extrinsic base-collector depletion charge                     | coulombs |
| Qex    | Extrinsic base-collector diffusion charge                     | coulombs |
| XQex   | Extrinsic base-collector diffusion charge                     | coulombs |
| Qts    | Collector-substrate depletion charge                          | coulombs |
| SCbe   | Base-emitter sidewall capacitance (dSQte/dVb1e1)              | farads   |
| Cbex   | Base-emitter capacitance (d(Qte + Qbe + Qe)/dVb2e1)           | farads   |
| Cbey   | Early effect on base-emitter diffusion charge (dQbe/dVb2c2)   | farads   |
| Cbez   | Early effect on base-emitter diffusion charge (dQbe/dVb2c1)   | farads   |
| Cbcx   | Early effect on base-collector diffusion charge (dQbc/dVb2e1) | farads   |
| Cbcy   | Base-collector capacitance (d(Qtc + Qbc + Qepi)/dVb2c2)       | farads   |
| Cbcz   | Base-collector capacitance (d(Qtc + Qbc + Qepi)/dVb2c1)       | farads   |
| Cbcex  | Extrinsic base-collector capacitance (d(Qtex + Qex)/dVb1c1)   | farads   |
| XCbcex | Extrinsic base-collector capacitance (d(XQtex + XQex)/dVbc1)  | farads   |
| Cb1b2  | AC current crowding capacitance (dQb1b2/dVb1b2)               | farads   |
| Cb1b2x | AC current crowding transcapacitance (dQb1b2/dVb2e1)          | farads   |
| Cb1b2y | AC current crowding transcapacitance (dQb1b2/dVb2c2)          | farads   |
| Cb1b2z | AC current crowding transcapacitance (dQb1b2/dVb2c1)          | farads   |
| Cts    | Substrate-collector capacitance (dQts/dVsc1)                  | farads   |
| Vbe    | Base-emitter voltage                                          | volts    |
| Vbc    | Base-collector voltage                                        | volts    |
| Vce    | Collector-emitter voltage                                     | volts    |


6. This device has no default artwork associated with it.

7. This model was developed by NXP Semiconductors. Documentation is available on their website:

http://www.nxp.com/models/bi\_models/mextram/index.html

### M504\_BJT5\_NPN, M504\_BJT5\_PNP (Mextram 504 Nonlinear Bipolar Transistors with Substrate and Thermal Terminals, NPN, PNP)

#### **Symbol**



### **Parameters**

| Name        | Description                                                    | Units | Default   |
|-------------|----------------------------------------------------------------|-------|-----------|
| Model       | name of MEXTRAM_504_Model                                      | None  | BJTM1     |
| Temp        | device operating temperature                                   | °C    | 25        |
| Trise (Dta) | temperature rise above ambient                                 | °C    | 0         |
| Mode        | simulation mode: Nonlinear, Linear, Standard (refer to note 2) | None  | Nonlinear |
| Noise       | noise generation option: yes=1, no=0                           | None  | yes       |
| Selfheating | include selfheating effects: no, yes                           | None  | no        |
| _M          | number of devices in parallel                                  | None  | 1         |

### Notes/Equations/References

- The Temp parameter specifies the physical (operating) temperature of the device; if different than the temperature at which the model parameters are valid or extracted (specified by Tnom of the associated model) certain model parameters are scaled such that the device is simulated at its operating temperature. Refer to the model to see which parameter values are scaled.
- 2. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 3. The fourth terminal (substrate) is available for connection to an external circuit.
- 4. The MEXTRAM 504 implements self-heating. As the transistor dissipates power, it causes its temperature to rise above ambient. The model parameters Rth and Cth control this:  $\Delta T =$  Pdiss x Rth. To enable this, set the Selfheating flag to yes, and ensure that the model parameter Rth is > 0. When self-heating is enabled, it may be necessary to increase the maximum number of iterations due to the additional unknown (temperature rise) that must be solved for. Simulation using self-heating may take 50 to 100% more time than the same simulation without self-heating. Self-heating can be used with either an internal or external thermal node.

- M504\_BJT\_NPN, M504\_BJT\_PNP, M504\_BJT4\_NPN, and M504\_BJT4\_PNP use an internal node to keep track of the temperature rise of the transistor.
- M504\_BJT5\_NPN and M504\_BJT5\_PNP make this thermal node externally available as the fifth terminal. This node can then be used for additional thermal modeling.
- 5. The following table lists the DC operating point parameters that can be sent to the dataset.

| IbBase currentanIeEmitter currentanIsSubstrate currentanPowerDC power dissipatedwaInMain current from C2-E1anIc1c2Epilayer current from C1-C2anIb1b2Pinched-base current from B1-B2anIb1Ideal forward base current from B2-E1anSIb1Ideal sidewall base current from B1-E1anIb2Nonideal forward base current from B1-E1anIb3Nonideal reverse base current from B1-C1anIaviAvalanche current from C2-B2anIexExtrinsic reverse base current from B1-C1anXIexExtrinsic reverse base current from B-C1anIsubSubstrate current from B1-SanIsubSubstrate current from B1-SanIreEmitter current from B1-SanIreEmitter current from B-SanIreCollector current from C-C1anIrcCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector1 voltagevoVc2Internal base voltagevoVb1Internal base1 voltagevoVc4External emitter voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltage<                         | nits   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IeEmitter currentandIsSubstrate currentandPowerDC power dissipatedwataInMain current from C2-E1andIc1c2Epilayer current from C1-C2andIb1b2Pinched-base current from B1-B2andIb1Ideal forward base current from B1-E1andIb2Nonideal forward base current from B1-E1andIb3Nonideal forward base current from B1-C1andIaviAvalanche current from C2-B2andIaviAvalanche current from B1-C1andXIexExtrinsic reverse base current from B-C1andSubstrate current from B1-SandXIsubSubstrate current from B1-SandIsubSubstrate failure current from S-C1andIreEmitter current from B-SandIrecCollector current from B-B1andIrccCollector current from C-C1andVc1Internal collector1 voltagevoVc2Internal collector2 voltagevoVb1Internal base voltagevoVb2Internal base1 voltagevoVc4External emitter voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltage                         | nperes |
| IsSubstrate currentanPowerDC power dissipatedwatInMain current from C2-E1anIc1c2Epilayer current from C1-C2anIb1b2Pinched-base current from B1-B2anIb1Ideal forward base current from B1-E1anSIb1Ideal sidewall base current from B2-E1anIb2Nonideal reverse base current from B1-C1anIaviAvalanche current from C2-B2anIsuExtrinsic reverse base current from B1-C1anIsubSubstrate current from B1-SanIsubSubstrate current from B1-SanIsubSubstrate current from B1-SanIsubSubstrate failure current from S-C1anIreEmitter current from E1-EanIrcCollector current from C-C1anIrcCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector 2 voltagevoVb1Internal base 1 voltagevoVb2Internal base2 voltagevoVc4External emitter voltagevoVc5Substrate voltagevoVc6Substrate voltagevoVc7Internal base2 voltagevoVaSubstrate voltagevoVaSubstrate voltagevoVaSubstrate voltagevoVaSubstrate voltagevoVaSubstrate voltagevoVaSubstrate voltage <t< td=""><td>nperes</td></t<> | nperes |
| PowerDC power dissipatedwatInMain current from C2-E1anIc1c2Epilayer current from C1-C2anIb1b2Pinched-base current from B1-B2anIb1Ideal forward base current from B1-E1anSIb1Ideal sidewall base current from B1-E1anIb2Nonideal forward base current from B1-C1anIb3Nonideal reverse base current from B1-C1anIaviAvalanche current from C2-B2anIswExtrinsic reverse base current from B1-C1anIsubSubstrate current from B1-SanIsubSubstrate current from B1-SanIsubSubstrate failure current from S-C1anIreEmitter current from E1-EanIreExtrinsic reverse baseanIreCollector current from C-C1anIreCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector voltagevoVb1Internal base voltagevoVb2Internal base voltagevoVc4External emitter voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltage </td <td>nperes</td>      | nperes |
| InMain current from C2-E1anIc1c2Epilayer current from C1-C2anIb1b2Pinched-base current from B1-B2anIb1Ideal forward base current from B2-E1anSIb1Ideal sidewall base current from B1-E1anIb2Nonideal forward base current from B2-E1anIb3Nonideal reverse base current from B1-C1anIaviAvalanche current from C2-B2anIexExtrinsic reverse base current from B1-C1anXIexExtrinsic reverse base current from B1-C1anSubstrate current from B1-SanSubstrate current from B1-SanIsubSubstrate current from B-SanIsubSubstrate failure current from S-C1anIreEmitter current from E1-EanIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector1 voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVeExternal emitter voltagevoVsSubstrate voltagevo                | nperes |
| Ic1c2Epilayer current from C1-C2anIb1b2Pinched-base current from B1-B2anIb1Ideal forward base current from B2-E1anSIb1Ideal sidewall base current from B1-E1anIb2Nonideal forward base current from B2-E1anIb3Nonideal reverse base current from B1-C1anIav1Avalanche current from C2-B2anIexExtrinsic reverse base current from B1-C1anXIexExtrinsic reverse base current from B1-C1anIsubSubstrate current from B1-SanXIsubSubstrate current from B1-SanIsubSubstrate current from B1-SanIsubSubstrate failure current from S-C1anIreEmitter current from B1-SanIreExternal collector voltagevoVc1Internal collector voltagevoVc2Internal collector voltagevoVb1Internal base1 voltagevoVb2Internal emitter voltagevoVsSubstrate vol                         | atts   |
| Ib1b2Pinched-base current from B1-B2andIb1Ideal forward base current from B2-E1andSIb1Ideal sidewall base current from B1-E1andIb2Nonideal forward base current from B2-E1andIb3Nonideal reverse base current from B1-C1andIav1Avalanche current from C2-B2andIexExtrinsic reverse base current from B1-C1andXIexExtrinsic reverse base current from B1-C1andSubstrate current from B1-SandXIsubSubstrate current from B1-SandXIsubSubstrate current from B1-SandIreEmitter current from E1-EandIrbcBase current from B-S1andIrcCollector current from C-C1andVcExternal collector voltagevoVc1Internal collector1 voltagevoVb1External base voltagevoVb2Internal base1 voltagevoVb1External emitter voltagevoVsSubstrate voltagevo <td>nperes</td>            | nperes |
| Ib1Ideal forward base current from B2-E1anSIb1Ideal sidewall base current from B1-E1anIb2Nonideal forward base current from B2-E1anIb3Nonideal reverse base current from B1-C1anIaviAvalanche current from C2-B2anIexExtrinsic reverse base current from B1-C1anXIexExtrinsic reverse base current from B1-C1anSubstrate current from B1-SanSubstrate current from B1-SanXIsubSubstrate current from B-SanIreEmitter current from E1-EanIrbcBase current from B-B1anIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector1 voltagevoVb1Internal base voltagevoVb2Internal base voltagevoVb4External emitter voltagevoVb5Substrate voltagevoVc4External emitter voltagevoVs5Substrate voltagevoVs6Substrate voltagevoVs6Substrate voltagevoVs7Substrate voltagevoVs6Substrate voltagevoVs7Substrate voltagevoVs6Substrate voltagevoVs7Substrate voltagevoVs6Substrate voltagevoVs6Substrate voltagevoVs7Substrate voltagevoVs6 <td< td=""><td>nperes</td></td<>         | nperes |
| SIb1Ideal sidewall base current from B1-E1anIb2Nonideal forward base current from B2-E1anIb3Nonideal reverse base current from B1-C1anIav1Avalanche current from C2-B2anIexExtrinsic reverse base current from B1-C1anXIexExtrinsic reverse base current from B-C1anIsubSubstrate current from B1-SanXIsubSubstrate current from B-SanIsfSubstrate failure current from S-C1anIreEmitter current from B-B1anIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector2 voltagevoVb1Internal collector2 voltagevoVb2Internal base1 voltagevoVb2Substrate voltagevoVsSubstrate voltagevoSubstrate voltagevoSubstrate voltagevoSubstrate voltagevoSubstrate voltagevoSubstrate volt                                                    | nperes |
| Ib2Nonideal forward base current from B2-E1anIb3Nonideal reverse base current from B1-C1anIavlAvalanche current from C2-B2anIexExtrinsic reverse base current from B1-C1anXIexExtrinsic reverse base current from B-C1anIsubSubstrate current from B1-SanXIsubSubstrate current from B-SanIreEmitter current from E1-EanIreExternal collector voltagevoVc1Internal collector1 voltagevoVc2Internal base voltagevoVb1Internal base2 voltagevoVb2Internal base2 voltagevoVs3Substrate voltagevoVs4External emitter1 voltagevoVs4External emitter1 voltagevoVs4Substrate voltagevoVs4External emitter1 voltagevoVs4Substrate voltagevoVs4Substrate voltagevoVs4Substrate voltagevoVs4Substrate voltagevoVs5Substrate voltagevoVs4Substrate voltagevoVs4Substrate voltagevoVs5Substrate voltagevoVs4Substrate voltagevoVs5Substrate voltagevoVs6Substrate voltagevoVs6Substrate voltagevoVs6Substrate voltagevoVs6Substrate voltagev                                                                      | nperes |
| Ib3Nonideal reverse base current from B1-C1anIavlAvalanche current from C2-B2anIexExtrinsic reverse base current from B1-C1anXIexExtrinsic reverse base current from B-C1anIsubSubstrate current from B1-SanXIsubSubstrate current from B-SanIsfSubstrate failure current from S-C1anIreEmitter current from E1-EanIrbcBase current from B-B1anIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector1 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVgExternal emitter1 voltagevoVsSubstrate voltagevoVs </td <td>nperes</td>                                                                     | nperes |
| IavlAvalanche current from C2-B2anIexExtrinsic reverse base current from B1-C1anXIexExtrinsic reverse base current from B-C1anIsubSubstrate current from B1-SanXIsubSubstrate current from B-SanXIsubSubstrate failure current from S-C1anIreEmitter current from E1-EanIrbcBase current from C-C1anVcCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVb1External emitter voltagevoVsSubstrate voltagevoVgSubstrate voltagevoVaExternal emitter voltagevoVaSubstrate                                                                                                  | nperes |
| IexExtrinsic reverse base current from B1-C1anXIexExtrinsic reverse base current from B-C1anIsubSubstrate current from B1-SanXIsubSubstrate current from B-SanIsfSubstrate failure current from S-C1anIreEmitter current from E1-EanIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVgExternal emitter1 voltagevoVsSubstrate voltagevoSubstrate voltagevoSubstrate voltagevoSubstrate voltagevoSubstrate voltagevoSubstrate voltagevoSubstrate voltagevo                                                                                                          | nperes |
| XIexExtrinsic reverse base current from B-C1anIsubSubstrate current from B1-SanXIsubSubstrate current from B-SanIsfSubstrate failure current from S-C1anIreEmitter current from E1-EanIrbcBase current from B-B1anIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVeExternal emitter voltagevoVsSubstrate voltagevoVaForward transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nperes |
| IsubSubstrate current from B1-SanXIsubSubstrate current from B-SanIsfSubstrate failure current from S-C1anIreEmitter current from E1-EanIrbcBase current from B-B1anIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector1 voltagevoVc2Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVe1External emitter voltagevoVsSubstrate voltagevoVgForward transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nperes |
| XIsubSubstrate current from B-SanIsfSubstrate failure current from S-C1anIreEmitter current from E1-EanIrbcBase current from B-B1anIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector1 voltagevoVc2Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVb1External emitter1 voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVaExternal emitter1 voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                        | nperes |
| IsfSubstrate failure current from S-C1anIreEmitter current from E1-EanIrbcBase current from B-B1anIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector1 voltagevoVc2Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVb1External base2 voltagevoVc1External emitter1 voltagevoVsSubstrate voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nperes |
| IreEmitter current from E1-EanIrbcBase current from B-B1anIrccCollector current from C-C1anVcExternal collector voltagevoVc1Internal collector1 voltagevoVc2Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVb2External emitter voltagevoVe1External emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2e2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nperes |
| IrbcBase current from B-B1andIrccCollector current from C-C1andVcExternal collector voltagevoVc1Internal collector1 voltagevoVc2Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVb2External emitter voltagevoVe1External emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nperes |
| IrccCollector current from C-C1andVcExternal collector voltagevoVc1Internal collector1 voltagevoVc2Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVb2External emitter voltagevoVe1External emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nperes |
| VcExternal collector voltagevoVc1Internal collector1 voltagevoVc2Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVb2External emitter voltagevoVe1External emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2e2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nperes |
| Vc1Internal collector1 voltagevoVc2Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVb2External emitter voltagevoVeExternal emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nperes |
| Vc2Internal collector2 voltagevoVbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVb2External emitter voltagevoVeExternal emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2e2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olts   |
| VbExternal base voltagevoVb1Internal base1 voltagevoVb2Internal base2 voltagevoVeExternal emitter voltagevoVe1External emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2e2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | olts   |
| Vb1Internal base1 voltagevoVb2Internal base2 voltagevoVeExternal emitter voltagevoVe1External emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2e2)siegyReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | olts   |
| Vb2Internal base2 voltagevoVeExternal emitter voltagevoVe1External emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2e2)siegyReverse transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | olts   |
| VeExternal emitter voltagevoVe1External emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2e2)siegyReverse transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olts   |
| Ve1External emitter1 voltagevoVsSubstrate voltagevogxForward transconductance (dIn/dVb2e2)siegyReverse transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | olts   |
| VsSubstrate voltagevogxForward transconductance (dIn/dVb2e2)siegyReverse transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | olts   |
| gxForward transconductance (dIn/dVb2e2)siegyReverse transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | olts   |
| gyReverse transconductance (dIn/dVb2c2)siegzReverse transconductance (dIn/dVb2c1)sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olts   |
| gz Reverse transconductance (dIn/dVb2c1) sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | emens  |
| gz Reverse transconductance (dIn/dVb2c1) sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | emens  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | emens  |
| Sgpi Base-emitter sidewall conductance (dSIb1/dVb1e1) sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | emens  |
| gpix Base-emitter conductance (d(Ib1 + Ib2)/dVb2e1) sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | emens  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | emens  |

### DC Operating Point Information

Advanced Design System 2011.01 - Nonlinear Devices

| ania   | Advanced Design System 2011.01 - Nonlinear I                  |          |
|--------|---------------------------------------------------------------|----------|
| gpiz   | Early effect on recombination base current (dIb1/dVb2c1)      | siemens  |
| gmux   | Early effect on avalanche current limiting (-dIavl/dVb2e1)    | siemens  |
| gmuy   | Avalanche current conductance (-dIavl/dVb2c2)                 | siemens  |
| gmuz   | Avalanche current conductance (-dIavl/dVb2c1)                 | siemens  |
| gmuex  | Extrinsic base-collector conductance (d(Iex + Ib3)/dVb1c1)    | siemens  |
|        | Extrinsic base-collector conductance (dXIex/dVbc1)            | siemens  |
| grcvy  | Epilayer conductance (dIc1c2/dVb2c2)                          | siemens  |
| grcvz  | Epilayer conductance (dIc1c2/dVb2c1)                          | siemens  |
| rbv    | Base resistance (1/(dIb1b2/dVb1b2))                           | ohms     |
| grbvx  | Early effect on base resistance (dIb1b2/dVb2e1)               | siemens  |
| grbvy  | Early effect on base resistance (dIb1b2/dVb2c2)               | siemens  |
| grbvz  | Early effect on base resistance (dIb1b2/dVb2c1)               | siemens  |
| gs     | Parasitic PNP transistor conductance (dIsub/dVb1c1)           | siemens  |
| Xgs    | Parasitic PNP transistor conductance (dXIsub/dVbc1)           | siemens  |
| gsf    | Substrate failure conductance (dIsf/dVsc1)                    | siemens  |
| Qe     | Emitter or emitter neutral charge                             | coulombs |
| Qte    | Base-emitter depletion charge                                 | coulombs |
| SQte   | Sidewall base-emitter depletion charge                        | coulombs |
| Qbe    | Base-emitter diffusion charge                                 | coulombs |
| Qbc    | Base-collector diffusion charge                               | coulombs |
| Qtc    | Base-collector depletion charge                               | coulombs |
| Qepi   | Epilayer diffusion charge                                     | coulombs |
| Qb1b2  | AC current crowding charge                                    | coulombs |
| Qtex   | Extrinsic base-collector depletion charge                     | coulombs |
| XQtex  | Extrinsic base-collector depletion charge                     | coulombs |
| Qex    | Extrinsic base-collector diffusion charge                     | coulombs |
| XQex   | Extrinsic base-collector diffusion charge                     | coulombs |
| Qts    | Collector-substrate depletion charge                          | coulombs |
| SCbe   | Base-emitter sidewall capacitance (dSQte/dVb1e1)              | farads   |
| Cbex   | Base-emitter capacitance (d(Qte + Qbe + Qe)/dVb2e1)           | farads   |
| Cbey   | Early effect on base-emitter diffusion charge (dQbe/dVb2c2)   | farads   |
| Cbez   | Early effect on base-emitter diffusion charge (dQbe/dVb2c1)   | farads   |
| Cbcx   | Early effect on base-collector diffusion charge (dQbc/dVb2e1) | farads   |
| Cbcy   | Base-collector capacitance (d(Qtc + Qbc + Qepi)/dVb2c2)       | farads   |
| Cbcz   | Base-collector capacitance (d(Qtc + Qbc + Qepi)/dVb2c1)       | farads   |
| Cbcex  | Extrinsic base-collector capacitance (d(Qtex + Qex)/dVb1c1)   | farads   |
| XCbcex | Extrinsic base-collector capacitance (d(XQtex + XQex)/dVbc1)  | farads   |
| Cb1b2  | AC current crowding capacitance (dQb1b2/dVb1b2)               | farads   |
| Cb1b2x | AC current crowding transcapacitance (dQb1b2/dVb2e1)          | farads   |
|        | AC current crowding transcapacitance (dQb1b2/dVb2c2)          | farads   |
|        | AC current crowding transcapacitance (dQb1b2/dVb2c1)          | farads   |
| Cts    | Substrate-collector capacitance (dQts/dVsc1)                  | farads   |
| Vbe    | Base-emitter voltage                                          | volts    |
| Vbc    | Base-collector voltage                                        | volts    |
|        | Collector-emitter voltage                                     | volts    |

6. This device has no default artwork associated with it.

7. This model was developed by NXP Semiconductors. Documentation is available on

their website: http://www.nxp.com/models/bi\_models/mextram/index.html

### M504\_BJT\_NPN, M504\_BJT\_PNP (Mextram 504 Nonlinear Bipolar Transistors)

Symbol

M504\_BJT\_NPN M504 BJT PNP

### Parameters

| Name        | Description                                                    | Units | Default   |
|-------------|----------------------------------------------------------------|-------|-----------|
| Model       | name of MEXTRAM_504_Model                                      | None  | BJTM1     |
| Temp        | device operating temperature                                   | °C    | 25        |
| Trise (Dta) | temperature rise above ambient                                 | °C    | 0         |
| Mode        | simulation mode: Nonlinear, Linear, Standard (refer to note 2) | None  | Nonlinear |
| Noise       | noise generation option: yes=1, no=0                           | None  | yes       |
| Selfheating | include selfheating effects: no, yes                           | None  | no        |
| _M          | number of devices in parallel                                  | None  | 1         |

### **Notes/Equations**

- 1. The Temp parameter specifies the physical (operating) temperature of the device; if different than the temperature at which the model parameters are valid or extracted (specified by Tnom of the associated model) certain model parameters are scaled such that the device is simulated at its operating temperature. Refer to the model to see which parameter values are scaled.
- 2. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 3. The MEXTRAM 504 implements self-heating. As the transistor dissipates power, it causes its temperature to rise above ambient. The model parameters Rth and Cth control this:  $\Delta T =$  Pdiss x Rth. To enable this, set the *Selfheating* flag to yes, and ensure that the model parameter Rth is > 0. When self-heating is enabled, it may be necessary to increase the maximum number of iterations due to the additional unknown (temperature rise) that must be solved for. Simulation using self-heating may take 50 to 100% more time than the same simulation without self-heating. Self-heating can be used with either an internal or external thermal node.
  - M504\_BJT\_NPN, M504\_BJT\_PNP, M504\_BJT4\_NPN, and M504\_BJT4\_PNP use an

internal node to keep track of the temperature rise of the transistor.

- M504\_BJT5\_NPN and M504\_BJT5\_PNP make this thermal node externally available as the fifth terminal. This node can then be used for additional thermal modeling.
- 4. The following table lists the DC operating point parameters that can be sent to the dataset.

| Name  | Description                                                | Units   |
|-------|------------------------------------------------------------|---------|
| Ic    | Collector current                                          | amperes |
| Ib    | Base current                                               | amperes |
| Ie    | Emitter current                                            | amperes |
| Is    | Substrate current                                          | amperes |
| Power | DC power dissipated                                        | watts   |
| In    | Main current from C2-E1                                    | amperes |
| Ic1c2 | Epilayer current from C1-C2                                | amperes |
| Ib1b2 | Pinched-base current from B1-B2                            | amperes |
| Ib1   | Ideal forward base current from B2-E1                      | amperes |
| SIb1  | Ideal sidewall base current from B1-E1                     | amperes |
| Ib2   | Nonideal forward base current from B2-E1                   | amperes |
| Ib3   | Nonideal reverse base current from B1-C1                   | amperes |
| Iavl  | Avalanche current from C2-B2                               | amperes |
| Iex   | Extrinsic reverse base current from B1-C1                  | amperes |
| XIex  | Extrinsic reverse base current from B-C1                   | amperes |
| Isub  | Substrate current from B1-S                                | amperes |
| XIsub | Substrate current from B-S                                 | amperes |
| Isf   | Substrate failure current from S-C1                        | amperes |
| Ire   | Emitter current from E1-E                                  | amperes |
| Irbc  | Base current from B-B1                                     | amperes |
| Ircc  | Collector current from C-C1                                | amperes |
| Vc    | External collector voltage                                 | volts   |
| Vc1   | Internal collector1 voltage                                | volts   |
| Vc2   | Internal collector2 voltage                                | volts   |
| Vb    | External base voltage                                      | volts   |
| Vb1   | Internal base1 voltage                                     | volts   |
| Vb2   | Internal base2 voltage                                     | volts   |
| Ve    | External emitter voltage                                   | volts   |
| Ve1   | External emitter1 voltage                                  | volts   |
| Vs    | Substrate voltage                                          | volts   |
| gx    | Forward transconductance (dIn/dVb2e2)                      | siemens |
| gy    | Reverse transconductance (dIn/dVb2c2)                      | siemens |
| gz    | Reverse transconductance (dIn/dVb2c1)                      | siemens |
| Sgpi  | Base-emitter sidewall conductance (dSIb1/dVb1e1)           | siemens |
| gpix  | Base-emitter conductance (d(Ib1 + Ib2)/dVb2e1)             | siemens |
| gpiy  | Early effect on recombination base current (dIb1/dVb2c2)   | siemens |
| gpiz  | Early effect on recombination base current (dIb1/dVb2c1)   | siemens |
| gmux  | Early effect on avalanche current limiting (-dIavl/dVb2e1) | siemens |

### **DC Operating Point Information**

Advanced Design System 2011.01 - Nonlinear Devices

| amuny     | Advanced Design System 2011.01 - Nonlinear I<br>Avalanche current conductance (-dIavl/dVb2c2) | siemens  |
|-----------|-----------------------------------------------------------------------------------------------|----------|
|           |                                                                                               |          |
| gmuz      | Avalanche current conductance (-dIavl/dVb2c1)                                                 | siemens  |
| gmuex     | Extrinsic base-collector conductance (d(Iex + Ib3)/dVb1c1)                                    | siemens  |
|           | Extrinsic base-collector conductance (dXIex/dVbc1)                                            | siemens  |
| grcvy     | Epilayer conductance (dIc1c2/dVb2c2)                                                          | siemens  |
| grcvz     | Epilayer conductance (dIc1c2/dVb2c1)                                                          | siemens  |
| rbv       | Base resistance (1/(dIb1b2/dVb1b2))                                                           | ohms     |
| grbvx     | Early effect on base resistance (dIb1b2/dVb2e1)                                               | siemens  |
| grbvy     | Early effect on base resistance (dIb1b2/dVb2c2)                                               | siemens  |
| grbvz     | Early effect on base resistance (dIb1b2/dVb2c1)                                               | siemens  |
| gs        | Parasitic PNP transistor conductance (dIsub/dVb1c1)                                           | siemens  |
| Xgs       | Parasitic PNP transistor conductance (dXIsub/dVbc1)                                           | siemens  |
| gsf       | Substrate failure conductance (dIsf/dVsc1)                                                    | siemens  |
| Qe        | Emitter or emitter neutral charge                                                             | coulombs |
| Qte       | Base-emitter depletion charge                                                                 | coulombs |
| SQte      | Sidewall base-emitter depletion charge                                                        | coulombs |
| Qbe       | Base-emitter diffusion charge                                                                 | coulombs |
| Qbc       | Base-collector diffusion charge                                                               | coulombs |
| Qtc       | Base-collector depletion charge                                                               | coulombs |
| Qepi      | Epilayer diffusion charge                                                                     | coulombs |
| Qb1b2     | AC current crowding charge                                                                    | coulombs |
| Qtex      | Extrinsic base-collector depletion charge                                                     | coulombs |
| XQtex     | Extrinsic base-collector depletion charge                                                     | coulombs |
| Qex       | Extrinsic base-collector diffusion charge                                                     | coulombs |
| XQex      | Extrinsic base-collector diffusion charge                                                     | coulombs |
| Qts       | Collector-substrate depletion charge                                                          | coulombs |
| SCbe      | Base-emitter sidewall capacitance (dSQte/dVb1e1)                                              | farads   |
| Cbex      | Base-emitter capacitance (d(Qte + Qbe + Qe)/dVb2e1)                                           | farads   |
| Cbey      | Early effect on base-emitter diffusion charge (dQbe/dVb2c2)                                   | farads   |
| Cbez      | Early effect on base-emitter diffusion charge (dQbe/dVb2c1)                                   | farads   |
| Cbcx      | Early effect on base-collector diffusion charge (dQbc/dVb2e1)                                 | farads   |
| Cbcy      | Base-collector capacitance (d(Qtc + Qbc + Qepi)/dVb2c2)                                       | farads   |
| ,<br>Cbcz | Base-collector capacitance (d(Qtc + Qbc + Qepi)/dVb2c1)                                       | farads   |
| Cbcex     | Extrinsic base-collector capacitance (d(Qtex + Qex)/dVb1c1)                                   | farads   |
|           | Extrinsic base-collector capacitance (d(XQtex + XQex)/dVbc1)                                  |          |
|           | AC current crowding capacitance (dQb1b2/dVb1b2)                                               | farads   |
|           | AC current crowding transcapacitance (dQb1b2/dVb2e1)                                          | farads   |
|           | AC current crowding transcapacitance (dQb1b2/dVb2c2)                                          | farads   |
|           | AC current crowding transcapacitance (dQb1b2/dVb2c1)                                          | farads   |
| Cts       | Substrate-collector capacitance (dQts/dVsc1)                                                  | farads   |
| Vbe       | Base-emitter voltage                                                                          | volts    |
| Vbc       | Base-collector voltage                                                                        | volts    |
| Vce       | Collector-emitter voltage                                                                     | volts    |

5. This device has no default artwork associated with it.

6. This model was developed by NXP Semiconductors. Documentation is available on their website:

http://www.nxp.com/models/bi\_models/mextram/index.html

### MEXTRAM\_504\_Model (MEXTRAM 504 Model)

### Symbol



### **Parameters**

| Name        | Description                                                           | Units | Default  |
|-------------|-----------------------------------------------------------------------|-------|----------|
| NPN         | NPN model type: yes or no                                             | None  | yes      |
| PNP         | PNP model type: yes or no                                             | None  | no       |
| Tref (Tnom) | Reference temperature                                                 | °C    | 25       |
| Dta (Trise) | Difference between the device and ambient temperature                 | °C    | 0.0      |
| Exmod       | flag for extended modeling of reverse current gain                    | None  | yes      |
| Exphi       | flag for distributed high-frequency effects in transient              | None  | yes      |
| Exavl       | flag for extended modeling of avalanche currents                      | None  | no       |
| Is          | collector-emitter saturation current                                  | A     | 22.0e-18 |
| Ik          | high-injection knee current                                           | A     | 0.1      |
| Ver         | Reverse Early voltage                                                 | V     | 2.5      |
| Vef         | Forward Early voltage                                                 | V     | 44.0     |
| Bf          | Ideal forward current gain                                            | None  | 215.0    |
| Ibf         | Saturation current of the non-ideal forward base current              | A     | 2.7e-15  |
| Mlf         | Non-ideality factor of the forward base current                       | None  | 2.0      |
| Xibi        | Fraction of Ideal Base Current that belongs to the Sidewall           | None  | 0.0      |
| Bri         | Ideal reverse current gain                                            | None  | 7.0      |
| Ibr         | Saturation current of the non-ideal reverse base current              | None  | 1.0e-15  |
| Vlr         | Cross-over voltage of the non-ideal reverse base current              | V     | 0.2      |
| Xext        | Part of Iex, Qtex, Qex and Isub that depends on Vbc1 instead of Vb1c2 | None  | 0.63     |
| Wavl        | Epilayer thickness used in weak-avalanche model                       |       | 1.1e-6   |
| Vavl        | Voltage determining curvature of avalanche current                    |       | 3.0      |
| Sfh         | Current spreading factor of avalanche model (when EXAVL=1)            | None  | 0.3      |
| Re          | Emitter resistance                                                    | Ohm   | 5.0      |
| Rbc         | Constant part of the base resistance                                  | Ohm   | 23       |
| Rbv         | Zero-bias value of the variable part of the base resistance           | Ohm   | 18       |
| Rcc         | constant part of collector resistance                                 | Ohm   | 12       |
| Rcv         | Resistance of the un-modulated epilayer                               | Ohm   | 150      |
| Scrcv       | Space charge resistance of the epilayer                               | Ohm   | 1250     |
| Ihc         | Critial Current for Velocity Saturation in the Epilayer               | A     | 4.e-3    |
| Axi         | Smoothness parameter for the onset of quasi-saturation                | None  | 0.3      |

Advanced Design System 2011.01 - Nonlinear Devices

| Cje               | Advanced Design System 2011.01 - Nonlinear Devices<br>Zero-bias Emitter-Base Depletion Capacitance | F    | 73.0e-15          |
|-------------------|----------------------------------------------------------------------------------------------------|------|-------------------|
| Vde               | base-emitter diffusion voltage                                                                     | V    | 0.95              |
| Pe                | base-emitter grading coefficient                                                                   | None | 0.4               |
| Xcje              | fraction of base-emitter capacitance that belongs to sidewall                                      | None | 0.4               |
|                   | Fixed capacitance between external base and emitter nodes                                          | F    | 0.0               |
| Cjc               | Zero-bias Collector-Base Depletion Capacitance                                                     |      | 78.0e-15          |
| Vdc               | base-collector diffusion voltage                                                                   | V    | 0.68              |
| Pc                | Collector-Base Grading Coefficient                                                                 | None | 0.5               |
| Хр                | constant part of Cjc                                                                               | None | 0.35              |
| Мс                | collector current modulation coefficient                                                           | -    | 0.5               |
| Xcjc              | fraction of base-collector depletion capacitance under emitter area                                | None | 32e-3             |
|                   | Fixed capacitance between external base and collector nodes                                        | None | 0.0               |
| Mtau              | Non-ideality factor of the emitter stored charge                                                   | None | 1.0               |
| Taue (Te)         | Minimum transit time of stored emitter charge                                                      | None | 2.0e-12           |
|                   |                                                                                                    |      |                   |
| Taub (Tb)<br>Tepi | Transit time of stored base charge<br>Transit time of stored epilayer charge                       |      | 4.2e-12<br>41e-12 |
| •                 |                                                                                                    |      |                   |
| Taur (Tr)         | Transit time of reverse extrinsic stored base charge                                               |      | 520e-12           |
| Deg               | Bandgap difference over the base                                                                   |      | 0.0               |
| Xrec              | Pre-factor of the recombination part of Ib1                                                        | None | 0.0               |
| /                 | Temperature coefficient of the zero-bias base charge                                               | None | 0.3               |
| Ae                | Temperature coefficient of the resistivity of the emitter                                          | None | 0.0               |
| Ab                | Temperature coefficient of the resistivity of the base                                             | None | 1.0               |
| Аері              | Temperature coefficient of the resistivity of the epilayer                                         | None | 2.5               |
| Aex               | Temperature coefficient of the resistivity of the extrinsic base                                   | None | 0.62              |
| Ac                | Temperature coefficient of the resistivity of the buried layer                                     | None | 2.0               |
| dVgbf             | Band-gap voltage difference of the forward current gain                                            | V    | 0.05              |
| dVgbr             | Band-gap voltage difference of the reverse current gain                                            | V    | 0.045             |
| Vgb               | Band-gap voltage of the base                                                                       | V    | 1.17              |
| Vgc               | Band-gap voltage of the collector                                                                  | V    | 1.18              |
| Vgj               | Band-gap voltage recombination emitter-base junction                                               | V    | 1.15              |
| dVgte             | Band-gap voltage difference of emitter stored charge                                               | V    | 0.05              |
| Af                | Exponent of the flicker-noise                                                                      | None | 2.0               |
| Kf                | Flicker-noise coefficient of the ideal base current                                                | None | 2e-11             |
| Kfn               | Flicker-noise coefficient of the non-ideal base current                                            | None | 2e-11             |
| Iss               | Base-substrate saturation current                                                                  | A    | 48e-18            |
| Iks               | Base-substrate high injection knee current                                                         | A    | 250e-6            |
| Cjs               | Zero-bias collector-substrate depletion capacitance                                                | F    | 315e-15           |
| Vds               | Collector-substrate diffusion voltage                                                              | V    | 0.62              |
| Ps                | Collector-substrate grading coefficient                                                            | None | 0.34              |
| Vgs               | Band-gap voltage of the substrate                                                                  | V    | 1.20              |
| As                | For a closed buried layer As=Ac and for an open buried layer As=Aepi                               | None | 1.58              |
| Rth               | Thermal resistance                                                                                 | None | 300               |
| Cth               | Thermal capacitance                                                                                | None | 3e-9              |
| wVsubfwd          | substrate junction forward bias (warning)                                                          | V    | None              |
| wBvsub            | substrate junction reverse breakdown voltage (warning)                                             | V    | None              |
| wBvbe             | base-emitter reverse breakdown voltage (warning)                                                   | V    | None              |
| wBvbc             | base-collector reverse breakdown voltage (warning)                                                 | V    | None              |

| wVbcfwd   | base-collector forward bias (warning)        | V    | None |
|-----------|----------------------------------------------|------|------|
| wIbmax    | maximum base current (warning)               | A    | None |
| wIcmax    | maximum collector current (warning)          | A    | None |
| wPmax     | maximum power dissipation (warning)          | W    | None |
| AllParams | Data Access Component (DAC) Based Parameters | None | None |

### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelname MextramBJT504 [parm=value]\*

The model statement starts with the required keyword *model* . It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *MextramBJT504*. Use either parameter NPN=yes or PNP=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

### Example:

```
model Npn5 MextramBJT504 \
    NPN=yes Cjc=8e-14 Aepi=2 Vdc=0.6
```

### **Notes/Equations**

- 1. This model supplies values for M504\_BJT\_NPN, M504\_BJT\_PNP, M504\_BJT4\_NPN, M504\_BJT4\_PNP, M504\_BJT5\_NPN, and M504\_BJT5\_PNP devices.
- 2. The MEXTRAM 504 implements self-heating. As the transistor dissipates power, it causes its temperature to rise above ambient. The model parameters Rth and Cth control this:  $\Delta T$  = Pdiss x Rth. To enable this, set the Selfheating flag to yes, and ensure that the model parameter Rth is > 0. When self-heating is enabled, it may be necessary to increase the maximum number of iterations due to the additional unknown (temperature rise) that must be solved for. Simulation using self-heating may take 50 to 100% more time than the same simulation without self-heating. Self-heating can be used with either an internal or external thermal node.
  - M504\_BJT\_NPN, M504\_BJT\_PNP, M504\_BJT4\_NPN, and M504\_BJT4\_PNP use an internal node to keep track of the temperature rise of the transistor.
  - M504\_BJT5\_NPN and M504\_BJT5\_PNP make this thermal node externally available as the fifth terminal. This node can then be used for additional thermal modeling.
- 3. This model was developed by NXP Semiconductors. Documentation is available on their website:

http://www.nxp.com/models/bi\_models/mextram/index.html

- 4. ADS implements the complete MEXTRAM 504 model, as per the NXP document NL\_UR 2000/811, issued April 2001. Differences between the ADS documentation and the NXP documentation are:
  - in equations (4.96) and (4.102), Rcvt is used (not Rcv).
  - resistances are limited to a lower value of  $10^{-4}\Omega$  (not  $10^{-6}\Omega$ )

## MEXTRAM\_Model (MEXTRAM Model)

### Symbol



### **Parameters**

| Name    | Description                                                                 | Units               | Default |
|---------|-----------------------------------------------------------------------------|---------------------|---------|
| NPN     | NPN model type: yes or no                                                   | None                | yes     |
| PNP     | PNP model type: yes or no                                                   | None                | no      |
| Release | Selection of MEXTRAM Release 503, 504, 505                                  | None                | 503     |
| Exmod   | flag for extended modeling of reverse current gain                          | None                | yes     |
| Exphi   | flag for distributed high-frequency effects in transient                    | None                | yes     |
| Exavl   | flag for extended modeling of avalanche currents                            | None                | yes     |
| Is      | collector-emitter saturation current                                        | A/m <sup>2</sup>    | 5.0e-17 |
| Bf      | ideal forward current gain                                                  | None                | 140.0   |
| Xibi    | fraction of ideal base current that belongs to sidewall                     | None                | 0.0     |
| Ibf     | saturation current of non-ideal forward base current                        | A/m <sup>2</sup>    | 2.0e-14 |
| Vlf     | cross-over voltage of non-ideal forward base current                        | V                   | 0.5     |
| Ik      | high-injection knee current                                                 | A/m <sup>2</sup>    | 1.5e-2  |
| Bri     | ideal reverse current gain                                                  | None                | 16.0    |
| Ibr     | saturation current of non-ideal reverse base current                        | A/m <sup>2</sup>    | 8.0e-15 |
| Vlr     | cross-over voltage of non-ideal reverse base current                        | V                   | 0.5     |
| Xext    | part of IEX, QEX, QTEX and ISUB that depends on base-collector voltage VBC1 | None                | 0.5     |
| Qb0     | base charge at zero bias                                                    | None                | 1.2e-12 |
| Eta     | factor of built-in field of base (= $\eta$ )                                | None                | 4.0     |
| Avl     | weak avalanche parameter                                                    | None                | 50.0    |
| Efi     | electric field intercept (with Exavl=1)                                     | None                | 0.7     |
| Ihc     | critical current for hot carriers                                           | A/m <sup>2</sup>    | 3.0e-3  |
| Rcc     | constant part of collector resistance                                       | Ohms/m <sup>2</sup> | 25.0    |
| Rcv     | resistance of unmodulated epilayer                                          | Ohms/m <sup>2</sup> | 750.0   |
| Scrcv   | space charge resistance of epilayer                                         | Ohms/m <sup>2</sup> | 1000.0  |
| Sfh     | current spreading factor epilayer                                           | None                | 0.6     |
| Rbc     | constant part of base resistance                                            | Ohms/m <sup>2</sup> | 50.0    |
| Rbv     | variable part of base resistance at zero bias                               | Ohms/m <sup>2</sup> | 100.0   |
| Re      | emitter series resistance                                                   | Ohms/m <sup>2</sup> | 2.0     |

|                |                                                                                   | 2                |         |
|----------------|-----------------------------------------------------------------------------------|------------------|---------|
| Taune          | minimum delay time of neutral and emitter charge                                  | sec              | 3.0e-10 |
| Mtau           | non-ideality factor of the neutral and emitter charge                             |                  | 1.18    |
| Cje            | B-E Zero-bias Junction Capacitance                                                | F/m <sup>2</sup> | 2.5e-13 |
| Vde            | base-emitter diffusion voltage                                                    | V                | 0.9     |
| Pe             | base-emitter grading coefficient                                                  | None             | 0.33    |
| Xcje           | fraction of base-emitter capacitance that belongs to sidewall                     | None             | 0.5     |
| Cjc            | base-emitter Zero-bias Junction capacitance                                       | F/m <sup>2</sup> | 1.3e-13 |
| Vdc            | base-collector diffusion voltage                                                  | V                | 0.6     |
| Рс             | base-collector grading coefficient variable part                                  | None             | 0.4     |
| Хр             | constant part of Cjc                                                              | None             | 0.2     |
| Мс             | collector current modulation coefficient                                          | None             | 0.5     |
| Xcjc           | fraction of base-collector depletion capacitance under emitter area               | None             | 0.1     |
| Tref<br>(Tnom) | reference temperature                                                             | °C               | 25      |
| Dta (Trise)    | difference of device temperature to ambient temperature<br>(TDevice=TAmbient+Dta) | °C               | 0.0     |
| Vge            | emitter bandgap voltage                                                           | eV               | 1.01    |
| Vgb            | base bandgap voltage                                                              | eV               | 1.18    |
| Vgc            | collector bandgap voltage                                                         | eV               | 1.205   |
| Vgj            | Recombination E-B Junction Band-Gap Voltage                                       | eV               | 1.1     |
| Vi             | ionization voltage base dope                                                      | V                | 0.04    |
| Na             | maximum base dope concentration                                                   | cm <sup>-3</sup> | 3.0e+1  |
| Er             | temperature coefficient of VIf and VIr                                            | None             | 2.0e-3  |
| Ab             | temperature coefficient resistivity base                                          | None             | 1.35    |
| Аері           | temperature coefficient resistivity of the epilayer                               | None             | 2.15    |
| Aex            | temperature coefficient resistivity of the extrinsic base                         | None             | 1.0     |
| Ac             | temperature coefficient resistivity of the buried layer                           | None             | 0.4     |
| Kf             | flicker noise coefficient ideal base current                                      | None             | 2.0e-16 |
| Kfn            | flicker noise coefficient non-ideal base current                                  | None             | 2.0e-16 |
| Af             | flicker noise exponent                                                            | None             | 1.0     |
| Iss            | base-substrate saturation current                                                 | A/m <sup>2</sup> | 6.0e-16 |
| Iks            | knee substrate current                                                            | A/m <sup>2</sup> | 5.0e-6  |
| Cjs            | C-S Zero-bias Junction Capacitance                                                | F/m <sup>2</sup> | 1.0e-12 |
| Vds            | collector-substrate diffusion voltage                                             | V                | 0.5     |
| Ps             | collector-substrate grading coefficient                                           | None             | 0.33    |
| Vgs            | substrate bandgap voltage                                                         | V                | 1.15    |
| As             | for closed buried or an open buried layer                                         | None             | 2.15    |
| wVsubfwd       | substrate junction forward bias (warning)                                         | V                | None    |
| wBvsub         | substrate junction reverse breakdown voltage (warning)                            | V                | None    |
| wBvbe          | base-emitter reverse breakdown voltage (warning)                                  | V                | None    |
| wBvbc          | base-collector reverse breakdown voltage (warning)                                | V                | None    |
| wVbcfwd        | base-collector forward bias (warning)                                             | V                | None    |
| wIbmax         | maximum base current (warning)                                                    | A                | None    |
| wIcmax         | maximum collector current (warning)                                               | A                | None    |
| wPmax          | maximum power dissipation (warning)                                               | W                | None    |
| AllParams      | Data Access Component (DAC) Based Parameters                                      | None             | None    |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelname MextramBJT [parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *MextramBJT*. Use either parameter NPN=yes or PNP=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

#### Example:

model Npn4 MextramBJT \
 NPN=yes Ibf=3e- Qb0=1e-13

#### **Notes/Equations**

- 1. This model (version 503) supplies values for BJT\_NPN, BJT\_PNP, BJT4\_NPN, and BJT4\_PNP devices.
- 2. For the MEXTRAM bipolar transistor model, model equations are explicit functions of internal branch voltages; therefore, no internal quantities are solved iteratively. Transistor parameters are discussed where relevant; most parameters can be extracted from capacitance, DC, and  $f_T$  measurements, and are process and

transistor layout (geometry) dependent. Initial/predictive parameter sets can be calculated from process and layout data. This model does not contain extensive geometrical or process scaling rules (only multiplication factors to put transistors in parallel). The extended modeling of reverse behavior, the increase of the avalanche current when the current density in the epilayer exceeds the doping level, and the distributed high-frequency effect are optional and can be switched on by setting flags. Besides the NPN transistor a PNP model description is available, both with and without substrate (discrete transistors) modeling.

- 3. The Philips model uses the MULT parameter as a scaling factor. In ADS, MULT is implemented as AREA, which has the same mathematical effect. Because the Philips model uses MULT as the multiplier/scaling, the values are in measurements such as Amps. However, in ADS, units of area are m<sup>2</sup>, so they are listed accordingly. This accounts for differences in reporting of some units in the Phillips documentation.
- 4. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified

via AllParams.

#### **Survey of Modeled Effects**

- Temperature effects
- Charge storage effects
- Substrate effects and parasitic PNP
- High-injection effects
- Built-in electric field in base region
- Bias-dependent Early effect
- Low-level non-ideal base currents
- Hard and quasi-saturation
- Weak avalanche
- Hot carrier effects in the collector epilayer
- Explicit modeling of inactive regions
- Split base-collector depletion capacitance
  - Current crowding and conductivity modulation for base resistance
  - First-order approximation of distributed high-frequency effects in the intrinsic base (high-frequency current crowding and excess phase-shift).

#### **Active Transistor**

#### **Main Current**

In the MEXTRAM model the Moll-Ross relation is used to take into account the depletion and diffusion charges:

$$I_{n} = \frac{(I_{f} - I_{r})}{1 + (Qt_{e} + Qt_{c} + Qb_{e} + Qb_{c})/Qb0}$$
(2-1)

$$Qb_e = f_1(n_o)$$
 (2-2)

$$Qb_c = f_2(n_b)$$
 (2-3)

The depletion charges are represented by  $Qt_{e}$  and  $Qt_{c}$ . The calculation of the diffusion

charges Qb<sub>e</sub> and Qb<sub>c</sub> is based directly on the solution of the differential equation for the

majority carriers in the neutral base region and relates the charges to the injected minority carrier concentrations at the emitter (no) and collector edges (nb). These concentrations, in turn, depend on the internal junction voltages  $Vb_2e_1$  and  $Vb_2c$  by

considering the P-N product at both junctions. In this way high injection, bias-dependent current gain, a current- dependent transit time, and the effect of the built-in electric field are included. The ideal forward and reverse current are given by:

$$I_{f} - I_{r} = Is \times (\exp(Vb_{2}e_{1}/V_{t}) - \exp(Vb_{2}c_{2}/V_{t}))$$
(2-4)

where  $V_t$  is the thermal voltage.

The parameters are:

Is = extracted from Gummel plot at low  $V_{be}$ 

Qb0 = integral of base charge extracted from reverse Early effect Xcjc = fraction of Cj<sub>c</sub> underneath emitter; obtained from forward Early effect

Ik = from gain fall-off: only one knee current

Eta = built-in field in the base due to the doping profile. This parameter is normally between 3 and 6. It is difficult to obtain from direct measurements, and has a weak influence on calculated currents and charges.

#### **Ideal Forward Base Current**

The ideal forward base current is defined in the usual way. The total base current has a bottom and a sidewall contribution. The separation is given by the factor XIb1. This factor can be determined by analyzing the maximum current gain of transistors with different geometries.

$$Ib_{1} = (1 - Xibi) \times \frac{Is}{Bf} (\exp(Vb_{2}e_{1}/V_{t}) - 1)$$
(2-5)

The parameters are: Bf = ideal forward current gain Xibi = fraction of ideal base current that belongs to the sidewall

#### **Non-Ideal Forward Base Current**

The non-ideal base current originates from the recombination in the depleted base-emitter region:

$$Ib_{2} = Ibf \times \frac{\exp(Vb_{2}e_{1}/V_{t}) - 1}{\exp(Vb_{2}e_{1}/(2 \times V_{t})) + \exp(Vlf/(2 \times V_{t}))}$$
(2-6)

Formulation of the non-ideal base current differs from the Gummel-Poon model. The MEXTRAM formulation is less flexible than the Gummel-Poon model. The formulation is the same when in the MEXTRAM model  $Vl_f$  is small (<0.4V), and when in the Gummel-Poon

model parameter  $n_e=2$ . The parameters are:

VIf = crossover voltage of the non-ideal forward base current Ibf = saturation current of the non-ideal forward base current

#### **Base-Emitter Depletion Charge**

The base-emitter depletion charge is modeled in the classical way using a grading coefficient. The depletion charge is partitioned in a bottom and a sidewall component by the parameter Xcje.

$$Ct_e = (1 - Xcje) \times \frac{Cje}{1 - (Vb_2e_1/Vde)^{Pe}}$$
 (2-7)

The capacitance becomes infinity at  $Vb_2e_1 = Vde$ . Therefore in the model the integral of

equation is slightly modified and consequently  $Ct_e$ . The capacitance now has a maximum

at the base-emitter diffusion voltage Vde and is symmetrical around the diffusion voltage. The maximum capacitance is determined by the value of K and the grading coefficient Pe. The value of K is a model constant and is taken equal to 0.01. When Pe=0.4, the maximum is approximately three times the capacitance at zero bias. The parameters are: Cjc = zone bias base-emitter depletion capacitance

Vde = base-emitter diffusion voltage

Pe = base-emitter grading coefficient

#### **Base-Collector Depletion Charge**

The base-collector depletion capacitance underneath the emitter Qtc, takes into account the finite thickness of the epilayer and current modulation:

$$Ct_{c} = Xcjc \times Cjc \times \left(\frac{(1 - Xp) \times f(Vc_{1}c_{2})}{1 - ((Vb_{2} \times c_{2})/(Vdc))^{Pc}} + Xp\right)$$

$$f(Vc_{1} \times c_{2}) = \left(1 - \frac{Vc_{1}c_{2}}{Vc_{1}c_{2} + Ihc \times Rcv}\right)^{Mc}$$
(2-8)

The function  $f(Vc_1c_2)$  equals one when  $Ic_1c_2 = Vc_1c_2 = 0$ , and becomes zero when the current density in the epilayer exceeds the doping level ( $Vc_1c_2 > Ihc \times Rcv$ ). The

parameters are:

Cjc = zero bias base-collector depletion capacitance

Xcjc = part of Cjc underneath emitter

Vdc = base-collector diffusion voltage

Pc = base-collector grading coefficient

Xp = depletion layer thickness at zero bias divided by epilayer thickness

Mc = collector current modulation coefficient (0.3 < mc < 0.5)

Cjc, Pc and Xp is obtained from CV measurements; Vdc must be extracted from the quasisaturation regime; Xcjc is obtained from the forward Early-effect.

#### Neutral Base and Emitter Diffusion Charge

The neutral base-emitter diffusion charge  $(Q_n)$  is given by:

$$Q_n = Qn_0 \times \left( \exp\left(\frac{Vb_2e_1}{Mtau \times V_t}\right) - 1 \right)$$
(2-10)

The charge Qn0 is calculated from the transit time Taune and Mtau. The parameters (extracted from the maximum value of the cut-off frequency,  $f_T$ ) are:

Taune = minimum delay time of neutral and emitter charge Mtau = non-ideality factor of the neutral and emitter charge; in most cases Mtau=1

#### **Base-Charge Partitioning**

Distributed high-frequency effects are modeled, in first order approximation, both in lateral direction (current crowding) and in vertical direction (excess phase-shift). The distributed effects are an optional feature of the MEXTRAM model, and can be switched on and off by flag Exphi (on: Exphi - 1; off: Exphi = 0). In vertical direction (excess phase-shift), base charge partitioning is used; for simplicity, it is implemented for forward base charge (Qb<sub>e</sub>) and low-level injection only. No additional parameters.

 $Q'b_e = (1 - q_c(Eta)) \times Qb_e$   $Q'b_c = Qb_c + q_c(Eta) \times Qb_e$ (2-12)

#### Modeling of Epilayer Current Charges

The epilayer resistance depends on the supplied collector voltage and current, imposed primarily by base-emitter voltage. The effective resistance of the epilayer is strongly voltage- and current-dependent because:

• In the forward mode of operation, the internal base charge junction voltage  $(Vb_2c_2)$ 

may become forward-biased at high collector currents (quasi-saturation). When this happens, the region in the collector near the base is injected by carriers from the base, causing the region to become low resistive.

- In the reverse mode of operation, both the external and internal base charge junction voltages are forward biased, flooding the whole epitaxial layer with carriers, which causes it to become low resistive.
- The current flow in the highly-resistive region is ohmic if the carrier density (n) is low (!ccnld-3-20-365.gif!), and space-charge-limited if the carrier density exceeds the doping level (!ccnld-3-20-366.gif!).
- Current spreading in the epilayer reduces the resistance and is of special importance if the carrier density exceeds  $N_{epi}$ . In the latter case, the carriers move with the

saturated drift velocity, V<sub>sat</sub> (hot-carrier current-flow).

A compact modal formulation of quasi-saturation is given by Kull et al [1]. The Kull model is valid only if the collector current density is below the critical current density  $(J_{hc})$  for hot carriers:

 $J_{hc} = q \times N_{epi} \times v_{sat}$  (2-13)

The Kull formulation has served as a basis for the epilayer model in MEXTRAM.

#### **Collector Resistance Model**

The Kull model is based on charge neutrality ( $p + N_{epi} \approx n$ ) and gives the current through the epilayer ( $Ic_1c_2$ ) as a function of the internal and external b.c. junction voltage. These voltages are given by the solution vector of the circuit simulator. The final equations of the Kull formulation [1] are:

$$Ic_{1}c_{2} = \frac{E_{c} + Vb_{2}c_{2} - Vb_{2}c_{1}}{Rcv}$$
(2-14)

$$E_{c} = V_{t} \times \left[ K_{0} - K_{w} - \ln \left( \frac{K_{0} + 1}{K_{w} + 1} \right) \right]$$

$$K_{0} = \sqrt{1 + 4 \times \exp[(Vb_{2}c_{2} - Vd_{c})/V_{t}]}$$

$$K_{w} = \sqrt{1 + 4 \times \exp[(Vb_{2}c_{1} - Vd_{c})/V_{t}]}$$

$$V_{t} = k \times \frac{T}{q}$$
(2-18)
(2-17)

Voltage source  $(E_c)$  takes into account the decrease in resistance due to carriers injected

from the base into the collector epilayer. If both junctions are reverse biased (Vb2c1 - Vdc and Vb<sub>2</sub>c<sub>2</sub> - Vd<sub>c</sub> are negative),  $E_c$  is zero and we have a simple constant resistance (Rcv).

Because of this, this model does not take into account the hot-carrier behavior (carriers moving with the saturated drift-velocity) in the lightly-doped collector epilayer. The model is valid if the transistor operates in the reverse mode (reverse-biased b.e. junction, forward-biased b.c. junction). Then the entire epilayer is filled with carriers and a space-charge region does not exist. The derivation of the MEXTRAM epilayer resistance model is published in de Graaff and Kloosterman [2]. In the end, the following equations are found:

$$\frac{i}{W_{epi}} = \frac{c}{Ic_1c_2 \times Rcv}$$

$$I_{low} = \frac{Ihc \times Vc_1c_2}{Vc_1c_2 + Ihc \times Rcv \times (1 - X_i/W_{epi})}$$

$$Ic_1c_2 = (I_{low} + S_f) \times \frac{Vc_1c_2 - I_{low} \times Rcv \times (1 - X_i/W_{epi})}{Scrcv \times (1 - X_i/W_{epi})^2}$$

$$(2-21)$$

Where Xi/Wepi is the thickness of the injected region of the epilayer. Substitution of equations (2-19) and (2-20) into equation (2-21) gives a cubic equation. The epilayer current (Ic1c2) is calculated by solving the cubic equation. The complex calculation can be done with real variables. Summarizing, the epilayer resistance model takes into account:

- Ohmic current flow at low current densities
- Decrease in resistance due to carriers injected from the base if only the internal base-collector junction is forward biased (quasi-saturation), and if both the internal and external base-collector junctions are forward biased (reverse mode of operation)
- Space charge limited current flow at high current densities
- Current spreading in the epilayer The model parameters are:

$$Ihc = q \times N_{epi} \times A_{em} \times v_{sat} \times \frac{1 + Sf_l}{\alpha_{cf}}$$
(2-22)

$$Rcv = \frac{W_{epi}}{q \times N_{epi} \times \mu \times A_{em}} \times \frac{\alpha_{cf}}{1 + Sf_l}$$
(2-23)

Advanced Design System 2011.01 - Nonlinear Devices

$$Scrcv = \frac{W_{epi}^{2}}{2 \times \varepsilon \times v_{sat} \times A_{em}} \times \frac{\alpha_{cf}}{1 + Sf_{h}}$$
(2-24)

$$Vdc = V_t \times \ln\left\{ \left( N_{epi} / n_i \right)^2 \right\}$$
 (2-25)

$$Sfh = \frac{2}{3} \times \tan(\alpha_h) \times W_{epi} \times \left(\frac{1}{H_e} + \frac{1}{L_e}\right)$$
 (2-26)

where:

$$\begin{aligned} \mathbf{A}_{em} &= \mathbf{H}_{e} \times \mathbf{L}_{e} \quad \textbf{(2-27)}, \\ \mathbf{S}f_{l} &= \tan\left(\alpha_{h}\right) \times \mathbf{W}_{epi} \times \left(\frac{1}{H_{e}} + \frac{1}{L_{e}}\right) \quad \textbf{(2-28)}, \end{aligned}$$

al = the spreading angle at low current levels ( $Ic_1c_2 < Ihc$ )

ah = the spreading angle at high current levels  $Ic_1c_2 > Ihc$ )

 $acf = the fraction of Ic_1c_2$  flowing through the emitter floor area

 $L_e$  = the length of the emitter stripe.

The turnover from equations (2-20) and (2-21) in the forward mode to equation (2-14) in the reverse mode does not give discontinuities in the first and second derivative. The third derivative is discontinuous. Parameter Sfh depends on transistor geometry and the decrease in gain and cutoff frequency will be affected by this parameter. SF1 is included in Rcv and Ihc, and not needed as a separate parameter. In most cases, Vdc is calculated directly from the doping level. Rcv, Ihc, and Scrcv are extracted from the quasi-saturation regime at low values of Vce.

#### **Diffusion Charge of the Epilayer**

The diffusion charge of the epilayer can be easily derived by applying the Moll-Ross relation to the base + collector region (from node  $e_1$  to node  $c_1$ ):

$$I_{n} = Ic_{1}c_{2} = \frac{Is \times \{\exp(Vb_{2}e_{1}/V_{t}) - \exp(Vb_{2}c_{1}/V_{t})\}}{1 + \frac{Q_{te} + Q_{tc} + Q_{be} + Q_{bc} + Q_{epi}}{Qb0}}$$
(2-29)

Subtracting equation (2-1), the expression for  $Q_{epi}$  becomes:

$$Q_{epi} = Is \times Qb0 \times \frac{\exp(Vb_2c_1/V_t) - \exp(Vb_2c_1/V_t)}{Ic_1c_2}$$
(2-30)

In the transition from forward to reverse mode,  $Ic_1c_2$  passes zero and numerical problems can be expected. Substitution of equation (2-14) into equation (2-29) leads in the case

Advanced Design System 2011.01 - Nonlinear Devices where  $Vb_2c_2 \approx Vb_2c_1$  to the following expression for  $Q_{epi}$ :

$$p_{0} = \frac{2 \times \exp\{(Vb_{2}c_{2} - Vdc)/V_{t}\}}{1 + K_{0}}$$

$$p_{w} = \frac{2 \times \exp\{(Vb_{2}c_{1} - Vdc)/V_{t}\}}{1 + K_{w}}$$
(2-31)
(2-32)

$$Q_{epi} = Is \times Qb0 \times Rcv \times \exp(Vdc/V_t) \times \frac{P_0 + P_w}{2 \times V_t}$$
(2-33)

#### **Avalanche Multiplication Model**

Due to the high-electric field in the space-charge region, avalanche currents are generated; this generation strongly depends on the maximum electric field. The maximum electric field may reside at the base charge junction or at the buried layer. The generation of avalanche current in Kloosterman and de Graaff [3] is only a function of the electric field at the internal base charge junction. Therefore, the validity of this model is restricted to low current levels ( $Ic_1c_2$ <Ihc).

Current spreading in the collector region changes the electric-field distribution and decreases the maximum electric field. Because the generation of avalanche current is sensitive with respect to the maximum electric-field, it is difficult to set up an accurate and still simple model for high collector current densities. Because this operating area (high voltages, high current levels) is not of practical interest (due to power dissipation) and, more importantly, the convergency behavior of the model degrades, we must carefully consider the extension of the avalanche model to the high current regime. At low current densities ( $Ic_1c_2$ <Ihc), the model is essentially the same as in Kloosterman

and de Graaff [3]. As an optional feature, the model is extended to current levels exceeding Ihc (negative output resistance: snap-back behavior). Due to negative output resistance, serious convergency problems are imaginable. Without this feature, output resistance can be very small, but is always positive.

The generation of avalanche current is based on Chynoweth's empirical law for the ionization coefficient [4]:

$$P_n = \alpha_n \times \exp\left(\frac{-b_n}{|E|}\right)$$
 (2-34)

Because only weak avalanche multiplication is considered, the generated avalanche current is proportional with the main current  $(I_n)$ :

$$I_g = I_n \times \int_{x=0}^{x=X_d} \alpha_n \times \exp\left(\frac{-b_n}{|E(x)|}\right) \times dx$$
 (2-35)

 $X_d$  = the boundary of the space-charge region.

To calculate the avalanche current, we must evaluate the integral of equation (2-34) in

the space-charge region. This integral is determined by the maximum electric field. We make a suitable approximation around the maximum electric field:

$$E(x) = E_m \times \left(1 - \frac{x}{\lambda}\right) \cong \frac{E_m}{1 + x/\lambda}$$

I = the point where the extrapolated electric-field is zero. Then the generated avalanche current becomes:

$$\frac{I_g}{I_n} = \frac{\alpha_n}{b_n} \times E_m \times \lambda \times \left\{ \exp\left(\frac{-b_n}{E_m}\right) - \exp\left(\frac{-b_n}{E_m} \times \left(1 + \frac{X_d}{\lambda}\right)\right) \right\}$$

The maximum electric field  $(E_m)$ , the depletion layer thickness  $(X_d)$ , and the intersection point (I) are calculated using the charge model of  $Q_{tc}$  and the collector resistance model. The model parameters are:

$$Avl = b_n \times \sqrt{\frac{2 \times \varepsilon \times Vdc}{q \times N_{epi}}}$$

$$F_i = 2 \times \frac{1 + 2 \times Sf_l}{1 + 2 \times Sfh} \times \frac{2 + Sf_l + 2 \times Sfh}{2 + 3 \times Sf_l} (-1)$$

AvI = obtained from the decrease of  $I_{b}$  at high  $V_{cb}$  and low  $I_{c}$  values

Sfh = equation (2-26)

 $Sf_{I} = equation (2-27)$ 

Efi = used in extended avalanche model only Sfh and Efi are extracted from the output characteristics at high  $V_{ce}$  and high  $I_c$ . Because

most devices are heated due to power dissipation in this operation regime, parameter extraction is cumbersome. Calculating Efi and Sfh is often a good alternative.

#### **Extrinsic Regions**

#### **Reverse Base Current**

The reverse base current is affected by high injection and partitioned over the two external base-collector branches:

$$ah_b = 2 \times \left(\frac{1 - \exp(-Eta)}{Eta}\right)$$

 $al_b = \exp(-Eta)$ 

$$g_{1} = \frac{4 \times Is \times ah_{b}^{2} \times \exp\left(\frac{Vb_{1}c_{1}}{V_{t}}\right)}{I_{k} \times al_{b}^{2}}$$

$$n_{b_{ex}} = al_b \times \frac{g_1}{2 \times (1 + \sqrt{1 + g_1})}$$

$$I_{ex} = \frac{(1 - Xext)}{Bri} \times \left(\frac{al_b + n_{b_{ex}}}{ah_b + n_{b_{ex}}} \times \frac{Ik}{ah_b} \times n_{b_{ex}} - Is\right)$$

The current  $XI_{ex}$  is calculated in a similar way using the voltage Vbc1. Because the time to evaluate the extrinsic regions is doubled due to this partitioning, it is an optional feature. The parameters are: Bri = ideal reverse current gain

*Xext* = partitioning factor

#### **Non-Ideal Reverse Base Current**

The non-ideal reverse base current (Ib3) is modeled in the same way as the forward non-ideal base current. The parameters are:

Ibr = saturation current of the non-ideal reverse base current

VIr = crossover voltage of the non-ideal reverse base current

#### **Extrinsic Base-Collector Depletion Capacitance**

The base-collector depletion capacitance of the extrinsic region is divided over the external-base node  $b_1$  (part:  $Q_{tex}$ ). The model formulation is obtained by omitting the current modulation term in the formulation of  $Q_{tc}$ , equation (2-8).

$$Ctc_{ex} = (1 - Xext) \times (1 - Xcjc) \times Cjc \times \left(\frac{1 - Xp}{1 - (Vb_1c_1/Vdc)^{Pc}} + Xp\right)$$

$$Xctc_{ex} = Xext \times (1 - Xcjc) \times Cjc \times \left(\frac{1 - Xp}{1 - (Vb_1c_1/(Vdc))^{Pc}} + Xp\right)$$

Parameter Xext is partitioning factor for the extrinsic region.

This partitioning factor is important for the output conductance (Y12) at high frequencies.

#### **Diffusion Charge of the Extrinsic Region**

These charges are formulated in the same way as  $Qb_c$  and  $Q_{epi}$ , now using voltages  $Vc_1b_1$ and  $Vbc_1$ , and the appropriate area (1 - Xcjc)/Xcjc.

#### **Parasitic PNP**

The substrate current of the PNP takes into account high injection. The parameters are: Iss = substrate saturation current

Iks = knee in the substrate current; when the value of Iks is low, the reverse current gain increases at medium reverse current levels

When the collector-substrate junction becomes forward biased, only a signal current  $(Is_f)$ 

is present in the model.  $Is_f = Iss \times (\exp((Vsc_1)/(Vt)) - 1)$ 

No additional parameters.

#### **Collector-Substrate Depletion Capacitance**

The collector-substrate charge  $(Qt_s)$  is modeled in the usual way:

$$Ct_{s} = \frac{Cjs}{1 - (Vsc_{1}/(Vds))^{Ps}}$$

Parameters Cjs, Vds, and P s are obtained from collector-substrate CV measurement.

#### **Base-Emitter Sidewall**

Base-emitter sidewall base current Sib<sub>1</sub>:

$$Sib_1 = Xibi \times \frac{Is}{Bf} \times (\exp(Vb_1e_1/V_t) - 1)$$

Parameter *Xibi* obtained from geometrical scaling of the current gain. Base-emitter sidewall depletion capacitance  $SQt_e$ :

$$SCt_e = \frac{Xcje \times Cje}{1 - (Vb_1e_1/Vde)^{Pe}}$$

Parameter Xcje obtained from geometrical scaling of the capacitances.

#### Variable Base Resistance

The base resistance is divided in a variable part  $(R_{bv})$  and a constant part  $(R_{bc})$ . The

variable part is modulated by the base width variation (depletion charges at the junctions  $Q_{te}$  and  $Q_{tc}$ ) and at high current densities it decreases because of the diffusion charges Q be and  $Q_{bc}$ . The parameter Rbv is the resistance at zero base-emitter and base-collector

#### Advanced Design System 2011.01 - Nonlinear Devices

voltage. The resistance model also considers DC current crowding. The resistance decreases at high base currents when  $\rm V_{b1b2}$  is positive, and it increases when  $\rm V_{b1b2}$  is

negative (reversal of the base e current). Charge modulation:

$$R_b = \frac{Rbv}{1 + (Qt_e + Qt_c + Qb_e + Qb_c)/(Qb0)}$$

DC current crowding:

$$Ib_1b_2 = \frac{2 \times V_t}{3 \times R_b} \times (\exp(Vb_1b_2/V_t) - 1) + \frac{Vb_1b_2}{3 \times R_b}$$

Ac current crowding is an optional feature of the model (Exphi=1):  $Qb_1b_2 = Vb_1b_2 \times (Ct_e + Cb_e + C_n)/5$ 

#### **Constant Series Resistances**

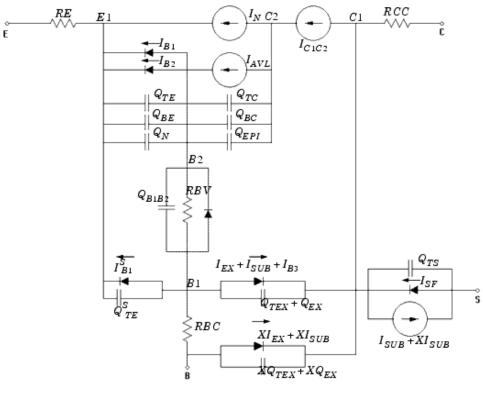
The model contains three constant series resistors at the base, emitter, and collector terminals (Rbc, Re, Rcc). (Substrate resistance is not incorporated in the model.)

#### **Temperature Scaling Rules**

Temperature scaling rules are applied to these parameters. Resistances: Rbc, Rbv, Re, and Rcc Capacitances: Cje, Vde, Cjc, Vdc, Xp, Cjs, Vds, Qbo, Qn<sub>0</sub>, and Mtau

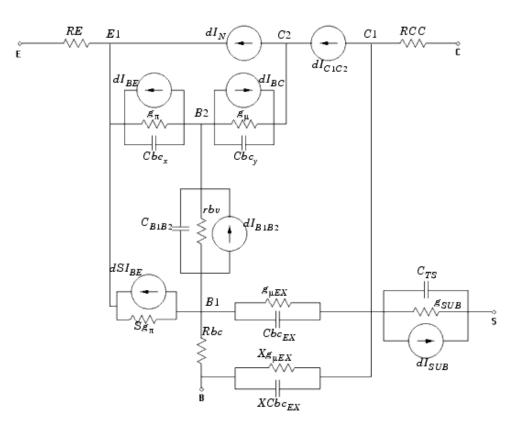
Saturation Currents: Is and Iss Gain Modeling: Bf, Ibf, Vif, Bri, Ibr, Vlr, Ik, and Iks Avalanche: Avl These parameters are used in the temperature scaling rules: Bandgap Voltages: Vge, Vgb, Vgc, Vgs, and Vgj Mobility Exponents: Ab, Aepi, Aex, Ac, and As Qb0: Vi and Na Vlf and Vlr: Er

#### **Noise Model**


Thermal Noise: Resistances Rbc, Rbv, Re, and Rcc Shot Noise:  $I_n$ , Ib1, Sib1, Ib<sub>2</sub>, Ib<sub>3</sub>,  $I_{ex'}$  and XI<sub>ex</sub>

1/F noise: Ib<sub>1</sub>, SIb<sub>1</sub>, Ib<sub>2</sub>, and Ib<sub>3</sub>

1/F noise parameters: Kf, Kfn, and Af

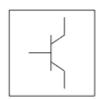

**Equivalent Circuits** 

#### Advanced Design System 2011.01 - Nonlinear Devices



mextramv.tif

#### Equivalent Circuit for Vertical NPN Transistor




#### References

- 1. G. M. Kull, L. W. Nagel, S. Lee, P. L. Loyd, E. J. Prendergast, H. Dirks: "A Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects." IEEE Transaction on Electron devices, Vol. ED-32, No. 6, June 1985.
- H.C. de Graaff and W.J. Kloosterman: "Modeling of the collector Epilayer of a Bipolar Transistor in the Mextram Model." IEEE Transaction on Electron devices, Vol. ED-42, p. 274, February 1995.
- 3. W.J. Kloosterman, H.C. de Graaff: "Avalanche Multiplication in a Compact Bipolar Transistor Model for Circuit Simulation." IEEE Transactions on Electron Devices, Vol. 36, No. 7, 1989.
- 4. A.G. Chynoweth: "Ionization rates for electron and holes in silicon." Phys. Rev., Vol. 109, p. 37, 1958.

## STBJT\_Model (ST Bipolar Transistor Model)

#### Symbol

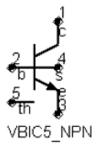


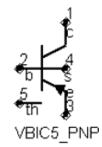
#### **Parameters**

Model parameters must be specified in SI units.

| Name                 | Description                                               | Units | Default                          |
|----------------------|-----------------------------------------------------------|-------|----------------------------------|
| Туре                 | Model type: 1=NPN; 2=PNP                                  | None  | 1                                |
| Tmeas (Tnom)         | measurement temperature                                   | °C    | 25                               |
| Is                   | forward transport saturation current                      | А     | 1.0e-16                          |
| Isn                  | reverse transport saturation current; defaults to Is      | А     | defaults to Is                   |
| Bf                   | ideal forward current gain                                | None  | 100.0                            |
| Nf                   | forward current emission coefficient                      | None  | 1.0                              |
| Br                   | ideal reverse current gain                                | None  | 1.0                              |
| Nr                   | reverse emission coefficient                              | None  | 1.0                              |
| Isf                  | ideal B-E junction saturation current; defaults to Is/Bf  | А     | defaults to Is/Bf                |
| Nbf                  | ideal B-E junction emission coefficient; defaults to Nf   | None  | defaults to Nf                   |
| Isr                  | ideal B-C junction saturation current; defaults to Isn/Br | А     | defaults to Isn/Br               |
| Nbr                  | ideal B-C junction emission coefficient; defaults to Nr   | None  | defaults to Nr                   |
| Ise                  | B-E recombination saturation current                      | А     | 0.0                              |
| Ne                   | B-E recombination emission coefficient                    | None  | 2.0                              |
| Isc <sup>+, ++</sup> | B-C recombination saturation current                      | A     | 0.0                              |
| Nc                   | B-C recombination emission coefficient                    | None  | 1.5                              |
| Vaf                  | forward early voltage                                     | V     | fixed at infinity <sup>+++</sup> |
| Var                  | reverse early voltage                                     | V     | fixed at infinity <sup>+++</sup> |
| Enp                  | base push out exponent                                    | None  | 2.0                              |
| Rp                   | BPO fitting parameter                                     | None  | 1.0e-3                           |
| Rw                   | ratio of collector width to the base                      | None  | 0                                |
| Vij                  | modified B-C potential                                    | V     | 0.8                              |
| Vrp                  | voltage drop across vertical Rc                           | V     | 1.0e-9                           |
| Bvc                  | junction breakdown of C-B junction                        | V     | fixed at infinity <sup>+++</sup> |
| Mf                   | exponent of B-C multiplication factor                     | None  | 0.0                              |
| Fa                   | Bvcbo/Bvc                                                 | None  | 0.95                             |

| Avc        | Advanced Design System 2011.01 - Nonlinear<br>fitting parameter | None                | 1.0                              |
|------------|-----------------------------------------------------------------|---------------------|----------------------------------|
| Bve        | junction breakdown of the E-B junction                          | V                   | fixed at infinity <sup>+++</sup> |
| ۷r         | exponent of the E-B multiplication factor                       | None                | 0.0                              |
| -in<br>=b  | Bvebo/Bve                                                       | Hz                  | 0.95                             |
| Ave        | fitting parameter                                               | None                | 1.0                              |
| Rb         | zero-bias base resistance                                       | Ohm                 | 0.0                              |
| Irb        | current when base resistance falls halfway to its minimum       | A                   | fixed at infinity <sup>+++</sup> |
| Rbm        | value<br>minimum base resistance at high current (0 means Rb)   | Ohm                 | 0.0                              |
| Re         | emitter resistance                                              | Ohm                 | 0.0                              |
| Rc         | collector resistance under the emitter                          | Ohm                 | 0.0                              |
|            | collector resistance in saturation                              | Ohm                 | 0.0                              |
| Rcs        |                                                                 | F                   | 0.0                              |
| Cje<br>/ie | B-E zero-bias depletion capacitance                             | r<br>V              | 0.75                             |
| /je        | B-E junction built-in potential                                 | 1                   |                                  |
| Mje<br>Fo  | B-E grading coefficient                                         | None                | 0.33                             |
| =c         | Forward-bias Depletion Cap. Coefficient                         | None                | 0.5                              |
| Cjc<br>,;  | B-C zero-bias depletion gap                                     | F                   | 0.0                              |
| Vjc        | B-C junction built-in potential                                 | V                   | 0.75                             |
| Чјс        | junction grading coefficient                                    | None                | 0.33                             |
| Kjbc       | fraction of Cjc connected to B int node                         | None                | 1.0                              |
| Cjs        | zero-bias collector substrate (ground) cap                      | F                   | 0.0                              |
| Vjs        | C-S (B-S) built-in potential                                    | V                   | 0.75                             |
| Mjs        | C-S (B-S) grading coefficient                                   | None                | 0.33                             |
| Xjbs       | fraction of B-S cap connected to B int node                     | None                | 1.0                              |
| Vert       | 1=vertical structures; 0=else                                   | None                | 0                                |
| Subsn      | 1=N substrate; 0=else                                           | None                | 0                                |
| Tf         | ideal forward transit time                                      | sec                 | 0.0                              |
| Xtf        | coefficient of bias dependence for TF                           | None                | 0.0                              |
| √tf        | voltage dependence of Tf on B-C voltage                         | V                   | fixed at infinity <sup>+++</sup> |
| Itf        | parameter for Tf high currents roll off                         | A                   | fixed at infinity <sup>+++</sup> |
| Ptf        | excess phase                                                    | deg                 | 0.0                              |
| Tfcc       | Tf BPO model: 1=Spice, 0=else                                   | None                | 0                                |
| Tr         | ideal reverse transit time                                      | sec                 | 0.0                              |
| ٢f         | flicker noise coefficient                                       | None                | 0.0                              |
| ٩f         | flicker noise exponent                                          | None                | 1.0                              |
| Eg         | bandgap voltage at 0K                                           | V                   | 1.11                             |
| Xti        | temperature exponent                                            | None                | 3.0                              |
| Xtb        | temperature exponent for gain currents                          | None                | 0.0                              |
| Trb1       | linear temperature coefficient for Rb                           | 1/°C                | 0.0                              |
| Trb2       | quadratic temperature coefficient for Rb                        | 1/(°C) <sup>2</sup> | 0.0                              |
| Trbm1      | linear temperature coefficient for Rbm                          | 1/°C                | 0.0                              |
| Trbm2      | quadratic temperature coefficient for Rbm                       | 1/(°C) <sup>2</sup> | 0.0                              |
| Tre1       | linear temperature coefficient for Re                           | 1/°C                | 0.0                              |


Advanced Design System 2011.01 - Nonlinear Devices


| Tre2               | quadratic temperature coefficient for Re       | 1/(°C) <sup>2</sup> | 0.0                              |  |
|--------------------|------------------------------------------------|---------------------|----------------------------------|--|
| Trc1               | linear temperature coefficient for Rc 1/°C 0.0 |                     |                                  |  |
| Trc2               | quadratic temperature coefficient for Rc       | 1/(°C) <sup>2</sup> | 0.0                              |  |
| Trcs1              | linear temperature coefficient for Rcs         | 1/°C                | 0.0                              |  |
| Trcs2              | quadratic temperature coefficient for Rcs      | 1/(°C) <sup>2</sup> | 0.0                              |  |
| Ikf <sup>+++</sup> | forward Ik                                     | A                   | fixed at infinity <sup>+++</sup> |  |
| Ikr†††             | reverse Ik                                     | A                   | fixed at infinity <sup>+++</sup> |  |
| Gmin               | minimum conductance                            | None                | 1e-12                            |  |
| All Params         | Data Access Component (DAC) Based Parameters   | None                | None                             |  |
|                    |                                                |                     |                                  |  |

<sup>+</sup> This parameter value varies with temperature based on model Tnom and device Temp.<sup>++</sup> This parameter value scales with Area specified with the BJT or BJT4 model.<sup>+++</sup> A value of 0.0 is interpreted as infinity.

## VBIC5\_NPN, VBIC5\_PNP (VBIC Nonlinear Bipolar Transistors with Thermal Terminal, NPN, PNP)

#### Symbol





#### **Parameters**

| Name   | Description                                                    | Units | Default   |
|--------|----------------------------------------------------------------|-------|-----------|
| Model  | name of a VBIC_Model                                           | None  | VCICM1    |
| Scale  | scaling factor                                                 | None  | 1.0       |
| Region | dc operating region: 0=off, 1=on, 2=rev, 3=sat                 | None  | on        |
| Temp   | device operating temperature                                   | °C    | 25        |
| Trise  | temperature rise above ambient                                 | °C    | 0         |
| Mode   | simulation mode: Nonlinear, Linear, Standard (refer to note 2) | None  | Nonlinear |
| Noise  | noise generation option: yes=1, no=0                           | None  | yes       |
| _M     | number of devices in parallel                                  | None  | 1         |

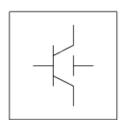
#### **Notes/Equations**

- The Temp parameter specifies the physical (operating) temperature of the device. If this is different than the temperature at which the model parameters are valid or extracted (specified by the Tnom parameter of the associated VBIC\_Model) certain model parameters are scaled such that the device is simulated at its operating temperature.
- 2. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 3. The VBIC implements self-heating. As the transistor dissipates power, it causes its temperature to rise above ambient. The model parameters Rth, Cth, and Selft control this:  $\Delta T$  = Pdiss x Rth. (Refer to VBIC\_Model *note 5* (ccnld).) When self-heating is enabled, it may be necessary to increase the maximum number of iterations due to the additional unknown (temperature rise) that must be solved for. Simulation using

self-heating may take 50 to 100% more time than the same simulation without self-heating.

Self-heating can be used with either an internal or external thermal node.

- VBIC\_NPN and VBIC\_PNP use an internal node to keep track of the temperature rise of the transistor.
- VBIC5\_NPN and VBIC5\_PNP make this thermal node externally available as the fifth terminal. This node can then be used for additional thermal modeling.
- 4. The following table lists the DC operating point parameters that can be sent to the dataset.


**DC Operating Point Information** 

| Name        | Description                     | Units   |
|-------------|---------------------------------|---------|
| Ic          | Collector current               | amperes |
| Ib          | Base current                    | amperes |
| Ie          | Emitter current                 | amperes |
| Is          | Source current                  | amperes |
| Power       | DC power dissipated             | watts   |
| Gbe         | Transconductance gbe            | siemens |
| Cbe         | Base-emitter capacitance cbe    | farads  |
| Gbc         | Transconductance gbc            | siemens |
| Cbc         | Base-collector capacitance cbc  | farads  |
| Gbex        | Transconductance gbex           | siemens |
| Cbex        | Base-emitter capacitance cbex   | farads  |
| Gbep        | Transconductance gbep           | siemens |
| Cbep        | Base-emitter capacitance cbep   | farads  |
| Gbcp        | Transconductance gbcp           | siemens |
| Cbcp        | Base-collector capacitance cbcp | farads  |
| dIcc_dVbei  | (dIcc/dVbei)                    | siemens |
| dIcc_dVbci  | (dIcc/dVbci)                    | siemens |
| dIccp_dVbep | (dIccp/dVbep)                   | siemens |
| dIccp_dVbcp | (dIccp/dVbcp)                   | siemens |
| dIccp_dVbci | (dIccp/dVbci)                   | siemens |
| dIbc_dVbei  | (dIbc/dVbei)                    | siemens |
| Grbi        | Base conductance grbi           | siemens |
| dIrbi_dVbei | (dIrbi/dVbei)                   | siemens |
| dIrbi_dVbci | (dIrbi/dVbci)                   | siemens |
| Grbp        | Base conductance grbp           | siemens |
| dIrbp_dVbep | (dIrbp/dVbep)                   | siemens |
| dIrbp_dVbci | (dIrbp/dVbci)                   | siemens |
| Grci        | Collector conductance grci      | siemens |
| dIrci_dVbci | (dIrci/dVbci)                   | siemens |
| dQbe_dVbci  | (dQbe/dVbci)                    | farads  |
| dQbep_dVbci | (dQbep/dVbci)                   | farads  |
| dQbcx_dVbci | (dQbcx/dVbci)                   | farads  |
| dQbcx_dVrci | (dQbcx/dVrci)                   | farads  |
| Vbe         | Base-emitter voltage            | volts   |
| Vbc         | Base-collector voltage          | volts   |
| Vce         | Collector-emitter voltage       | volts   |

5. This device has no default artwork associated with it.

## VBIC\_Model (VBIC Model)

#### Symbol



#### **Parameters**

| Name                             | Definition                                  | Units | Default |
|----------------------------------|---------------------------------------------|-------|---------|
| NPN                              | N-channel model type: yes, no               | None  | yes     |
| PNP                              | P-channel model type: yes, no               | None  | no      |
| Tnom                             | nominal ambient temperature                 | °C    | 25      |
| Trise                            | temperature rise above ambient              | °C    | 0       |
| Rcx <sup>+</sup> , <sup>++</sup> | extrinsic collector resistance              | Ohm   | 0.0     |
| Rci <sup>+, ++</sup>             | intrinsic collector resistance              | Ohm   | 0.0     |
| Vo <sup>†</sup>                  | epi drift saturation voltage                | V     | 0.0     |
| Gamm <sup>†</sup>                | epi doping parameter                        | None  | 0.0     |
| Hrcf                             | high-current RC factor                      | None  | 1.0     |
| Rbx <sup>+, ++</sup>             | extrinsic base resistance                   | Ohm   | 0.0     |
| Rbi <sup>†, ††</sup>             | intrinsic base resistance                   | Ohm   | 0.0     |
| Re <sup>†, ††</sup>              | emitter resistance                          | Ohm   | 0.0     |
| Rs <sup>+, ++</sup>              | substrate resistance                        | Ohm   | 0.0     |
| Rbp <sup>†, ††</sup>             | parasitic base resistance                   | Ohm   | 0.0     |
| Is <sup>+, +++</sup>             | transport saturation current                | A     | 1.0e-16 |
| Nf <sup>†</sup>                  | forward emission coefficient                | None  | 1.0     |
| Nr <sup>†</sup>                  | reverse emission coefficient                | None  | 1.0     |
| Fc                               | forward bias junction capacitance threshold | None  | 0.9     |
| Cbeo <sup>†††</sup>              | base-emitter small signal capacitance       | F     | 0.0     |
| Cje <sup>+, +++</sup>            | base-emitter zero-bias junction capacitance | F     | 0.0     |
| Pe <sup>†</sup>                  | base-emitter grading coefficient            | None  | 0.75    |
| Ме                               | base-emitter junction exponent              | None  | 0.33    |
| Aje                              | base-emitter capacitance smoothing factor   | None  | -0.5    |

| Cbco <sup>†††</sup>               | Advanced Design System 2011.01 - Nonlinear De<br>base-collector small signal capacitance | F    | 0.0      |
|-----------------------------------|------------------------------------------------------------------------------------------|------|----------|
| Cjc <sup>+, +++</sup>             | base-collector zero-bias junction capacitance                                            | F    | 0.0      |
| Qco <sup>+++</sup>                | collector charge at zero bias                                                            | С    | 0.0      |
| Cjep <sup>†, †††</sup>            | base-emitter zero-bias extrinsic capacitance                                             | F    | 0.0      |
| Pc <sup>+</sup>                   | base-collector grading coefficient                                                       | None | 0.75     |
| Mc                                | base-collector junction exponent                                                         | None | 0.33     |
| Ajc                               | base-collector capacitance smoothing factor                                              | None | -0.5     |
| Cjcp <sup>†, †††</sup>            | base-collector zero-bias extrinsic capacitance                                           | F    | 0.0      |
| Ps <sup>†</sup>                   | collector-substrate grading coefficient                                                  | None | 0.75     |
| Ms                                | collector-substrate junction exponent                                                    | None | 0.33     |
| Ajs                               | collector-substrate capacitance smoothing factor                                         | None | -0.5     |
| Ibei <sup>†, †††</sup>            | ideal base-emitter saturation current                                                    |      | 1.0e-18  |
| Wbe                               | portion of Ibei from Vbei, 1-Wbe from Vbex                                               | None | 1.0      |
| Nei                               | ideal base-emitter emission coefficient                                                  | None | 1.0      |
| Iben <sup>†, †††</sup>            | non-ideal base-emitter saturation current                                                |      | 0.0      |
| Nen                               | non-ideal base-emitter emission coefficient                                              | None | 2.0      |
| Ibci <sup>+, +++</sup>            | ideal base-collector saturation current                                                  |      | 1.0e-16  |
| Nci                               | ideal base-collector emission coefficient                                                | None | 1.0      |
| Ibcn <sup>+, +++</sup>            | non-ideal base-collector saturation current                                              |      | 0.0      |
| Ncn                               | non-ideal base-collector emission coefficient                                            | None | 2.0      |
| Isp <sup>+</sup> , <sup>+++</sup> | parasitic transport saturation current                                                   |      | 0.0      |
| Wsp                               | portion of Iccp from Vbep, 1-Wsp from Vbci                                               | None | 1.0      |
| Nfp                               | parasitic forward emission coefficient                                                   | None | 1.0      |
| Ibeip <sup>+, +++</sup>           | ideal parasitic base-emitter saturation current                                          |      | 0.0      |
| Ibenp <sup>+, +++</sup>           | non-ideal parasitic base-emitter saturation current                                      |      | 0.0      |
| Ibcip <sup>†, †††</sup>           | ideal parasitic base-collector saturation current                                        |      | 0.0      |
| Ncip                              | ideal parasitic base-collector emission coefficient                                      | None | 1.0      |
| Ibcnp <sup>+, +++</sup>           | non-ideal parasitic base-collector saturation current                                    |      | 0.0      |
| Avc1                              | base-collector weak avalanche parameter 1                                                | None | 0.0      |
| Avc2 <sup>+</sup>                 | base-collector weak avalanche parameter 2                                                | None | 0.0      |
| Ncnp                              | non-ideal parasitic base-collector emission coefficient                                  | None | 2.0      |
| Vef                               | forward Early voltage (0=infinity)                                                       | V    | infinity |
| Ver                               | reverse Early voltage (0=infinity)                                                       | V    | infinity |
| Ikf <sup>+++</sup>                | forward knee current (0=infinity)                                                        | A    | infinity |
| Ikr <sup>†††</sup>                | reverse knee current                                                                     | A    | 0.0      |
| Ikp <sup>†††</sup>                | parasitic knee current                                                                   | A    | 0.0      |
| Tf                                | forward transit time                                                                     |      | 0.0      |
| Qtf                               | variation of Tf with base-width modulation                                               | None | 0.0      |
| Xtf                               | coefficient of Tf bias dependence                                                        | None | 0.0      |
| Vtf                               | coefficient of Tf dependence on Vbc                                                      | None | 0.0      |
| Itf                               | coefficient of Tf dependence on Icc                                                      | None | 0.0      |

Advanced Design System 2011.01 - Nonlinear Devices

|                       | Advanced Design System 2011.01 - Nommear Device                         | 8    |                  |
|-----------------------|-------------------------------------------------------------------------|------|------------------|
| Tr                    | ideal reverse transit time                                              |      | 0.0              |
| Td                    | forward excess-phase delay time                                         |      | 0.0              |
| Kfn                   | flicker noise coefficient                                               | None | 0.0              |
| Afn                   | flicker noise exponent                                                  | None | 1.0              |
| Bfn                   | flicker noise frequency exponent                                        | None | 1.0              |
| Xre                   | temperature exponent of emitter resistance                              | None | 0.0              |
| Xrb                   | temperature exponent of base resistance                                 | None | 0.0              |
| Xrc                   | temperature exponent of collector resistance                            | None | 0.0              |
| Xrs                   | temperature exponent of substrate resistance                            | None | 0.0              |
| Хvo                   | temperature exponent of Vo                                              | None | 0.0              |
| Ea                    | activation energy for Is                                                | eV   | 1.12             |
| Eaie                  | activation energy for Ibei                                              | eV   | 1.12             |
| Eaic                  | activation energy for Ibci/Ibeip                                        | eV   | 1.12             |
| Eais                  | activation energy for Ibcip                                             | eV   | 1.12             |
| Eane                  | activation energy for Iben                                              | eV   | 1.12             |
| Eanc                  | activation energy for Ibcn/Ibenp                                        | eV   | 1.12             |
| Eans                  | activation energy for Ibcnp                                             | eV   | 1.12             |
| Xis                   | temperature exponent of Is                                              | None | 3.0              |
| Xii                   | temperature exponent of Ibei/Ibci/Ibeip/Ibcip                           | None | 3.0              |
| Xin                   | temperature exponent of Iben/Ibcn/Ibenp/Ibcnp                           | None | 3.0              |
| Tnf                   | temperature coefficient of Nf                                           | None | 0.0              |
| Tavc                  | temperature coefficient of Avc                                          | None | 0.0              |
| Rth <sup>++</sup>     | thermal resistance                                                      | Ohm  | 0.0              |
| Cth <sup>+++</sup>    | thermal capacitance                                                     | F    | 0.0              |
| Imax                  | explosion current                                                       | A    | 1.0              |
| Imelt                 | explosion current, similar to Imax; defaults to Imax (refer to note 4). | A    | defaults to Imax |
| Selft                 | flag denoting self-heating: yes, no; (refer to note 5).                 | None | None             |
| Dtmax                 | maximum expected device temperature                                     | °C   | 500              |
| wVsubfwd<br>(Vsubfwd) | substrate junction forward bias (warning)                               | V    | None             |
| wBvsub (Bvsub)        | substrate junction reverse breakdown voltage (warning)                  | V    | None             |
| wBvbe (Bvbe)          | base-emitter reverse breakdown voltage (warning)                        | V    | None             |
| wBvbc (Bvbc)          | base-collector reverse breakdown voltage (warning)                      | V    | None             |
| wVbcfwd (Vbcfwd)      | base-collector forward bias (warning)                                   | V    | None             |
| wIbmax                | maximum base current (warning)                                          | A    | None             |
| wIcmax                | maximum collector current (warning)                                     | A    | None             |
| wPmax                 | maximum power dissipation (warning)                                     | W    | None             |
| AllParams             | name of DataAccessComponent for file-based model<br>parameter values    | None | None             |
|                       |                                                                         |      |                  |

<sup>+</sup> This parameter value varies with temperature based on model Tnom and device Temp.<sup>++</sup> This parameter value scales inversely with the device parameter Scale.<sup>+++</sup> This parameter value scales directly with the device parameter Scale

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname VBIC [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by transistor components to refer to the model. The third parameter indicates the type of model; for this model it is *VBIC*. Use either parameter NPN=yes or PNP=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

#### Example:

```
model Npn2 VBIC \
    NPN=yes Gamm=8e-10 Cje=1e-13
```

#### **Notes/Equations**

- 1. This model (version 1.1.4) supplies values for a VBIC device.
- 2. The VBIC vertical BJT model was developed specifically as a replacement for the SPICE Gummel-Poon model by representatives of the IC and CAD industries.

VBIC includes improved modeling of the Early effect (output conductance), substrate current, quasi-saturation, and behavior over temperature-information necessary for accurate modeling of current state-of-the-art devices. However, it has additionally been defined so that, with default parameters, the model will simplify to be as similar as possible to the Gummel-Poon model.

Advantages of VBIC over the Gummel-Poon model include:

- An Early effect model based on the junction depletion charges
- A modified Kull model for quasi-saturation valid into the Kirk regime (the highinjection effect at the collector)
- Inclusion of the parasitic substrate transistor
- An improved single-piece junction capacitance model for all 3 junction capacitances
- Improved static temperature scaling
- First-order modeling of distributed base and emitter AC and DC crowding
- Overall improved high-level diffusion capacitance modeling (including quasisaturation charge)
- Inclusion of parasitic overlap capacitances; inclusion of the onset of weak

Advanced Design System 2011.01 - Nonlinear Devices avalanche current for the base-collector junction.

- High-order continuity (infinite) in equations. A noise model similar to that of the Gummel-Poon model, with shot, thermal, and 1/f components
- 3. More information about this model is available at: http://www.designers-guide.com/VBIC/references.html
- 4. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

5. If the Selft parameter is not set, the value of Rth will determine whether selfheating is taken into account or not, as in previous versions (Rth>0 implies selfheating is on). If Selft is set, then it will take priority in determining whether selfheating is on or off.

| ī |   |                                                                   |
|---|---|-------------------------------------------------------------------|
|   | 0 | Note                                                              |
|   |   | Note                                                              |
|   |   |                                                                   |
|   |   | When inserting a new component, the Selft default value is blank. |
|   |   | when inserting a new component, the Selft default value is blank. |

6. Rth and Cth Parameters

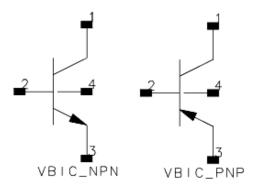
The Rth parameter's units is shown as Ohms. Strictly speaking it should be power/temp, such as W/degK. The units of Ohms is acceptable given the following explanation.

In terms of an electrical analogue of the thermal equations it is acceptable to use the electrical units for the thermal circuit.

The thermal circuit (electrical model) consists of a current source, a resistance and a capacitance (all in parallel), and using electrical units is a convenience. The relation to the actual units comes from the way that electrical model is constructed.

The reality is that the value of the *current* source is the power dissipated in the device and the node *voltage* represents the temperature (rise). The *current* in Rth thus represents power and therefore the true unit of Rth (in thermal equations) is degK/W (or degC/W). Similarly, the true unit of the Cth *capacitance* is J/degC (or J/degK), and not F.

7. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim)). Note that model parameters that are explicitly specified take precedence over those via AllParams.


#### References

 C. McAndrew, AT&T/Motorola; J. Seitchik, Texas Instruments; D. Bowers, Analog Devices; M. Dunn, Hewlett-Packard; M. Foisy, Motorola; I. Getreu, Analogy; M. McSwain, MetaSoftware; S. Moinian, AT&T Bell Laboratories; J. Parker, National Semiconductor; P. van Wijnen, Intel/Philips; L. Wagner, IBM, VBIC95: An Improved Vertical, IC Bipolar Transistor Model. Advanced Design System 2011.01 - Nonlinear Devices

- 2. W. J. Kloosterman and H. C. de Graaff. "Avalanche Multiplication in a Compact Bipolar Transistor Model for Circuit Simulation," *IEEE 1988 BCTM*.
- 3. McAndrew and Nagel. "Spice Early Model," IEEE 1994 BCTM.
- 4. J. Berkner, SMI System Microelectronic Innovation GmbH, Frankfurt/Oder, Germany. A Survey of DC Methods for Determining the Series Resistance of Bipolar Transistors Including the New Delta ISub Method.

# VBIC\_NPN, VBIC\_PNP (VBIC Nonlinear Bipolar Transistors, NPN, PNP)

#### Symbol



#### **Parameters**

| Name   | Description                                                    | Units | Default   |
|--------|----------------------------------------------------------------|-------|-----------|
| Model  | name of a VBIC_Model                                           | None  | VBICM1    |
| Scale  | scaling factor                                                 | None  | 1.0       |
| Region | dc operating region: 0=off, 1=on, 2=rev, 3=sat                 | None  | on        |
| Temp   | device operating temperature                                   | °C    | 25        |
| Trise  | temperature rise above ambient                                 | °C    | 0         |
| Mode   | simulation mode: Nonlinear, Linear, Standard (refer to note 2) | None  | Nonlinear |
| Noise  | noise generation option: yes=1, no=0                           | None  | yes       |
| _M     | number of devices in parallel                                  | None  | 1         |

#### **Notes/Equations**

- The Temp parameter specifies the physical (operating) temperature of the device. If this is different than the temperature at which the model parameters are valid or extracted (specified by the Tnom parameter of the associated VBIC\_Model) certain model parameters are scaled such that the device is simulated at its operating temperature.
- 2. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 3. The VBIC implements self-heating. As the transistor dissipates power, it causes its temperature to rise above ambient. The model parameters Rth, Cth, and Selft control this:  $\Delta T = Pdiss \times Rth$ . (Refer to VBIC\_Model *note 5* (ccnld).) When self-heating is enabled, it may be necessary to increase the maximum number of iterations due to the additional unknown (temperature rise) that must be solved for. Simulation using

#### Advanced Design System 2011.01 - Nonlinear Devices

self-heating may take 50 to 100% more time than the same simulation without self-heating.

Self-heating can be used with either an internal or external thermal node.

- VBIC\_NPN and VBIC\_PNP use an internal node to keep track of the temperature rise of the transistor.
- VBIC5\_NPN and VBIC5\_PNP make this thermal node externally available as the fifth terminal. This node can then be used for additional thermal modeling.
- 4. The following table lists the DC operating point parameters that can be sent to the dataset.

DC Operating Point Information

| Name        | Description                     | Units   |
|-------------|---------------------------------|---------|
| Ic          | Collector current               | amperes |
| Ib          | Base current                    | amperes |
| Ie          | Emitter current                 | amperes |
| Is          | Substrate current               | amperes |
| Power       | DC power dissipated             | watts   |
| Gbe         | Transconductance gbe            | siemens |
| Cbe         | Base-emitter capacitance cbe    | farads  |
| Gbc         | Transconductance gbc            | siemens |
| Cbc         | Base-collector capacitance cbc  | farads  |
| Gbex        | Transconductance gbex           | siemens |
| Cbex        | Base-emitter capacitance cbex   | farads  |
| Gbep        | Transconductance gbep           | siemens |
| Cbep        | Base-emitter capacitance cbep   | farads  |
| Gbcp        | Transconductance gbcp           | siemens |
| Cbcp        | Base-collector capacitance cbcp | farads  |
| dIcc_dVbei  | (dIcc/dVbei)                    | siemens |
| dIcc_dVbci  | (dIcc/dVbci)                    | siemens |
| dIccp_dVbep | (dIccp/dVbep)                   | siemens |
| dIccp_dVbcp | (dIccp/dVbcp)                   | siemens |
| dIccp_dVbci | (dIccp/dVbci)                   | siemens |
| dIbc_dVbei  | (dIbc/dVbei)                    | siemens |
| Grbi        | Base conductance grbi           | siemens |
| dIrbi_dVbei | (dIrbi/dVbei)                   | siemens |
| dIrbi_dVbci | (dIrbi/dVbci)                   | siemens |
| Grbp        | Base conductance grbp           | siemens |
| dIrbp_dVbep | (dIrbp/dVbep)                   | siemens |
| dIrbp_dVbci | (dIrbp/dVbci)                   | siemens |
| Grci        | Collector conductance grci      | siemens |
| dIrci_dVbci | (dIrci/dVbci)                   | siemens |
| dQbe_dVbci  | (dQbe/dVbci)                    | farads  |
| dQbep_dVbci | (dQbep/dVbci)                   | farads  |
| dQbcx_dVbci | (dQbcx/dVbci)                   | farads  |
| dQbcx_dVrci | (dQbcx/dVrci)                   | farads  |
| Vbe         | Base-emitter voltage            | volts   |
| Vbc         | Base-collector voltage          | volts   |
| Vce         | Collector-emitter voltage       | volts   |

5. This device has no default artwork associated with it.

## **Devices and Models, Diode**

- ADSDiode (ADS Root Diode) (ccnld)
- ADS Diode Model (ADS Root Diode Model) (ccnld)
- dio500 (Diode Level 500) (ccnld)
- Diode (PN-Junction Diode) (ccnld)
- Diode Model (PN-Junction Diode Model) (ccnld)
- JUNCAP (Philips JUNCAP Device) (ccnld)
- Juncap Model (Philips JUNCAP Model) (ccnld)
- PIN diode (PIN Diode) (ccnld)

## **Bin Model**

The BinModel in the Diodes library enables you to sweep a parameter (usually a geometry, such as gate length), then enable the simulator to automatically select between different model cards. This alleviates the problem that one scalable model typically does not work for all sizes of a device.

For information on the use of the binning feature, refer to *BinModel (Bin Model for Automatic Model Selection)* (ccsim).

## **Multiplicity Parameter \_M**

The multiplicity feature provides a way to scale components or entire sub-circuits containing many components and sub-circuits. Given a component with a multiplicity value M, the simulator treats this component as if there were M such components all connected in parallel. Sub-circuits within sub-circuits will be appropriately scaled.

The \_M parameter is available at the component level as shown here. (For components that do not explicitly have a Multiplicity parameter, the same functionality can be achieved by placing the component in a sub-circuit and using the sub-circuit's Multiplicity parameter, as described next.)

| Select Parameter<br>Model=BJTM1             | I                                                | None 🗹       |  |
|---------------------------------------------|--------------------------------------------------|--------------|--|
| Area=<br>Region=<br>Temp=<br>Mode=nonlinear | Equation Editor<br>Optimization/Statistics Setup |              |  |
| Noise=yes<br>_M=<br>_M : Number of devices  | in parallel,                                     | (default: 1) |  |
| OK Apply                                    | Cancel                                           | Reset Help   |  |

For sub-circuits, the parameter is enabled by selecting **File** > **Design Parameters** from the Schematic window. In the dialog box, select the **Parameters** tab. To add the Multiplicity parameter, click **Add Multiplicity Factor\_M**.

| General                      | Parameters |
|------------------------------|------------|
| Select Parameter             |            |
|                              |            |
| Add                          | Cui        |
| Add Multiplicity Factor (_M) |            |

## **Netlist Syntax**

Models for the ADS circuit simulator have the following syntax:

```
model modelname modeltype [param=value]*
```

where model is a keyword, modelname is the user-defined name for the model and modeltype is one of the predefined model types (e.g., Diode, BJT, MOSFET). After these three required fields comes zero or more param=value pairs. param is a model keyword and value is its user-assigned value. There is no required order for the param=value pairs. Model keywords that are not specified take on their default values. Refer to documentation for each model type to see the list of model parameters, their meanings and default values.

The model statement must be on a single line. Use the backslash "\" as a line continuation character. Instance and model parameter names are case sensitive; most (not all) model parameters have their first character capitalized and the rest are lower case. Scale factors (e.g.,  $p=10^{-12}$ ,  $n=10^{-9}$ ,  $u=10^{-6}$ ,  $m=10^{-3}$ ,  $k=10^{+3}$ ,  $M=10^{+6}$ ) can be used with numbers for numeric values. For more information about the circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

A netlist translator is available for translating models and subcircuits from Pspice, Hspice, and Spectre syntax to the form used by the ADS Circuit Simulator. Refer to *Netlist Translator for SPICE and Spectre* (netlist) for more information.

### **Parameter Aliases**

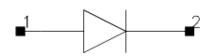
For compatibility with other simulators, some models accept two or more different keywords for the same parameter. For example, the Diode model accepts both model keywords Is and Js for the saturation current. In the documentation, the parameter Name column lists the aliases in parentheses after the main parameter name. The main parameter name is the one that appears in the ADS dialog box for the model.

## Tnom

All nonlinear device models have a parameter that specifies the temperature at which the model parameters were extracted. Normally called Tnom, some models may use Tref, Tr, or Tmeas. The default value for Tnom is specified on the Options item in the Tnom field. If Options.Tnom is not specified it defaults to 25 °C. This is true for all nonlinear devices.

It is strongly suggested that the user explicitly set Tnom in each model and not depend on its default value. First, this provides a self-documenting model; other users of the device will not have to guess at what Tnom should be. Second, different users of the same model would get different results for the same circuit if they simulate with different values of Options.Tnom.

## **Temp and Trise**


Advanced Design System enables you to directly specify the temperature of each individual device instance. This is done with the device instance parameter Temp which is the device temperature in degrees Celsius. If it is not specified, it defaults to the ambient temperature set with Options.Temp, which defaults to 25 °C.

For compatibility with other simulators, many of the nonlinear devices enable you to specify Trise for each device instance, which specifies actual device temperature as an increase from ambient. It defaults to zero. The Trise instance value is used only if the Temp instance value is not specified. If you do not specify Trise on the instance, a default value for Trise can also be specified in the model. It defaults to zero. The following shows the logic of how the instance temperature is calculated if it is not explicitly specified.

if Instance.Temp is not specified
if instance.Trise is not specified
Instance.Temp = Options.Temp + Model.Trise
else
Instance.Temp = Options.Temp + Instance.Trise

## **ADSDiode (ADS\_Root Diode)**

Symbol

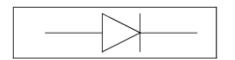


### **Parameters**

| Name  | Description                   | Units | Default    |
|-------|-------------------------------|-------|------------|
| Model | model instance name           | None  | ADSDIODEM1 |
| Area  | junction                      |       | 1.0        |
| _M    | number of devices in parallel | None  | 1          |

## Range of Usage

Area > 0


## **Notes/Equations**

1. *DC Operating Point Information* lists the DC operating point parameters that can be sent to the dataset.

| Name  | Description           | Units   |
|-------|-----------------------|---------|
| Id    | Diode current         | amperes |
| Power | DC power dissipated   | watts   |
| Rd    | Series resistance     | ohms    |
| Cd    | Junction capacitance  | farads  |
| Vd    | Anode-cathode voltage | volts   |

## ADS\_Diode\_Model (ADS\_Root Diode Model)

Symbol



## Parameters

| Name      | Description                                    | Units | Default    |
|-----------|------------------------------------------------|-------|------------|
| File      | name of rawfile                                | None  | None       |
| Rs        | series resistance                              |       | fixed at 0 |
| Ls        | parasitic inductance                           |       | fixed at 0 |
| Tt        | transit time                                   | sec   | 0.0        |
| All Param | s Data Access Component (DAC) Based Parameters | None  | None       |

#### Notes/Equations

- 1. This model supplies values for an ADSDiode device.
- 2. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those via AllParams.
- 3. Because this model is measurement-based, extrapolation warning messages may occur if the Newton iteration exceeds the measurement range. If these messages occur frequently, check that the measurement data is within the simulation range.

#### References

- 1. D. Root, "Technology independent large signal non quasi static FET model by direct construction from automatically characterized device data," in *21st EuMC*, 1991, p. 927.
- 2. D. E. Root, S. Fan, and J. Meyer, "Technology-independent large-signal FET models: A measurement-based approach to active device modeling," in *Proc. th ARMMS Conf.*, *Bath, U.K.*, Sept. 1991, pp. 1-21.
- 3. D. E. Root, M. Pirola, S. Fan, W. J. Anklam, and A. Cognata, "Measurement-based large-signal diode modeling system for circuit and device design," *IEEE Trans. Microwave Theory Tech.*, vol. 41, pp. 2211-2217, Dec. 1993.
- 4. D. E. Root and B. Hughes, "Principles of nonlinear active device modeling for circuit simulation," in *32nd ARFTG Conf. Dig*., Tempe, AZ, 1988, pp. 3-26.
- 5. D. E. Root, S. Fan, and J. Meyer, "Technology-independent large-signal non quasi static FET models by direct extraction from automatically characterized device data," in *21st European Microwave Conf. Proc.*, Stuttgart, Germany, 1991, pp. 927-932.

6. D. E. Root and S. Fan, "Experimental evaluation of large-signal modeling assumptions based on vector analysis of bias-dependent S-parameters data from MESFET's and HEMT's," in *IEEE MTT-S Int. Microwave Symp. Tech. Dig.*, 1992, pp. 927-932.

## dio500 (Diode Level 500)

#### **Instance Parameters**

| Name  | Description                          | Default   |
|-------|--------------------------------------|-----------|
| area  | Multiplication factor                | 1.0       |
| mult  | Alias of area factor                 |           |
| m     | Multiplicity factor                  | 1.0       |
| Mode  | Simulation mode: nonlinear or linear | Nonlinear |
| Noise | Noise generation option: yes, no     | yes       |

#### **Model Parameters**

| Name  | Description                                                   | Units | Default       |
|-------|---------------------------------------------------------------|-------|---------------|
| is    | Saturation current                                            | A     | 7.13e-13      |
| n     | Junction emission coefficient                                 |       | 1.044         |
| vlc   | Voltage dependence at low forward currents                    | V     | 0.0           |
| vbr   | Breakdown voltage                                             | V     | 7.459         |
| emvbr | Electric field at breakdown                                   | V/cm  | 1.36e+06      |
| csrh  | Shockley-Read-Hall generation                                 | A/cm  | 7.44e-07      |
| cbbt  | Band to band tunneling                                        | A/V   | 3.255         |
| ctat  | Trap assisted tunneling                                       | A/cm  | 3.31e-06      |
| rs    | Series resistance                                             | Ohm   | 0.0           |
| tau   | Transit time                                                  | s     | 500.0e-<br>12 |
| cj    | Zero-bias depletion capacitance                               | F     | 7.0e-12       |
| vd    | Diffusion voltage                                             | V     | 0.9           |
| р     | Grading coefficient                                           |       | 0.4           |
| tref  | Reference temperature. Default set by option <i>tnom</i> .    | С     |               |
| tnom  | Alias of tref                                                 | С     |               |
| tr    | Alias of <i>tref</i>                                          | С     |               |
| vg    | Bandgap voltage                                               | V     | 1.206         |
| ptrs  | Power for temperature dependence of rs                        |       | 0.0           |
| kf    | Flickernoise coefficient                                      |       | 0.0           |
| af    | Flickernoise exponent                                         |       | 1.0           |
| dta   | Difference between device temperature and ambient temperature | K     | 0.0           |
| trise | Alias of <i>dta</i>                                           | K     |               |
| imax  | Explosion current                                             | A     | 1.0           |

### **Notes/Equations**

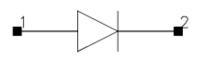
1. The *dio500* model provides a detailed description of the diode currents in forward and reverse biased Si-diodes. Please see the following NXP pdf file for detailed

documention: http://www.nxp.com/acrobat\_download/other/models/d500.pdf

- 2. In extension to the modelbook description a minimum conductance *gmin* is inserted between the diode nodes to aid convergence. The value of *gmin* is set by an options statement, default is gmin = 1.0e-12 S . The *imax* parameter is used to aid convergence and to prevent numerical overflow. The junction characteristics of the diode are accurately modeled for currents up to *imax*. For currents above *imax*, the junction is modeled as a linear resistor.
- 3. Sample Instance Statement:

modelName: D1 1 2 area = 2

Sample Model Statement:


model phdiode dio500 is = model modelName dio500 is =3.5e-12 rs=26.3n=2.7 imax=1e20 vlc=1.8 vbr=9.63 cj=2.65e-11 dta=12.88 tau=7.5e-10 tnom=25

- 4. This device is supported within altergroups.
- 5. The following table lists the DC operating point parameters that can be sent to the dataset.

| Name | Description                                                  | Units |
|------|--------------------------------------------------------------|-------|
| vak  | Diode voltage, measured from anode to cathode (including rs) | V     |
| id   | Total resistive diode current                                | A     |
| qd   | Diffusion charge                                             | Coul  |
| qt   | Depletion charge                                             | Coul  |
| rst  | Series resistance (temperature updated)                      | Ohm   |
| rl   | AC linearized resistance                                     | Ohm   |
| cl   | AC linearized capacitance                                    | F     |
| pwr  | Power dissipation                                            | W     |

## **Diode (PN-Junction Diode)**

Symbol



#### **Parameters**

| Name              | Description                                                                                                          | Units | Default   |
|-------------------|----------------------------------------------------------------------------------------------------------------------|-------|-----------|
| Model             | Model instance name                                                                                                  | None  | DIODEM1   |
| Area              | Scaling Factor                                                                                                       | None  | 1.0       |
| Periph<br>(Perim) | Scaling Factor that affects the sidewall                                                                             | None  | 0         |
| Width (W) $^{+}$  | Geometric width of diode junction                                                                                    | meter | 0         |
| Length (L) $^{+}$ | Geometric length of diode junction                                                                                   | meter | 0         |
| Scale             | Scaling Factor that scales Area, Periph, Width and Length                                                            | None  | 1.0       |
| Region            | DC operating region, 0=off, 1=on (gives the DC simulator a good initial guess to enhance its convergence properties) | None  | on        |
| Temp              | Device operating temperature                                                                                         | °C    | 25        |
| Trise             | Temperature rise over ambient                                                                                        | °C    | 0         |
| Mode              | Simulation mode: Nonlinear, Linear, Standard (refer to Note 3)                                                       | None  | Nonlinear |
| Noise             | Noise generation option; yes=1, no=0                                                                                 | None  | yes       |
| _M                | Number of devices in parallel                                                                                        | None  | 1         |

<sup>+</sup> Each instance parameter whose dimension contains a power of meter will be multiplied by the Scale to the same power. For example, a parameter with a dimension of *m* will be multiplied by *scale*<sup>1</sup> and a parameter with a dimension of  $m^2$  will be multiplied by *scale*<sup>2</sup>. Note that only parameters whose dimensions contain meter are scaled. For example, a parameter whose dimension contains *cm* instead of meter is not scaled.

#### **Range of Usage**

Area > 0 Periph  $\ge$  0 Scale > 0

## Notes/Equations

1. The size of the diode may be specified geometrically using the Width and Length parameters if the Area and Periph parameters are not explicitly specified. Default values for the width and length are taken from the width and length specified in the

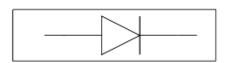
model if they are not specified in the instance. The model parameters Shrink and Dwl are also used. Exact area and periphery calculations are described in the model Notes section.

The area must be greater than 0. The periphery can be 0, in which case the sidewall components are not simulated.

- 2. The Temp parameter specifies the physical (operating) temperature of the device. If this is different than the temperature at which the model parameters are valid or extracted (specified by the Tnom parameter of the associated Diode\_Model), certain model parameters are scaled such that the device is simulated at its operating temperature (refer to *Diode\_Model (PN-Junction Diode Model)* (ccnld) to see which parameter values are scaled).
- 3. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 4. The table below lists the DC operating point parameters that can be sent to the dataset.

## **DC Operating Point Parameters**

| Name  | Description                | Units   |
|-------|----------------------------|---------|
| Id    | Diode current              | amperes |
| Power | DC power dissipated        | watts   |
| Rd    | Junction series resistance | ohms    |
| Rdsw  | Sidewall series resistance | ohms    |
| Cd    | Junction capacitance       | farads  |
| Cdsw  | Sidewall capacitance       | farads  |
| Vd    | Anode-cathode voltage      | volts   |


5. This device has no default artwork associated with it.

## References

- 1. *SPICE2: A Computer Program to Simulate Semiconductor Circuits*, University of California, Berkeley.
- 2. P. Antognetti and G. Massobrio. S *emiconductor Device Modeling with SPICE*, Second Edition, McGraw-Hill, Inc., 1993.

## **Diode\_Model (PN-Junction Diode Model)**

Symbol



## **Parameters**

Model parameters must be specified in SI units.

| Name                     | Description                                                            | Units | Default               |
|--------------------------|------------------------------------------------------------------------|-------|-----------------------|
| Level                    | Model level selector (1=standard, 3=Hspice geometry 11=Spectre)        | None  | 1                     |
| Is (Js) <sup>+, ++</sup> | Saturation Current, A (with N, determines diode DC characteristics)    | A     | 1.0e-14               |
| Rs <sup>+++</sup>        | Ohmic Resistance                                                       | Ohm   | fixed at 0            |
| Gleak <sup>†</sup>       | Bottom junction leakage conductance                                    | S     | 0                     |
| N                        | Emission Coefficient (with Is, determines diode DC characteristics)    | None  | 1.0                   |
| Tt                       | Transit Time                                                           | sec   | 0.0                   |
| Cd <sup>†</sup>          | Linear capacitance                                                     | F     | 0.0                   |
| Cjo <sup>+, ++</sup>     | Zero-bias Junction capacitance                                         | F     | 0.0                   |
| Vj (Pb) <sup>††</sup>    | Junction Potential                                                     | V     | 1.0                   |
| М                        | Grading Coefficient                                                    | None  | fixed at 0.5          |
| Fc                       | Forward-bias Depletion Capacitance Coefficient                         | None  | 0.5                   |
| Imax                     | Explosion current beyond which diode junction current is linearized    | A     | 1.0                   |
| Imelt                    | Explosion current (similar to Imax; refer to Note 4); defaults to Imax | A     | defaults to Imax      |
| Isr <sup>+, ++</sup>     | Recombination current                                                  | А     | 0.0                   |
| Nr                       | Emission coefficient for Isr                                           | None  | 2.0                   |
| Ikf (Ik) $^+$            | High-injection knee current                                            | А     | infinity <sup>‡</sup> |
| Ikr <sup>†</sup>         | Reverse high injection knee current                                    | A     | 0                     |
| IkModel                  | Model to use for Ikf/Ikr: 1=ADS/Libra/Pspice,<br>2=Hspice/Spectre      | None  | 1                     |
| Bv                       | Reverse breakdown voltage                                              | V     | infinity <sup>‡</sup> |
| Ibv <sup>†</sup>         | Current at reverse breakdown voltage                                   | A     | 0.001                 |
| Nbv (Nz)                 | Reverse breakdown ideality factor                                      | None  | 1.0                   |
| Ibvl <sup>†</sup>        | Low-level reverse breakdown knee current                               | A     | 0.0                   |

Advanced Design System 2011.01 - Nonlinear Devices

|                            | Advanced Design System 2011.01 - Nonlinear                                                          |                     |                                     |
|----------------------------|-----------------------------------------------------------------------------------------------------|---------------------|-------------------------------------|
| Nb∨l                       | Low-level reverse breakdown ideality factor                                                         | None                | 1.0                                 |
| Kf                         | Flicker noise coefficient                                                                           | None                | 0.0                                 |
| Af                         | Flicker noise exponent                                                                              | None                | 1.0                                 |
| Ffe                        | Flicker noise frequency exponent                                                                    | None                | 1.0                                 |
| Jsw (Isw) <sup>++ ‡‡</sup> | Sidewall saturation current                                                                         | None                | 0.0                                 |
| Rsw <sup>‡‡‡</sup>         | Sidewall series resistance                                                                          | Ohm                 | 0.0                                 |
| Gleaksw <sup>‡‡</sup>      | Sidewall junction leakage conductance                                                               | S                   | 0.0                                 |
| Ns                         | Sidewall emission coefficient                                                                       | None                | if (Level=11) Ns=1,<br>else Ns=N    |
| Ikp <sup>‡‡</sup>          | high-injection knee current for sidewall; defaults to Ikf                                           | A                   | Ikf                                 |
| Cjsw <sup>++ ‡‡</sup>      | Sidewall zero-bias capacitance                                                                      | None                | 0.0                                 |
| Msw (Mjsw)                 | Sidewall grating coefficient                                                                        | None                | 0.33                                |
| Vjsw (Pbsw) <sup>††</sup>  | Sidewall junction potential; defaults to Vj                                                         | None                | 1: when level=11;<br>defaults to Vj |
| Fcsw                       | Sidewall forward-bias depletion capacitance coefficient                                             | None                | 0.5; Fc: when<br>level=11           |
| Area                       | Default area for diode                                                                              | None                | 1                                   |
| Periph (Perim)             | Default periphery for diode                                                                         | None                | 0                                   |
| Width                      | Default width for diode                                                                             | meter               | 0                                   |
| Length                     | Default length for diode                                                                            | meter               | 0                                   |
| Etch                       | Sidewall narrowing due to etching per side                                                          | meter               | 0                                   |
| Etchl                      | Sidewall length reduction due to etching per side; defaults to Etch                                 | meter               | defaults to Etch                    |
| Dwl                        | Geometry width and length addition                                                                  | meter               | 0                                   |
| Shrink                     | Geometry shrink factor                                                                              | None                | 1.0                                 |
| AllowScaling               | Allow scale option and instance scale parameter to affect geometry parameters: yes or no            | None                | no                                  |
| Tnom                       | Nominal ambient temperature                                                                         | °C                  | 25                                  |
| Trise                      | Temperature rise over ambient                                                                       | °C                  | 0                                   |
| Tlev                       | Temperature equation selector (0/1/2)                                                               | None                | 0                                   |
| Tlevc                      | Temperature equation selector for capacitance (0/1/2/3)                                             | None                | 0                                   |
| Xti                        | Saturation-current temperature exponent (with Eg, helps define the dependence of Is on temperature) | None                | 3.0                                 |
| Eg                         | Energy gap (with Xti, helps define the dependence of Is on temperature)                             | eV                  | 1.11                                |
| EgAlpha (Gap1)             | Energy gap temperature coefficient alpha                                                            | eV/ºC               | 7.02e-4                             |
| EgBeta (Gap2)              | Energy gap temperature coefficient beta                                                             | К                   | 1108                                |
| Tcjo (Cta)                 | Cjo linear temperature coefficient                                                                  | 1/ºC                | 0                                   |
| Tcjsw (Ctp)                | Cjsw linear temperature coefficient                                                                 | 1/°C                | 0                                   |
| Ttt1                       | Tt linear temperature coefficient                                                                   | 1/°C                | 0                                   |
| Ttt2                       | Tt quadratic temperature coefficient                                                                | 1/(°C) <sup>2</sup> | 0                                   |
| Tm1                        | Mj linear temperature coefficient                                                                   | 1/°C                | 0                                   |
| Tm2                        | Mj quadratic temperature coefficient                                                                | 1/(°C) <sup>2</sup> | 0                                   |
| Tvj (Pta)                  | Vj linear temperature coefficient                                                                   | 0                   | 0                                   |
|                            |                                                                                                     |                     | -                                   |

|             |                                                  | 1/ C                |                       |
|-------------|--------------------------------------------------|---------------------|-----------------------|
| Tvjsw (Ptp) | Vjsw linear temperature coefficient              | 1/°C                | 0                     |
| Trs         | Rs linear temperature coefficient                | 1/°C                | 0                     |
| Trs2        | Rs quadratic temperature coefficient             | 1/(°C) <sup>2</sup> | 0                     |
| Tgs         | Gleak, Gleaksw linear temperature coefficient    | 1/°C                | 0                     |
| Tgs2        | Gleak, Gleaksw quadratic temperature coefficient | 1/(°C) <sup>2</sup> | 0                     |
| Tbv (Tbv1)  | Bv linear temperature coefficient                | 1/°C                | 0                     |
| Tbv2        | Bv quadratic temperature coefficient             | 1/(°C) <sup>2</sup> | 0                     |
| wBv (Bvj)   | Diode reverse breakdown voltage (warning)        | V                   | infinity <sup>‡</sup> |
| wPmax       | Maximum power dissipation (warning)              | W                   | infinity <sup>‡</sup> |
| AllParams   | Data Access Component (DAC) Based Parameters     | None                | None                  |
| +           |                                                  |                     |                       |

<sup>†</sup> Parameter value is scaled with Area specified with the Diode device. <sup>††</sup> Value varies with temperature based on model Tnom and device Temp. <sup>†††</sup> Parameter value is scaled with 1/Area. <sup>‡</sup> Value 0.0 is interpreted as infinity. <sup>‡‡</sup> Parameter value is scaled with the Periph specified with the Diode device. <sup>‡‡‡</sup> Parameter value is scaled with 1/Periph.

### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname Diode [parm=value]*
```

The model statement starts with the required keyword *diode*. It is followed by the *modelname* that will be used by diode components to refer to the model. The third parameter indicates the type of model; for this model it is *Diode*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

## **Example:**

model SimpleDiode Diode \
Is=1e-9 Rs=4 Cjo=1.5e-12

## **Notes/Equations**

- 1. This model supplies values for a Diode device.
- 2. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent (Data Access Component)* (ccsim) in *Introduction to Circuit Components* (ccsim). Note that model parameters that are explicitly specified take

Advanced Design System 2011.01 - Nonlinear Devices precedence over those specified via AllParams.

## 3. Area and Periph

When Level is set to 1 (standard):

Device Area will be used if specified and > 0; otherwise the model Area will be used.

Device Periph will be used if specified; otherwise the model Periph will be used. **When Level is set to 3** (Hspice geometry):

Device Width and Length will be used if specified; otherwise the model Width and Length will be used.

If Width > 0 and Length > 0

Area =  $w \times I$ Periph = 2 × (w + I) where w = Width × Shrink + Dwl I = Length × Shrink + Dwl otherwise the Area and Periph specified in the device or model (follow the same logic described when Level=1) will be used to calculate the new area and periph.

Area = area (from device/model)  $\times$  Shrink<sup>2</sup> Periph = periph (from device/model)  $\times$  Shrink

## When Level is set to 11 (Spectre):

Device Area will be used if it is specified and > 0;

Otherwise

if Length and Width in device or model (in this order) are specified and > 0,

Area = Weff × Leff where Weff = Width - Etch Leff = Length - Etchl

otherwise use model Area if it is specified and > 0

otherwise, Area = 1 (default)

Device Periph will be used if it is specified and > 0

Otherwise,

if Length and Width in device or model (in this order) are specified and > 0,

Periph = 2 × (Weff + Leff) where Weff = device Width - Etch Leff = device Length - Etchl

otherwise use model Periph if it is specified and > 0 otherwise, Periph = 0 (default)

If model parameter Allowscaling is set to yes, the diode geometry parameters Periph, Width, and Length are multiplied by Scale, while Area is multiplied by Scale  $\times$  Scale (for Level = 11 only).

## 4. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current ExplI which is used in the following equations. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value. If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) ExpII = Imelt; otherwise, if Imax is specified (in the model or in Options) ExpII = Imax; otherwise, ExpII = model Imelt default value (which is the same as the model Imax default value).

## 5. Currents and Conductances

Is and Isr in the following equations have been multiplied by the effective area factor aeff.

If vd > vmax

idexp = [Imax + (vd - vmax) × gmax] gdexp = gmax

where

$$vmax = N \times vt \times ln\left(\frac{Expli}{Is} + 1\right)$$

$$gmax = \frac{ExplI + Is}{N \times vt}$$

vt is thermal voltage

If vmax 
$$\geq$$
 vd  $\geq$  - 10 × N × vt  
 $idexp = Is\left(e^{\frac{vd}{N \times vt}} - 1\right)$ 

$$gdexp = \frac{Is}{N \times vt} \times e^{\frac{vd}{N \times vt}}$$

If vd < -10 × N × vt  

$$idexp = [Is(e^{-10} - 1) + gdexp(vd + 10 \times N \times vt)]$$

$$gdexp = \frac{Is}{N \times vt} \times e^{-10}$$

Breakdown current contribution is considered if Bv is specified and Ibv is not equal to zero.

If -(vd + Bv) > vbmax

 $ib = -{ExplI + [-(vd + Bv) - vbmax] \times gbmax - ibo}$ gb = gbmax where

$$vbmax = Nbv \times vt \times ln\left(\frac{Expli}{Ibv}\right)$$

 $gbmax = \left(\frac{ExplI}{Nbv \times vt}\right)$ 

If vbmax  $\geq$  -(vd + Bv) > -MAXEXP  $\times$  Nbv  $\times$  vt

$$ib = -Ibv \times e^{-rac{vd + Bv}{Nbv \times vt}} + ibo$$

$$gb = \frac{-ib}{Nbv \times vt}$$

Otherwise

$$ib = 0$$
  
 $gb = 0$ 

For ibo

If 
$$Bv < MAXEXP \times Nbv \times vt$$
  
 $ibo = Ibv \times e^{\frac{-Bv}{Nbv \times vt}}$ 

Otherwise

ibo = 0

MAXEXP is the maximum exponent supported by the machine; value range is 88 to 709.

Low level reverse breakdown current is considered if Ibvl is specified and not equal to zero.

If -(vd + Bv) > vlbmax

 $ilb = -{ExpII + [-(vd + Bv) - vlbmax] \times glbmax - ilbo}$ glb = glbmax

where

$$vlbmax = Nbvl \times vt \times ln\left(\frac{Expli}{Ibvl}\right)$$

$$glbmax = \left(\frac{Expli}{Nbvl \times vt}\right)$$
  
If vlbmax  $\geq -(vd + Bv) > - MAXEXP \times bvl \times vt$ 

$$ilb = -Ibvl \times e^{\frac{-(vd + Bv)}{Nbvl \times vt}} + ilbo$$

$$glb = \frac{-ilb}{Nbvl \times vt}$$

Otherwise

ilb = 0glb = 0

For ilbo If  $Bv < MAXEXP \times NbvI \times vt$ -Bv $ilbo = Ibvl \times e^{\overline{Nbvl \times vt}}$ 

Otherwise

ilbo = 0

Recombination current is considered if Isr is specified and not equal to zero. If vd > vrmax

ir = ExpII + (vd - vrmax) × grmax | gr = grmax

where

$$vrmax = Nr \times vt \times \ln\left(\frac{Expli}{Isr} + 1\right)$$

$$grmax = \frac{ExplI + Isr}{Nr \times vt}$$
  
If vrmax  $\geq$  vd  $\geq$  - 10 × Nr × vt

$$ir = Isr\left(e^{\frac{Vd}{Nr \times vt}} - 1\right)$$

$$gr = \frac{Isr}{Nr \times vt} \times e^{\frac{vd}{Nr \times vt}}$$

If vd < -10 × Nr × vt  

$$ir = [Isr(e^{-10} - 1) + gr(vd + 10 \times Nr \times vt)]$$

$$gr = \frac{Isr}{Nr \times vt} \times e^{-10}$$
194

iexp = idexp + ib + ilbgexp = gdexp + gb + glb

There are two ways to model high-injection effect.

When IkModel is set to ADS/Libra/Pspice and when Ikf  $\neq$  0 and iexp > 0.

$$idh = iexp \sqrt{\frac{Ikf}{Ikf + iexp}}$$
$$gdh = gexp \frac{1}{2} \left(1 + \frac{Ikf}{Ikf + iexp}\right) \sqrt{\frac{Ikf}{Ikf + iexp}}$$

When IkModel is set to Hspice: If Ikf is not equal to zero and iexp > 0

$$idh = iexp \frac{1}{1 + \sqrt{\frac{iexp}{Ikf}}}$$
$$gdh = gexp \left(\frac{1}{1 + \sqrt{\frac{iexp}{Ikf}}}\right) \times \left(1 - \frac{\sqrt{\frac{iexp}{Ikf}}}{2\left(1 + \sqrt{\frac{iexp}{Ikf}}\right)}\right)$$

Otherwise if Ikr is not equal to zero and iexp < 0

$$idh = iexp \frac{1}{1 + \sqrt{\frac{-iexp}{Ikr}}}$$
$$gdh = gexp \left(\frac{1}{1 + \sqrt{\frac{-iexp}{Ikr}}}\right) \times \left(1 - \frac{\sqrt{\frac{-iexp}{Ikr}}}{2\left(1 + \sqrt{\frac{-iexp}{Ikr}}\right)}\right)$$

The total diode DC current and conductance

where Gmin is minimum junction conductance.

Sidewall diode:

Sidewall diode equations have been multiplied by Periph, Isw, Ibv, Ikp, Gleaksw.

If vdsw > vmaxsw

idexpsw = [ExplI + (vdsw - vmaxsw) × gmaxsw] gdexpsw = gmaxsw

where

vdsw is sidewall diode voltage

$$vmaxsw = Ns \times vt \times \ln\left(\frac{Expli}{Isw} + 1\right)$$

 $gmaxsw = \frac{ExplI + Isw}{Ns \times vt}$ 

vt is thermal voltage

If vmaxsw  $\geq$  vdsw  $\geq$  - 10  $\times$  Ns  $\times$  vt

$$idexpsw = Isw \left( e^{\frac{vdsw}{Ns \times vt}} - 1 \right)$$

$$gdexswp = \frac{Isw}{Ns \times vt} \times e^{\frac{vdsw}{Ns \times vt}}$$

If vdsw < 
$$-10 \times Ns \times vt$$

 $idexpsw = [Isw(e^{-10} - 1) + gdexpsw(vdsw + 10 \times Ns \times vt)]$ 

$$gdexpsw = \frac{Isw}{Ns \times vt} \times e^{-10}$$

Breakdown current contribution is considered if Bv is specified and Ibv  $\neq$  0 and Level  $\neq$  11.

If -(vdsw + Bv) > vbmaxsw

ibsw = -{ExplI + [-(vdsw + Bv) - vbmaxsw] × gbmaxsw - ibosw}
gbsw = gbmaxsw

where

$$vbmaxsw = Nbv \times vt \times \ln\left(\frac{Expli}{Ibv}\right)$$

$$gbmaxsw = \left(\frac{Expli}{Nbv \times vt}\right)$$

If vbmaxsw  $\geq$  -(vd + Bv) > -MAXEXP × Nbv × vt

$$ibsw = -Ibv \times e^{\frac{-(vd + Bv)}{Nbv \times vt}} + ibosw$$

 $gbsw = \frac{-ibsw}{Nbv \times vt}$ 

Otherwise

For ibosw

If  $(vd + Bv) < MAXEXP \times Nbv \times vt$ 

$$ibosw = Ibv \times e^{\frac{-Bv}{Nbv \times vt}}$$

Otherwise

ibosw = 0

MAXEXP is the maximum exponent supported by the machine; value range is 88 to 709.

iexpsw = idexpsw + ibsw gexp = gdexp + gb

There are two ways to model sidewall diode high-injection effect.

When IkModel is set to ADS/Libra/Pspice and when Ikp  $\neq$  0 and iexp > 0.

$$idsw = iexpsw \sqrt{\frac{Ikp}{Ikp + iexpsw}}$$

$$gdsw = gexpsw \frac{1}{2} \left(1 + \frac{Ikp}{Ikp + iexpsw}\right) \sqrt{\frac{Ikp}{Ikp + iexpsw}}$$

When IkModel is set to Hspice:

If Ikp 
$$\neq$$
 0 and iexp > 0  
 $idsw = iexpsw \frac{1}{1 + \sqrt{\frac{iexpsw}{Ikp}}}$ 

$$gdsw = gexpsw \left(\frac{1}{1 + \sqrt{\frac{iexpsw}{Ikp}}}\right) \times \left(1 - \frac{\sqrt{\frac{iexpsw}{Ikp}}}{2\left(1 + \sqrt{\frac{iexp}{Ikp}}\right)}\right)$$

The total diode DC current and conductance

Idsw = idsw + Gleaksw × vdsw + Gmin × vdsw Gdsw = gdsw + Gleaksw + Gmin

## 6. Diode Capacitances

For main diode capacitance Diffusion capacitance

$$Cdiff = Tt \times gdexp$$

Junction capacitance If  $vd \leq Fc \times Vj$ 

$$Cj = Area \times Cjo \times \left(1 - \frac{vd}{Vj}\right)^{-M}$$

If Vd > Fc  $\times$  Vj

$$Cj = Area \times \frac{Cjo}{(1 - Fc)^{M}} \left[ 1 + \left(\frac{M}{Vj \times (1 - Fc)}\right) \times (vd - Fc \times Vj) \right]$$

Total main capacitance

$$Cdj = Cdiff + Cj + Cd \times Area$$

For sidewall capacitance If vdsw  $\leq$  Fcsw  $\times$  Vjsw

$$Cjsw = Periph \times Cjsw \left(1 - \frac{vdsw}{Vjsw}\right)^{-Msw}$$

If vdsw > Fcsw  $\times$  Vjsw

$$Cjsw = Periph \frac{Cjsw}{\left(1 - Fcsw\right)^{Msw}} \bigg[ 1 + \bigg( \frac{Msw}{Vjsw \times (1 - Fcsw)} \bigg) \times (vdsw - Fcsw \times Vjsw) \bigg]$$

## 7. Temperature Scaling

Parameters Is, Jsw, Isr, Cjo, Cjsw, Vj, Vjsw, Bv, Tt, and Rs are temperature dependent.

## \rm Note

Expressions for the temperature dependence of the energy bandgap and the intrinsic carrier concentration are for silicon only. Depletion capacitance for non-silicon diodes may not scale properly with temperature, even if values of Eg and Xti are altered from the default values given in the parameters list.

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The energy bandgap  $E_{G}$  varies as:

$$E_{G}(T) = 1.16 - \frac{7.02 \times 10^{-4} T^{2}}{T + 1108}$$
  
if  $T/ev = 0, 1$   
$$E_{G}(T) = Eg - \frac{EgAlphaT^{2}}{T + EgBeta}$$

if T lev = 2

The intrinsic carrier concentration  $n_i$  for silicon varies as:

$$n_i(T) = 1.45 \times 10^{10} \left(\frac{T}{300.15}\right)^{3/2} \exp\left(\frac{E_G(300.15)}{2k \, 300.15/q} - \frac{E_G(T)}{2k \, T/q}\right)$$

The saturation currents Is, Isr, and Jsw scale as:

if Tlev = 0 or Tlev = 1  

$$Is^{NEW} = Is \times \exp\left[\frac{Eg}{NkTnom/q} - \frac{Eg}{NkTemp/q} + \frac{Xti}{N}\ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Isr^{NEW} = Isr \times \exp\left[\frac{Eg}{NrkTnom/q} - \frac{Eg}{NrkTemp/q} + \frac{Xti}{Nr}\ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Jsw^{NEW} = Jsw \times \exp\left[\frac{Eg}{NkTnom/q} - \frac{Eg}{NkTemp/q} + \frac{Xti}{N}\ln\left(\frac{Temp}{Tnom}\right)\right]$$

else if Tlev = 2

$$Is^{NEW} = Is \times \exp\left[\frac{E_G(Tnom)}{NkTnom/q} - \frac{E_G(Temp)}{NkTemp/q} + \frac{Xti}{N}\ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Isr^{NEW} = Isr \times \exp\left[\frac{E_G(Tnom)}{NrkTnom/q} - \frac{E_G(Temp)}{NrkTemp/q} + \frac{Xti}{Nr}\ln\left(\frac{Temp}{Tnom}\right)\right]$$

$$Jsw^{NEW} = Jsw \times \exp\left[\frac{E_G(Tnom)}{NkTnom/q} - \frac{E_G(Temp)}{NkTemp/q} + \frac{Xti}{N}\ln\left(\frac{Temp}{Tnom}\right)\right]$$

The breakdown voltage Bv scales as:

$$Bv^{NEW} = Bv - Tbv(Temp - Tnom)$$

if Tlev = 1 or Tlev = 2

if Tlev = 0

 $Bv^{NEW} = Bv - Tbv[1 - Tbv(Temp - Tnom)]$ The breakdown current Ibv does not scale with temperature.

The transit time Tt scales as:

 $Tt^{NEW} = Tt[1 + Ttt1(Temp - Tnom) + Ttt2(Temp - Tnom)^{2}]$ The series resistance Rs scales as:

$$Rs^{NEW} = Rs[1 + Trs(Temp - Tnom)]$$

The depletion capacitances Cjo and Cjsw and the junction potentials Vj and Vjsw vary as: if Tlevc = 0

$$V_{j}^{NEW} = V_{j}\frac{Temp}{Tnom} + \frac{2kTemp}{q}\ln\left(\frac{n_{i}(Tnom)}{n_{i}(Temp)}\right)$$

$$V j s w^{NEW} = V j s w \frac{Temp}{Tnom} + \frac{2kTemp}{q} \ln \left( \frac{n_i(Tnom)}{n_i(Temp)} \right)$$

$$C_j^{NEW} = C_j \left(1 + M \left[1 + 4 \times 10^{-4} (Temp - Tnom) - \frac{V_j^{NEW}}{V_j}\right]\right)$$

$$Cjsw^{NEW} = Cjsw \left(1 + Msw \left[1 + 4 \times 10^{-4} (Temp - Tnom) - \frac{Vjsw^{NEW}}{Vjsw}\right]\right)$$

if Tlevc 
$$= 1$$

$$Vj^{NEW} = Vj - Tvj(Temp - Tnom)$$
  
$$Vjsw^{NEW} = Vjsw - Tvjsw(Temp - Tnom)$$
  
$$Cj^{NEW} = Cj[1 + Tcj(Temp - Tnom)]$$

$$Cjsw^{NEW} = Cjsw[1 + Tcjsw(Temp - Tnom)]$$

if Tlevc = 
$$2$$

$$Vj^{NEW} = Vj - Tvj(Temp - Tnom)$$

$$Vjsw^{NEW} = Vjsw - Tvjsw(Temp - Tnom)$$

$$Cj^{NEW} = Cj \left(\frac{Vj}{Vj^{NEW}}\right)^{M}$$

$$Cjsw^{NEW} = Cjsw \left(\frac{Vjsw}{Vjsw^{NEW}}\right)^{Msw}$$
if Tlevc = 3

if Tlev = 2

$$dVjdT = -\left(E_G(Tnom) + \frac{3kTnom}{q} + (Eg - E_G(Tnom))\frac{Tnom + 2EgBeta}{Tnom + EgBeta} - Vj\right)\frac{1}{Tnom}$$

$$dVjswdT = -\Big(E_G(Tnom) + \frac{3kTnom}{q} + (E_g - E_G(Tnom))\frac{Tnom + 2E_gBeta}{Tnom + E_gBeta} - Vjsw\Big)\frac{1}{Tnom}$$

if Tlev = 0 or Tlev = 1

$$dVjdT = -\left(E_G(Tnom) + \frac{3kTnom}{q} + (1.16 - E_G(Tnom))\frac{Tnom + 2 \times 1108}{Tnom + 1108} - Vj\right)\frac{1}{Tnom}$$

$$dVjswdT = -\Big(E_G(Tnom) + \frac{3kTnom}{q} + (1.16 - E_G(Tnom))\frac{Tnom + 2 \times 1108}{Tnom + 1108} - Vjsw\Big)\frac{1}{Tnom}$$

$$V_j^{NEW} = V_j + dV_j dT (Temp - Tnom)$$

$$V_{jsw}^{NLW} = V_{jsw} + dV_{jsw} dT(Temp - Tnom)$$

$$Cj^{NEW} = Cj \left(1 - \frac{dVjdT(Temp - Tnom)}{2Vj}\right)$$

$$Cjsw^{NEW} = Cjsw \left(1 - \frac{dVjswdT(Temp - Tnom)}{2Vjsw}\right)$$

The junction grading coefficient M scales as:

$$M^{NEW} = M[1 + Tm1(Temp - Tnom) + Tm2(Temp - Tnom)^{2}]$$
  
The sidewall grading coefficient Maw does not scale

The sidewall grading coefficient Msw does not scale.

## 8. Noise Model

Thermal noise generated by resistor Rs is characterized by the following spectral density:

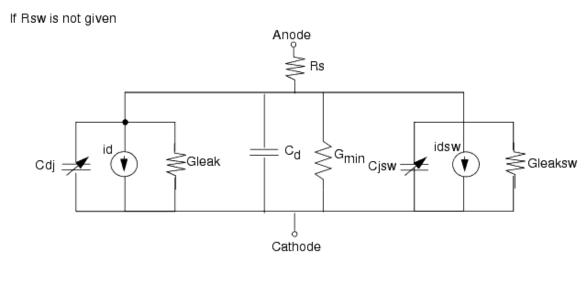
$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{Rs}$$

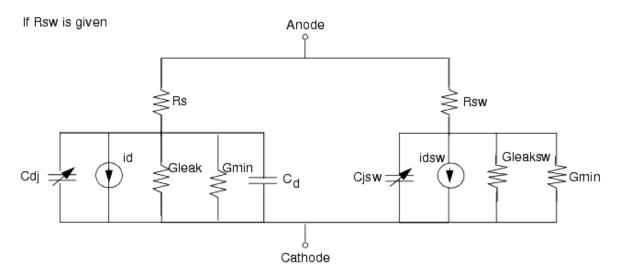
Shot noise and flicker noise (Kf, Af, Ffe) generated by the DC current flow through the diode is characterized by the following spectral density:

$$\frac{\langle i_d^2 \rangle}{\Delta f} = 2qI_D + Kf \frac{I_D^{Af}}{f^{Ffe}}$$

In the preceding expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge, Kf, Af, and Ffe are model parameters, f is the simulation frequency, and  $\Delta f$  is the noise bandwidth.

9. The sidewall model parameters model a second ideal diode that scales with the


instance parameter Periph, in parallel with the main diode that scales with the instance parameter Area. The series resistance Rs scales only with Area, not with Periph.


10. To model a Zener diode, the model parameters Bv and Ibv can be used. Bv should be set to the Zener reverse breakdown voltage as a positive number. Ibv is set to the breakdown current that flows at that voltage as a positive number; typically this is in the range of 1 to 10 mA. The series resistance Rs should also be set; a typical value is 1 Ohm.

### References

1. Antognetti and G. Massobrio. *Semiconductor device modeling with SPICE*, New York: McGraw-Hill, Second Edition 1993.

### **Equivalent Circuit**





## **JUNCAP (Philips JUNCAP Device)**



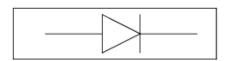


#### **Parameters**

| Name            | Description                                                         | Units          | Default   |
|-----------------|---------------------------------------------------------------------|----------------|-----------|
| Model           | Model instance name                                                 | None           | JUNCAPM1  |
| Ab <sup>+</sup> | diffusion area                                                      | m <sup>2</sup> | 1.0e-12   |
| Ls <sup>†</sup> | length of sidewall of the diffusion area that is not under the gate | meter          | 1.0e-6    |
| Lg <sup>†</sup> | length of sidewall of the diffusion area that is under the gate     | meter          | 1.0e-6    |
| Region          | DC operating region; 0=off, 1=on, 2=rev, 3=sat                      | None           | on        |
| Temp            | device operating temperature                                        | °C             | 25        |
| Trise           | temperature rise above ambient                                      | °C             | 0         |
| Mode            | simulation mode: Nonlinear, Linear, Standard (refer to Note 1)      | None           | Nonlinear |
| Noise           | noise generation option; yes=1, no=0                                | None           | yes       |
| _M              | number of devices in parallel                                       | None           | 1         |

<sup>+</sup> Each instance parameter whose dimension contains a power of meter will be multiplied by the Scale to the same power. For example, a parameter with a dimension of *m* will be multiplied by *scale*<sup>1</sup> and a parameter with a dimension of  $m^2$  will be multiplied by *scale*<sup>2</sup>. Note that only parameters whose dimensions contain meter are scaled. For example, a parameter whose dimension contains *cm* instead of meter is not scaled.

## **Notes/Equations**


- The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.

| Name  | Description              | Units   |
|-------|--------------------------|---------|
| Id    | Diode current            | amperes |
| Power | DC power dissipated      | watts   |
| Rd    | Series resistance        | ohms    |
| Cd    | Junction capacitance     | farads  |
| Vd    | Anode-cathode<br>voltage | volts   |

- 3. Additional information about this device is available from the website: <u>http://www.nxp.com/models/add\_models/juncap/index.html</u> 4. This device has no default artwork associated with it.

## Juncap\_Model (Philips JUNCAP Model)

Symbol



### **Parameters**

| Name       | Description                                                                | Units            | Default |
|------------|----------------------------------------------------------------------------|------------------|---------|
| Tr (Tnom)  | Temperature for the Reference Transistor                                   | °C               | 25      |
| Trise      | temperature rise above ambient                                             | °C               | 0       |
| Vr         | Reference Voltage                                                          | V                | 0.0     |
| Jsgbr      | Bottom Saturation Current Density due to Electron-Hole generation          | A/m <sup>2</sup> | 1.0e-3  |
| Jsdbr      | Bottom Saturation Current Density due to Diffusion from Back Contact       | A/m <sup>2</sup> | 1.0e-3  |
| Jsgsr      | Sidewall Saturation Current Density due to Electron-Hole generation        | A/m              | 1.0e-3  |
| Jsdsr      | Sidewall Saturation Current Density due to Diffusion from Back Contact     | A/m              | 1.0e-3  |
| Jsggr      | Gate-Edge Saturation Current Density due to Electron-Hole generation       | A/m              | 1.0e-3  |
| Jsdgr      | Gate-Edge Saturation Current Density due to Diffusion from Back<br>Contact | A/m              | 1.0e-3  |
| Cjbr       | Bottom Junction Capacitance                                                | F/m <sup>2</sup> | 1.0e-12 |
| Cjsr       | Bottom Junction Capacitance                                                | F/m              | 1.0e-12 |
| Cjgr       | Bottom Junction Capacitance                                                | F/m              | 1.0e-12 |
| Vdbr       | Bottom Junction Capacitance                                                | V                | 1.0     |
| Vdsr       | Bottom Junction Capacitance                                                | V                | 1.0     |
| Vdgr       | Bottom Junction Capacitance                                                | V                | 1.0     |
| Pb         | Bottom Junction Grading Coefficient                                        | None             | 0.4     |
| Ps         | Bottom Junction Grading Coefficient                                        | None             | 0.4     |
| Pg         | Bottom Junction Grading Coefficient                                        | None             | 0.4     |
| Nb         | Emission Coefficient of the Bottom Forward Current                         | None             | 1.0     |
| Ns         | Emission Coefficient of the Bottom Forward Current                         | None             | 1.0     |
| Ng         | Emission Coefficient of the Bottom Forward Current                         | None             | 1.0     |
| Gmin       | P-N junction parallel conductance                                          | None             | 1.0e-15 |
| Imax       | Explosion current                                                          | A                | 1.0     |
| All Params | Data Access Component (DAC) Based Parameters                               | None             | None    |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelname Juncap [parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by diode components to refer to the model. The third parameter indicates the type of model; for this model it is *Juncap*. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

## Example:

```
model DSpar Juncap \
Jsbgr=3e-4 Cjbr=1e-4 Tr=25
```

## **Notes/Equations**

## **Note** Information about this model must be provided in a *model* file; refer to the <u>Netlist Format</u>.

 The JUNCAP model is used to describe the behavior of diodes that are formed by the source, drain, or well-to-bulk junctions in MOS devices. The model is limited to the case of reverse biasing of these junctions. Similar to the MOS model, the current equations are formulated and ac effects are modeled via charge equations using the quasi-static approximation. In order to include the effects from differences in the sidewall, bottom and gate-edge junction profiles, these contributions are calculated separately in the JUNCAP model. Both the diffusion and the generation currents are treated in the model, each with its own temperature and voltage dependence.

In the JUNCAP model a part of the total charge comes from the gate-edge junction very close to the surface. This charge is also included in the MOS-model charge equations, and is therefore counted twice. However, this results in only a very minor error.

- More information about the model can be obtained from: <u>http://www.nxp.com/models/add\_models/juncap/code\_history/index.html</u>
- 3. Use AllParams with a *DataAccessComponent (Data Access Component)* (ccsim) to specify file-based parameters. Note that model parameters that are explicitly specified take precedence over those via AllParams.

## PIN\_diode (PIN Diode)

Symbol



### **Parameters**

| Name                   | Description                                                        | Units   | Default  |
|------------------------|--------------------------------------------------------------------|---------|----------|
| Area                   | Area scaling factor                                                | None    | 1.0      |
| Temp                   | Device operating temperature                                       | °C      | 25.0     |
| Trise                  | Temperature rise above the circuit ambient (if Temp not specified) | °C      | 0.0      |
| Tnom                   | Temperature at which device parameters were established            | °C      | 25.0     |
| Noise                  | Noise generation option: yes, no                                   | None    | yes      |
| Model_level            | Model level selector: 1=SPICE Cj model, 2=advanced Cj model        | None    | 1        |
| Is <sup>+, ++</sup>    | Saturation Current                                                 | А       | 1.0e-14  |
| N                      | Emission coefficient                                               | None    | 1.0      |
| В                      | PI-IN emission coefficient splitting factor                        | None    | 1.0      |
| Ikf <sup>††</sup>      | High-injection knee current (0.0 means infinity)                   | A       | infinity |
| Bv <sup>†</sup>        | Reverse breakdown voltage (0.0 means infinity)                     | V       | infinity |
| Ibv <sup>†</sup>       | Current at reverse breakdown voltage                               | A       | 0.001    |
| Rs <sup>†, †††</sup>   | Diode ohmic resistance                                             | Ohms    | 0.0      |
| Rp <sup>+, +++</sup>   | Junction parallel resistance                                       | Ohms    | 1.0e9    |
| Repi <sup>+, +++</sup> | Zero-bias resistance                                               | Ohms    | 1.0e3    |
| Rlim <sup>+, +++</sup> | Minimum series resistance                                          | Ohms    | 1.0e-3   |
| W                      | I-region width                                                     | m       | 1.0e-4   |
| Wd                     | Depletion area width                                               | m       | 1.0e-6   |
| Tau                    | Ambipolar carrier lifetime                                         | sec     | 1.0e-6   |
| Iknee                  | Current dependent lifetime knee current (0.0 means infinity)       | A       | infinity |
| Rho                    | I-region resistivity                                               | Ohm × m | 0.0      |
| Eps                    | I-region dielectric constant                                       | None    | 11.9     |
| Cj <sup>+, ++</sup>    | Zero-bias capacitance                                              | F       | 1.0e-15  |
| Vj <sup>†</sup>        | Junction potential                                                 | V       | 1.0      |
| м †                    | Grading coefficient                                                | None    | 0.0      |
| Fc                     | Forward-bias depletion capacitance coefficient                     | None    | 0.5      |
| Eg                     | Energy gap                                                         | eV      | 1.11     |
| Xti                    | Temperature exponent for Is                                        | None    | 3.0      |
| Trs                    | Linear relative temperature coefficient for Rs<br>208              | 1/°C    | 0.0      |

Advanced Design System 2011.01 - Nonlinear Devices

| Trs2                 | Quadratic relative temperature coefficient for Rs   | 1/(°C) <sup>2</sup> | 0.0 |
|----------------------|-----------------------------------------------------|---------------------|-----|
| Trp                  | Linear relative temperature coefficient for Rp      | 1/°C                | 0.0 |
| Trp2                 | Quadratic relative temperature coefficient for Rp   | 1/(°C) <sup>2</sup> | 0.0 |
| Trepi                | Linear relative temperature coefficient for Repi    | 1/°C                | 0.0 |
| Trepi2               | Quadratic relative temperature coefficient for Repi | 1/(°C) <sup>2</sup> | 0.0 |
| Trlim                | Linear relative temperature coefficient for Rlim    | 1/°C                | 0.0 |
| Trlim2               | Quadratic relative temperature coefficient for Rlim | 1/(°C) <sup>2</sup> | 0.0 |
| Tm1                  | Linear relative temperature coefficient for M       | 1/°C                | 0.0 |
| Tm2                  | Quadratic relative temperature coefficient for M    | 1/(°C) <sup>2</sup> | 0.0 |
| Tbv                  | Temperature coefficient for Bv                      | V/°C                | 0.0 |
| Kf                   | Flicker noise coefficient                           |                     | 0.0 |
| Af                   | Flicker noise exponent                              | None                | 1.0 |
| Ffe                  | Flicker noise frequency exponent                    | None                | 1.0 |
| Cpack <sup>††</sup>  | Package parasitic capacitance                       | F                   | 0.0 |
| Lbond <sup>+++</sup> | Package parasitic inductance                        | Н                   | 0.0 |
| Imax                 | Explosion current                                   | A                   | 1.0 |
| _M                   | Number of devices in parallel                       | None                | 1   |

## Range of Usage

All parameters, except Trise and temperature coefficients Txxx, should be either positive or non-negative. Model\_level can currently be 1 or 2. Out-of-range parameter values for Area, Temp, Tnom and W are reset to their default values. Parameters which are subject to temperature scaling are clipped at a small positive number or zero if, after scaling, their values become too small.

## **Notes/Equations**

- 1. The PIN diode device does not use a *model* card. All parameters are specified on each instance of the PIN diode device.
- 2. For Model\_level = 1 the standard SPICE diode equation is used to model the junction capacitance. Specifically, a linear extension is used for  $V_D > Fc \times Vj$ .
- 3. For Model\_level = 2 the advanced model equations of [1] are implemented. However, for Transient simulations the frequency dependence of the junction capacitance could significantly affect the robustness of the simulation, and thus is disabled. This may create some discrepancies between Harmonic Balance and Transient simulation results.
- 4. The device operating temperature *T* is either equal to the value of the parameter Temp, if it is specified, or defaults to the global (ambient) circuit temperature specified by the parameter Temp in the Options controller and modified by the value of Trise:

\_ T = circuit\_ambient\_temperature\_ + Trise If Temp is not specified in the Options controller, the circuit ambient temperature defaults to 25°C.

- 5. Thom parameter, if not specified, defaults to the global value of Thom as specified in the Options controller. If it is not specified in the Options controller, default is 25°C.
- 6. Imax Parameter Imax specifies the P-N junction explosion current. The global value of Imax given in the Options controller is not used as the default value if the PIN diode parameter Imax is not specified. The default value remains as shown in the table.
- 7. The parameter Rs is the series ohmic resistance of the diodes DPI and DIN shown in <u>Equivalent Circuit</u>. The overall PIN diode series resistance is not Rs, but rather a combination of Repi, Rlim and GRMOD, and is also affected by other parameters.
- 8. Implementation of the PIN\_diode model is based on [1-4]

## **Equations - Diode Current**

The PIN diode main current equation follows that of the standard PN diode but comes as a result of two diodes connected in series: DPI and DIN, in addition to being processed by the controlled sources as shown in <u>Equivalent Circuit</u>. The two diodes share the following parameters:

Area, Temp, Tnom, Is, Rs, Ikf, Bv, Ibv, Trs, Trs2 and Tbv.

but may have different emission coefficients as

 $N_{PI} = \frac{N}{1+B} \quad N_{IN} = \frac{N \cdot B}{1+B}$ 

if the model parameter B is different from 1.0.

The diode current is affected by the RC sub-circuit which is devised to model the impact of the charge storage in the I-region and its lifetime. The component values of the RC sub-circuit are defined as follows:

$$RP_i = 4i - 3 \quad CP_i = \frac{Tau}{4i - 3} \quad RS_i = \frac{alpha}{4i - 1}$$

where i = 1, 2, ..., 5,

 $alpha = \frac{W^2}{0.00048375 \cdot Tau}$ 

and Tau and W are model parameters.

The main diode current IS2 is fed back to the main diode branch through a CCCS with a gain of 1.

To establish the current in the main diode branch, its voltage Vpin is sensed by a VCVS and applied (with a gain of 1) directly to the diodes DPI and DIN. The current IS1 through the two diodes excites the RC sub-circuit via a CCVS with a trans-resistance of 1.

Finally, in addition to a limiting resistance Rlim and the zero-bias resistance Repi the diode current is affected by two nonlinear resistors, marked in the equivalent circuit as GRMOD and GE.

The current  $i_{\mbox{\scriptsize GE}}$  in GE is expressed in terms of its voltage  $v_{\mbox{\scriptsize GE}}$  as:

$$i_{GE} = 0.25 \cdot (v_{GE} + \sqrt{(v_{GE})^2 + 4\epsilon^2})^2 / Iknee$$

where Iknee is a model parameter and  $\Sigma = 10^{-12}$ .

The GRMOD component is actually a voltage controlled resistance and its current  $i_{GRMOD}$  is expressed in terms of its voltage  $v_{GRMOD}$  and of the controlling voltage  $v_{rp1}$  as:

$$i_{GRMOD} = ((v_{RP1} + \sqrt{(v_{RP1})^2 + 4\epsilon^2})/(Wm)) \cdot v_{GRMOD}$$

where

$$Wm = \frac{10 \cdot W^2}{Tau}$$

and Tau and W are model parameters.

## **Equations - Diode Capacitance**

The default setting of the parameter M (M = 0) makes the junction capacitance to be linear with its value specified by the parameter Cj.

For M > 0 and  $VD < Fc \times Vj$  the standard SPICE nonlinear capacitance equation is used

$$C = \frac{Cj}{\left(1 - \frac{V_D}{V_J}\right)^M}$$

where VD is the voltage across the capacitance and Cj, Fc and Vj are model parameters. The extension of this equation beyond Fc × Vj is controlled by the parameter Model\_level. For Model\_level = 1 (default) and  $V_D > Fc \times Vj$  the standard linear extension is used

$$C = \frac{Cj}{\left(1 - Fc\right)^{M}} \cdot \left[1 + \frac{M}{\left(1 - Fc\right) \cdot Vj} \cdot \left(V_{D} - Fc \cdot Vj\right)\right]$$

For Model\_level = 2 and Fc  $\times$  Vj < V<sub>D</sub> < (2-Fc)  $\times$  Vj the quadratic extension is used:

$$C = \frac{Cj}{\left(1 - Fc\right)^{M}} \cdot \left[1 + \frac{M}{2} \cdot \left(1 - \left(\frac{V_D - Vj}{\left(1 - Fc\right) \cdot Vj}\right)^2\right)\right]$$

which is followed by a decaying exponential extension for  $V_D > (2-Fc) \times Vj$ , defined as follows.

$$C = \frac{Cj}{\left(1 - Fc\right)^{M}} \cdot \exp\left(-\frac{M}{\left(1 - Fc\right) \cdot Vj} \cdot \left(V_{D} - \left(2 - Fc\right) \cdot Vj\right)\right)$$

Additionally, for Model\_level = 2, a frequency dependence of Cj is incorporated into the capacitance equation using the following factor, if the model parameter Rho is specified and greater than zero. By default Rho = 0 and the frequency dependence of Cj does not take effect, i.e., the factor is set to 1.0.

$$Cj \leftarrow Cj \cdot \frac{1 + \left(\frac{f}{f_r}\right)^2}{\left(\frac{Wd}{W}\right) + \left(\frac{f}{f_r}\right)^2}$$

where  $f_r$  is the dielectric relaxation frequency

$$f_r = \frac{1}{2\pi\rho\varepsilon_r\varepsilon_0}, \rho = Rho, \varepsilon_r = Eps$$

Rho, Eps, Wd and W are model parameters, and  $\Sigma 0$  is the permittivity of vacuum.

## **Other RLC Components**

The parameters Rp, Repi, Rlim, Cpack and Lbond provide the component values for the respective components. Rp is the junction parallel (leakage) resistance. Repi is the zerobias series diode resistance. Rlim establishes the minimum diode resistance. Cpack and Lbond are the package parasitic capacitance and inductance, respectively.

## **Temperature Scaling Relations**

Temperature scaling is performed when the operating device temperature T (see <u>Note 4</u>) is different from Tnom. The temperature scaling relations used for the PIN diode are the same as for the PN diode with Tlev = 0 and Tlevc = 0. This includes scaling of the saturation current Is, the breakdown voltage Bv, the grading coefficient M, the junction potential Vj, the junction capacitance Cj, as well as the thermal voltage in the equation for the diode current. See *Diode\_Model (PN-Junction Diode Model)* (ccnld) for more information.

Additionally, the resistances Rs, Rp, Repi and Rlim are scaled in the same way as the resistor component.

## **Dimensional Scaling Relations**

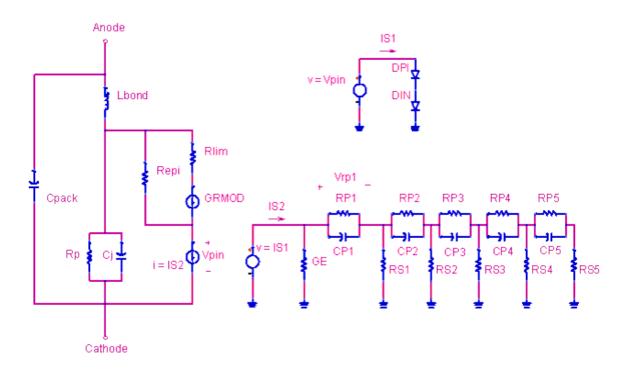
If the parameter Area is different from 1.0 then the dimensional scaling is performed on several model parameters, as indicated in the parameter table for <u>Area</u>.

### **Noise Model**

Thermal noise generated by resistors Rs, Rp, Repi and Rlim is characterized by the following spectral density:

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

where R=Rs, Rp, Rlim or Repi, respectively. Since the resistor Rs is included in both diodes DPI and DIN, there are correspondingly two noise sources.


Both diodes DPI and DIN are considered noisy (if the parameter Noise is set to "YES"). Shot noise and flicker noise (Kf, Af, Ffe) generated by the DC current flowing through the diodes is characterized by the following spectral density:

$$\frac{\langle i^2 \rangle}{\Delta f} = 2qI_D + Kf \cdot \frac{I_D^{Af}}{f^{Ffc}}$$

In the preceding expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge, Kf, Af, and Ffe are model parameters, f is the simulation frequency, and  $\Delta$ 

f is the noise bandwidth.

The RC sub-circuit is considered noiseless.



## Equivalent Circuit

- 1. J. Kyhl and M. Andersson, "An Advanced PIN-diode Model," Microwave Journal, September 2005, pp. 206-212.
- R.H. Caverly, N.V. Drozdovski, L.M. Drozdovskaia and M.J. Quinn, "SPICE Modeling of Microwave and RF Control Diodes," Proc. 43rd IEEE Midwest Symp., August 8-11, 2000.
- 3. A.G.M. Strollo, "A New SPICE Model of Power P-I-N Diode Based on Asymptotic Waveform Evaluation," IEEE Transactions on Power Electronics, Vol. 12, No. 1, pp. 12-20, January 1997.

# **Devices and Models, GaAs**

- ADS FET (ADS Root FET) (ccnld)
- ADS FET Model (ADS Root Model GaAsFET Model) (ccnld)
- Advanced Curtice2 Model (Advanced Curtice-Quadratic GaAsFET Model) (ccnld)
- Angelov FET (Angelov Nonlinear GaAsFET) (ccnld)
- Angelov Model (Angelov (Chalmers) Nonlinear GaAsFET Model) (ccnld)
- Curtice2 Model (Curtice-Quadratic GaAsFET Model) (ccnld)
- Curtice3 Model (Curtice-Cubic GaAsFET Model) (ccnld)
- EE FET3 (EEsof Scalable Nonlinear GaAsFet, Second Generation) (ccnld)
- EE FET3 Model (EEsof Scalable Nonlinear GaAsFet Model) (ccnld)
- EE HEMT1 (EEsof Scalable Nonlinear HEMT) (ccnld)
- EE HEMT1 Model (EEsof Scalable Nonlinear HEMT Model) (ccnld)
- GaAsFET (Nonlinear Gallium Arsenide FET) (ccnld)
- Materka Model (Materka GaAsFET Model) (ccnld)
- Mesfet Form (Symbolic MESFET Model) (ccnld)
- Modified Materka Model (Modified Materka GaAsFET Model) (ccnld)
- Statz Model (Statz Raytheon GaAsFET Model) (ccnld)
- Tajima Model (Tajima GaAsFET Model) (ccnld)
- TOM3 (TriQuint TOM3 Scalable Nonlinear FET) (ccnld)
- TOM3 Model (TriQuint TOM3 Scalable Nonlinear FET Model) (ccnld)
- TOM4 (TriQuint TOM4 Scalable Nonlinear FET) (ccnld)
- TOM4 Model (TriQuint TOM4 Scalable Nonlinear FET Model) (ccnld)
- TOM (TriQuint Scalable Nonlinear GaAsFET) (ccnld)
- TOM Model (TriQuint Scalable Nonlinear GaAsFET Model) (ccnld)
- TriQuintMaterka (TriQuint-Materka Nonlinear FET) (ccnld)
- TriQuintMaterka Model (TriQuint-Materka Nonlinear FET Model) (ccnld)

## **Bin Model**

The BinModel in the GaAs library allows you to sweep a parameter (usually a geometry, such as gate length), then enable the simulator to automatically select between different model cards. This alleviates the problem that one scalable model typically doesn't work for all sizes of a device.

For information on the use of the binning feature, refer to *BinModel* (ccsim) in *Introduction to Circuit Components*.

# **Multiplicity Parameter \_M**

The multiplicity feature provides a way to scale components or entire sub-circuits containing many components and sub-circuits. Given a component with a multiplicity value M, the simulator treats this component as if there were M such components all connected in parallel. Sub-circuits within sub-circuits will be appropriately scaled.

The \_M parameter is available at the component level as shown here. (For components that do not explicitly have a Multiplicity parameter, the same functionality can be achieved by placing the component in a sub-circuit and using the sub-circuit's Multiplicity parameter, as described next.)

| Select Parameter<br>Model=BJTM1            | Ι            | None 🗹             |
|--------------------------------------------|--------------|--------------------|
| Area=<br>Region=                           | Equ          | ation Editor       |
| Temp=<br>Mode=nonlinear<br>Noise=yes<br>M= | Optimizatio  | n/Statistics Setup |
| _M : Number of devices i                   | in parallel, | (default: 1)       |
| OK Apply                                   | Cancel       | Reset Help         |

For sub-circuits, the parameter is enabled by selecting **File** > **Design Parameters** from the Schematic window. In the dialog box, select the **Parameters** tab. To add the Multiplicity parameter, choose **Add Multiplicity Factor\_M**.

| General   | Paran          | neters     |
|-----------|----------------|------------|
| Select Pa | rameter        |            |
|           |                |            |
| Add       | Caf            | Paste      |
| Maa       | <b>\$,</b> 888 | 3.92.09    |
| Add Multi | plicity F      | actor (_M) |

# **Netlist Syntax**

Models for the ADS circuit simulator have the following syntax:

```
model modelname modeltype [param=value]*
```

where model is a keyword, modelname is the user-defined name for the model and modeltype is one of the predefined model types (e.g., Diode, BJT, MOSFET). After these three required fields comes zero or more param=value pairs. param is a model keyword and value is its user-assigned value. There is no required order for the param=value pairs. Model keywords that are not specified take on their default values. Refer to documentation for each model type to see the list of model parameters, their meanings and default values.

The model statement must be on a single line. Use the backslash "\" as a line continuation character. The instance and model parameter names are case sensitive. Most, but not all, model parameters have their first character capitalized and the rest are lower case. Scale factors (e.g.,  $p=10^{-12}$ ,  $n=10^{-9}$ ,  $u=10^{-6}$ ,  $m=10^{-3}$ ,  $k=10^{+3}$ ,  $M=10^{+6}$ ) can be used with numbers for numeric values. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

A netlist translator is available for translating models and subcircuits from Pspice, Hspice, and Spectre syntax to the form used by the ADS Circuit Simulator. Refer to *Netlist Translator for SPICE and Spectre* (netlist) for more information.

# **Parameter Aliases**

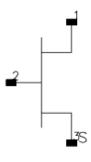
For compatibility with other simulators, some models accept two or more different keywords for the same parameter. For example, the Diode model accepts both model keywords Is and Js for the saturation current. In the documentation, the parameter Name column lists the aliases in parentheses after the main parameter name. The main parameter name is the one that appears in the ADS dialog box for the model.

# Tnom

All nonlinear device models have a parameter that specifies the temperature at which the model parameters were extracted. Normally called Tnom, some models may use Tref, Tr, or Tmeas. The default value for Tnom is specified on the Options item in the Tnom field. If Options.Tnom is not specified it defaults to 25°C. This is true for all nonlinear devices.

It is strongly suggested that the user explicitly set Tnom in each model and not depend on its default value. First, this provides a self-documenting model; other users of the device will not have to guess at what Tnom should be. Second, different users of the same model would get different results for the same circuit if they simulate with different values of Options.Tnom.

# **Temp and Trise**


The ADS circuit simulation allows the user to directly specify the temperature of each individual device instance. This is done with the device instance parameter Temp which is the device temperature in degrees Celsius. If it is not specified, it defaults to the ambient temperature set with Options.Temp, which defaults to 25°C.

For compatibility with other simulators, many of the nonlinear devices allow the user to specify Trise for each device instance, which specifies actual device temperature as an increase from ambient. It defaults to zero. The Trise instance value is used only if the Temp instance value is not specified. If the user does not specify Trise on the instance, a default value for Trise can also be specified in the model. It defaults to zero. The following shows the logic of how the instance temperature is calculated if it is not explicitly specified.

```
if Instance.Temp is not specified
if instance.Trise is not specified
Instance.Temp = Options.Temp + Model.Trise
else
Instance.Temp = Options.Temp + Instance.Trise
```

# ADS\_FET (ADS\_Root FET)

#### Symbol



#### **Parameters**

| Name  | Description                   | Units | Default  |
|-------|-------------------------------|-------|----------|
| Model | name of an ADS_FET model      | None  | ADSFETM1 |
| Wtot  | total gate width              |       | 1.0e-4   |
| Ν     | number of device gate fingers | None  | 1        |
| _M    | number of devices in parallel | None  | 1        |

### **Notes/Equations**

- 1. If Wtot or N is specified as *Rawfile value* or zero, the default gate width as specified in the model file is used. For other values, these values can be used to scale the extracted model for different geometries. Scaling remains valid for ratios up to 5:1.
- 2. Wtot is the total gate width-not the width per finger; the parameter N is the number of fingers; therefore, the width per finger is Wtot/N.
- 3. Currents and capacitances scale linearly with gate width:

$$I = I_0 \times \frac{Wtot}{W_0}$$
$$C = C_0 \times \frac{Wtot}{W_0}$$

Parasitic resistances scale as:

$$Rg = R_{G0} \times \frac{Wtot}{W_0} \left(\frac{N_0}{N}\right)^2$$
$$Rd = R_{D0} \times \frac{W_0}{Wtot}$$

$$Rs = R_{S0} \times \frac{W_0}{Wtot}$$

where Wtot and N are the user-specified values and  $W_0$  and  $N_0$  are the extracted

values given in the ADS\_FET\_Model. The parasitic inductances do not scale.

- 4. Care should be taken when using the transistor outside of the region at which the model measurements were taken. Extrapolation of the measured data may occur without warning during DC, harmonic balance, and time-domain analyses. This extrapolated data may produce unreliable results.
- ADS\_FET currents can be measured with the standard current measurements, except that pins must be specified by number instead of name; for example, 1=G, 2=D, 3=S.
- 6. The ADS\_FET cannot be temperature scaled and is noiseless.
- 7. The following table lists the DC operating point parameters that can be sent to the dataset.

| Name     | Description                          | Units   |
|----------|--------------------------------------|---------|
| Id       | Drain current                        | amperes |
| Ig       | Gate current                         | amperes |
| Is       | Source current                       | amperes |
| Power    | DC power dissipated                  | watts   |
| Gm       | Forward transconductance (dIds/dVgs) | siemens |
| Gds      | Output conductance (dIds/dVds)       | siemens |
| Ggs      | Gate conductance (dIg/dVgs)          | siemens |
| dIg_dVds | (dIg/dVds)                           | siemens |
| dQd_dVds | (dQd/dVds)                           | farads  |
| dQd_dVgs | (dQd/dVgs)                           | farads  |
| dQg_dVds | (dQg/dVds)                           | farads  |
| dQg_dVgs | (dQg/dVgs)                           | farads  |
| Vgs      | Gate-source voltage                  | volts   |
| Vds      | Gate-drain voltage                   | volts   |

### **DC Operating Point Information**

# ADS\_FET\_Model (ADS Root Model GaAsFET Model)

#### Symbol



#### **Parameters**

| Name      | Description                                   | Units | Default |
|-----------|-----------------------------------------------|-------|---------|
| File      | name of file containing measured data         | None  | None    |
| Rs        | source resistance (overrides extracted value) | Ohm   | None    |
| Rg        | gate resistance (overrides extracted value)   | Ohm   | None    |
| Rd        | drain resistance (overrides extracted value)  | Ohm   | None    |
| Ls        | source inductance (overrides extracted value) | Н     | None    |
| Lg        | gate inductance (overrides extracted value)   | Н     | None    |
| Ld        | drain inductance (overrides extracted value)  | Н     | None    |
| AllParams | Data Access Component (DAC) Based Parameters  | None  | None    |

#### **Notes/Equations**

- 1. This model supplies values for an ADS\_FET device.
- 2. The default extension for the model file is.*raw*. This file should be in the same format as ADS Root model data.
- 3. If Rs, Rg, Rd, Ls, Lg, or Ld is specified as *rawfile value* or zero, the default parasitic value is taken from the extracted values stored in the data file named by File parameter. Generally, *rawfile value* should be used.
- 4. Because this model is measurement-based, extrapolation warning messages may occur if the Newton iteration exceeds the measurement range. If these messages occur frequently, check that the measurement data is within the simulation range.
- 5. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by an AllParams association.

#### References

1. D. Root, "Technology independent large signal non quasi static FET model by direct construction from automatically characterized device data," in *21st EuMC*, 1991, p. 927.

- 2. D. E. Root, S. Fan, and J. Meyer, "Technology-independent large-signal FET models: A measurement-based approach to active device modeling," in *Proc. th ARMMS Conf., Bath, U.K.*, Sept. 1991, pp. 1-21.
- 3. D. E. Root, M. Pirola, S. Fan, W. J. Anklam, and A. Cognata, "Measurement-based large-signal diode modeling system for circuit and device design," *IEEE Trans. Microwave Theory Tech.*, vol. 41, pp. 2211-2217, Dec. 1993.
- 4. D. E. Root and B. Hughes, "Principles of nonlinear active device modeling for circuit simulation," in *32nd ARFTG Conf. Dig*., Tempe, AZ, 1988, pp. 3-26.
- 5. D. E. Root, S. Fan, and J. Meyer, "Technology-independent large-signal non quasi static FET models by direct extraction from automatically characterized device data," in *21st European Microwave Conf. Proc.*, Stuttgart, Germany, 1991, pp. 927-932.
- D. E. Root and S. Fan, "Experimental evaluation of large-signal modeling assumptions based on vector analysis of bias-dependent S-parameters data from MESFET's and HEMT's," in *IEEE MTT-S Int. Microwave Symp. Tech. Dig.*, 1992, pp. 927-932.

# Advanced\_Curtice2\_Model (Advanced Curtice-Quadratic GaAsFET Model)

#### Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name                             | Description                                                                         | Units            | Default               |
|----------------------------------|-------------------------------------------------------------------------------------|------------------|-----------------------|
| NFET                             | N-channel model: yes or no                                                          | None             | yes                   |
| PFET                             | P-channel model: yes or no                                                          | None             | no                    |
| Idsmod                           | Ids model: 1=CQ 2=CC 3=Statz 4=Materka 5=Tajima 6=symbolic 7=TOM 8=Modified Materka | None             | 1                     |
| Vto <sup>†</sup>                 | threshold voltage                                                                   | V                | -2.0                  |
| Beta $^+$ , $^{++}$              | transconductance                                                                    | A/V <sup>2</sup> | 1.0e-4                |
| Lambda                           | channel length modulation                                                           | 1/V              | 0.0                   |
| Alpha                            | hyperbolic tangent function                                                         | 1/V              | 2.0                   |
| Tau                              | transit time under gate                                                             | sec              | 0.0                   |
| Tnom                             | nominal ambient temperature at which these model parameters were derived            | °C               | 25                    |
| Idstc                            | Ids temperature coefficient                                                         |                  | 0.0                   |
| Ucrit                            | critical field for mobility degradation                                             | None             | 0                     |
| Vgexp                            | Vgs – Vto exponent                                                                  | None             | 2                     |
| Gamds                            | effective pinch-off combined with Vds                                               | None             | -0.01                 |
| Vtotc                            | Vto temperature coefficient                                                         | V/°C             | 0.0                   |
| Betatce                          | BETA Exponential Temperature Coefficient                                            | %/°C             | 0.0                   |
| Rgs <sup>+++</sup>               | gate-source resistance                                                              | Ohm              | 0.0                   |
| Rf <sup>+++</sup>                | gate-source effective forward- bias resistance                                      | Ohm              | infinity <sup>‡</sup> |
| Gscap                            | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                           | None             | linear                |
| Cgs <sup>+</sup> , <sup>++</sup> | zero bias gate-source junction capacitance                                          | F                | 0.0                   |
| Cgd <sup>+</sup> , <sup>++</sup> | zero bias gate-drain junction capacitance                                           | F                | 0.0                   |
| Gdcap                            | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                           | None             | linear                |

| <b>F</b> -                      | Advanced Design System 2011.01 - Nonlinear Devices                                                                       | Nerr |                       |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|------|-----------------------|
| Fc                              | coefficient for forward bias depletion capacitance (diode model)                                                         | None | 0.5                   |
| Rgd <sup>+++</sup>              | gate drain resistance                                                                                                    | Ohm  | 0.0                   |
| Rd <sup>+++</sup>               | drain ohmic resistance                                                                                                   | Ohm  | fixed at 0.0          |
| Rg                              | gate resistance                                                                                                          | Ohm  | fixed at 0.0          |
| Rs <sup>†††</sup>               | source ohmic resistance                                                                                                  | Ohm  | fixed at 0.0          |
| Ld                              | drain inductance                                                                                                         | н    | fixed at 0.0          |
| Lg                              | gate inductance                                                                                                          | Н    | fixed at 0.0          |
| Ls                              | source inductance                                                                                                        | Н    | fixed at 0.0          |
| Cds <sup>++</sup>               | drain-source capacitance                                                                                                 | F    | 0.0                   |
| Rc <sup>+++</sup>               | used with Crf to model frequency dependent output conductance                                                            | Ohm  | infinity <sup>‡</sup> |
| Crf <sup>++</sup>               | used with Rc to model frequency dependent output conductance                                                             | F    | 0.0                   |
| Gsfwd                           | 0=none, 1=linear, 2=diode                                                                                                | None | linear                |
| Gsrev                           | 0=none, 1=linear, 2=diode                                                                                                | None | None                  |
| Gdfwd                           | 0=none, 1=linear, 2=diode                                                                                                | None | None                  |
| Gdrev                           | 0=none, 1=linear, 2=diode                                                                                                | None | linear                |
| R1 <sup>+++</sup>               | approximate breakdown resistance                                                                                         | Ohm  | infinity <sup>‡</sup> |
| R2 <sup>+++</sup>               | resistance relating breakdown voltage to channel current                                                                 | Ohm  | infinity <sup>‡</sup> |
| Vbi <sup>†</sup>                | built-in gate potential                                                                                                  | V    | 0.85                  |
| Vbr                             | gate-drain junction reverse bias breakdown voltage (gate-source junction reverse bias breakdown voltage with Vds $< 0$ ) | V    | 1e100                 |
| Vjr                             | breakdown junction potential                                                                                             | V    | 0.025                 |
| Is <sup>+</sup> , <sup>++</sup> | gate junction saturation current (diode model)                                                                           | А    | 1.0e-14               |
| Ir                              | gate reverse saturation current                                                                                          | А    | 1.0e-14               |
| Imax                            | explosion current                                                                                                        | А    | 1.6                   |
| Imelt                           | explosion current similar to Imax; defaults to Imax (refer to Note 2)                                                    | A    | defaults to<br>Imax   |
| Xti                             | temperature exponent for saturation current                                                                              | None | 3.0                   |
| Eg                              | energy gap for temperature effect on Is                                                                                  | eV   | 1.11                  |
| N                               | gate junction emission coefficient (diode model)                                                                         | None | 1                     |
| Fnc                             | flicker noise corner frequency                                                                                           | Hz   | 0.0                   |
| R                               | gate noise coefficient                                                                                                   | None | 0.5                   |
| Р                               | drain noise coefficient                                                                                                  | None | 1.0                   |
| С                               | gate-drain noise correlation coefficient                                                                                 | None | 0.9                   |
| Taumdl                          | use second order Bessel polynomial to model tau effect in transient simulation: yes or no                                | None | no                    |
| wVgfwd                          | gate junction forward bias warning                                                                                       | V    |                       |
| wBvgs                           | gate-source reverse breakdown voltage warning                                                                            | V    |                       |
| wBvgd                           | gate-drain reverse breakdown voltage warning                                                                             | V    |                       |
| wBvds                           | drain-source breakdown voltage warning                                                                                   | V    |                       |
| wIdsmax                         | maximum drain-source current warning                                                                                     | A    |                       |
| wPmax                           | maximum power dissipation warning                                                                                        | W    |                       |
| AllParams                       | DataAccessComponent for file-based model parameter values                                                                | None | None                  |

<sup>+</sup> Parameter value varies with temperature based on model Tnom and device Temp. <sup>++</sup> Parameter value

## Notes/Equations

- 1. This model supplies values for a GaAsFET device.
- 2. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

3. The P, R, and C parameters model drain and gate noise sources.

$$\begin{array}{l} \frac{\langle i_d^2 \rangle}{\Delta f} = 4kTg_m P(1 + f_{NC}/f) \\ \frac{\langle i_g^2 \rangle}{\Delta f} = 4kT C_{gs}^2 \omega^2 R/g_m \\ \frac{\langle i_g, i_d^* \rangle}{\Delta f} = 4kTj C_{gs} \omega \sqrt{PR} C \end{array}$$

4. Drain-Source Current

Drain current in the Advanced Curtice quadratic model is based on the modification of the drain current equation in the Curtice quadratic model.

The quadratic dependence of the drain current with respect to the gate voltage is calculated with the following expression in the region  $V_{ds} \ge 0.0V$ .

$$I_{ds} = Beta_{NEW} \times (V_{gs} - Vto_{NEW})^{Vgexp} \times (1 + Lambda \times V_{ds}) \times tanh(Alpha \times V_{ds})$$

where:

 $Vto_{NEW} = Vto + Gainds \times Vds$ Beta<sub>NEW</sub> = Beta/(1 + Ucrit ×(Vgs -Vto<sub>NEW</sub>))

Assuming symmetry, in the reverse region, the drain and source swap roles and the expression becomes:

$$I_{ds} = Beta_{NEW} \times (V_{gd} - Vto_{NEW})^{Vgexp} \times (1-Lambda \times V_{ds}) \times tanh(Alpha \times V_{ds})$$

where:

$$\label{eq:Ids} \begin{split} I_{ds} &= \text{Beta}_{\text{NEW}} \times (\text{V}_{gd} - \text{Vto}_{\text{NEW}})^{\text{Vgexp}} \times (1 + \text{Lambda} \times \text{V}_{ds}) \times \text{tanh}(\text{Alpha} \times \text{V}_{ds}). \end{split}$$

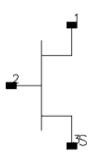
where:

 $Vto_{NEW} = Vto + Gainds \times Vds$ Beta<sub>NEW</sub> = Beta/(1 + Ucrit ×(Vgd -Vto<sub>NEW</sub>))

The drain current is set to zero in either case if the junction voltage (V<sub>gs</sub> or V<sub>gd</sub>)

drops below the threshold voltage Vto.

If Ucrit is not equal to 0, the temperature coefficients Vtotc and Betatc are disabled.


5. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by an AllParams association.

## References

1. A. Cappy, "Noise Modeling and Measurement Techniques," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 36, No. 1, pp. 1-10, Jan. 1988.

# **Angelov\_FET (Angelov Nonlinear GaAsFET)**

Symbol

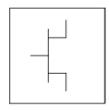


#### **Parameters**

| Name  | Description                                                    | Units | Default   |
|-------|----------------------------------------------------------------|-------|-----------|
| Model | name of an Angelov_Model                                       | None  | ANGELOVM1 |
| Temp  | device operating temperature                                   | °C    | 25        |
| Trise | temperature rise over ambient                                  | None  | 0         |
| Mode  | simulation mode: Nonlinear, Linear, Standard (refer to note 1) | None  | Nonlinear |
| Noise | noise generation option: yes=1, no=0                           | None  | yes       |
| _M    | number of devices in parallel                                  | None  | 1         |

### **Notes/Equations**

- 1. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.


#### **DC Operating Point Information**

| Name  | Description                          | Units   |
|-------|--------------------------------------|---------|
| Id    | Drain current                        | amperes |
| Ig    | Gate current                         | amperes |
| Is    | Source current                       | amperes |
| Power | DC power dissipated                  | watts   |
| Gm    | Forward transconductance (dIds/dVgs) | siemens |
| Gds   | Output conductance (dIds/dVds)       | siemens |
| Ggs   | Gate-source conductance              | siemens |
| Ggd   | Gate-drain conductance               | siemens |
| Cgs   | Gate-source capacitance              | farads  |
| Cgd   | Gate-drain capacitance               | farads  |
| Vgs   | Gate-source voltage                  | volts   |
| Vds   | Drain-source voltage                 | volts   |

3. This device has no default artwork associated with it.

# Angelov\_Model (Angelov (Chalmers) Nonlinear GaAsFET Model)

#### Symbol



#### **Parameters**

#### Model parameters must be specified in SI units.

| Name                  | Description                                                                   | Units | Default |
|-----------------------|-------------------------------------------------------------------------------|-------|---------|
| Idsmod                | Ids model flag: 0=original, 1=symmetric                                       | None  | 0       |
| Igmod                 | Igs/Igd model flag                                                            | None  | 0       |
| Capmod                | Capacitance model selector: 0=linear, 1=bias-dependent capacitances, 2=charge | None  | 2       |
| Ipk0 <sup>†</sup>     | Current for maximum transconductance                                          | A     | 0.05    |
| Vpks                  | Gate voltage for maximum transconductance                                     | V     | -0.2    |
| Dvpks                 | Delta gate voltage at peak Gm                                                 | V     | 0.2     |
| P1 <sup>†</sup>       | Polynomial coefficient for channel current                                    | None  | 1.0     |
| P2                    | Polynomial coefficient for channel current                                    | None  | 0.0     |
| Р3                    | Polynomial coefficient for channel current                                    | None  | 0.0     |
| Alphar                | Saturation parameter                                                          | None  | 0.1     |
| Alphas                | Saturation parameter                                                          | None  | 1.0     |
| Vkn <sup>++</sup>     | Knee voltage                                                                  | V     | 0.8     |
| Lambda                | Channel length modulation parameter                                           | None  | 0.0     |
| Lambda1 <sup>++</sup> | Channel length modulation parameter                                           | None  | 0.0     |
| Lvg <sup>++</sup>     | Coefficient for Lambda parameter                                              | None  | 0.0     |
| B1                    | Unsaturated coefficient for P1                                                | None  | 0.0     |
| B2                    | Unsaturated coefficient for P2                                                | None  | 3.0     |
| Lsb0 <sup>†</sup>     | Soft breakdown model parameter                                                | None  | 0.0     |
| Vtr                   | Threshold voltage for breakdown                                               | V     | 20.0    |
| Vsb2                  | Surface breakdown model parameter                                             | None  | 0.0     |

| Cds               | Advanced Design System 2011.01 - Nonlinear Dev<br>Drain-source capacitance | F    | 0.0    |
|-------------------|----------------------------------------------------------------------------|------|--------|
| Cgspi             | Gate-source pinch-off capacitance                                          | F    | 0.0    |
| Cgs0 <sup>†</sup> | Gate-source capacitance                                                    | F    | 0.0    |
| Cgdpi             | Gate-drain pinch-off capacitance                                           | F    | 0.0    |
| Cqd0 <sup>+</sup> | Gate-drain capacitance                                                     | F    | 0.0    |
| Cgdpe             | External gate-drain capacitance                                            | F    | 0.0    |
| P10               | Polynomial coefficient for capacitance                                     | None | 0.0    |
| P11               | Polynomial coefficient for capacitance                                     | None | 1.0    |
| P20               | Polynomial coefficient for capacitance                                     | None | 0.0    |
| P21               | Polynomial coefficient for capacitance                                     | None | 0.2    |
| P30               | Polynomial coefficient for capacitance                                     | None | 0.0    |
| P31               | Polynomial coefficient for capacitance                                     | None | 0.2    |
| P40               | Polynomial coefficient for capacitance                                     | None | 0.0    |
| P41               | Polynomial coefficient for capacitance                                     | None | 1.0    |
| P111              | Polynomial coefficient for capacitance                                     | None | 0.0    |
| Ij                | Gate fwd saturation current                                                | A    | 0.5e-3 |
| Pg                | Gate current parameter                                                     | None | 15.0   |
| Ne                | Ideality factor                                                            | None | 1.4    |
| Vjg               | Gate current parameter                                                     | V    | 0.7    |
| Rg                | Gate resistance                                                            | Ohm  | 0.0    |
| Rd                | Drain resistance                                                           | Ohm  | 0.0    |
| Ri                | Gate-source resistance                                                     | Ohm  | 0.0    |
| Rs                | Source resistance                                                          | Ohm  | 0.0    |
| Rgd               | Gate-drain resistance                                                      | Ohm  | 0.0    |
| Lg                | Gate inductance                                                            | Н    | 0.0    |
| Ld                | Drain inductance                                                           | н    | 0.0    |
| Ls                | Source inductance                                                          | Н    | 0.0    |
| Tau               | Internal time delay                                                        | sec  | 0.0    |
| Rcmin             | Minimum value of Rc resistance                                             | Ohm  | 1.0e3  |
| Rc†               | R for frequency dependent output conductance                               | Ohm  | 10.0e3 |
| Crf <sup>†</sup>  | C for frequency dependent output conductance                               | F    | 0.0    |
| Rcin              | R for frequency dependent input conductance                                | Ohm  | 100.0e |
| Crfin             | C for frequency dependent input conductance                                | F    | 0.0    |
| Rth               | Thermal resistance                                                         | Ohm  | 0.0    |
| Cth               | Thermal capacitance                                                        | F    | 0.0    |
| Tcipk0            | Temperature coefficient of Ipk0 parameter                                  | None | 0.0    |
| Тср1              | Temperature coefficient of P1 parameter                                    | None | 0.0    |
| Tccgs0            | Temperature coefficient of Cgs0 parameter                                  | None | 0.0    |
| Tccgd0            | Temperature coefficient of Cgd0 parameter                                  | None | 0.0    |
| Tclsb0            | Temperature coefficient of Lsb0 parameter                                  | None | 0.0    |
| Tcrc              | Temperature coefficient of Rc parameter                                    | None | 0.0    |
| Tccrf             | Temperature coefficient of Crf parameter                                   | None | 0.0    |
| Tnom              | Parameter measurement temperature                                          | °C   | 25     |

| (Tamb) |                                                           |      |      |
|--------|-----------------------------------------------------------|------|------|
| Selft  | Flag denoting self-heating                                | None | no   |
| Noimod | Noise model selector                                      | None | 0    |
| NoiseR | Gate noise coefficient                                    | None | 0.5  |
| NoiseP | Drain noise coefficient                                   | None | 1.0  |
| NoiseC | Gate-drain noise correlation coefficient                  | None | 0.9  |
| Fnc    | Flicker-noise corner frequency                            | Hz   | 0.0  |
| Kf     | Flicker noise coefficient                                 | None | 0.0  |
| Af     | Flicker noise exponent                                    | None | 1.0  |
| Ffe    | Flicker noise frequency exponent                          | None | 1.0  |
| Tg     | Gate equivalent temperature                               | °C   | 25   |
| Td     | Drain equivalent temperature coefficient                  | °C   | 25   |
| Td1    | Drain equivalent temperature coefficient                  |      | 0.1  |
| Tmn    | Noise fitting coefficient                                 | None | 1.0  |
| Klf    | Flicker noise coefficient                                 | None | 0.0  |
| Fgr    | Generation-recombination frequency corner                 | Hz   | 0.0  |
| Np     | Flicker noise frequency exponent                          | None | 1.0  |
| Lw     | effective gate noise width                                | mm   | 0.1  |
|        | DataAccessComponent for file-based model parameter values | None | None |

# **Notes/Equations**

1. This model supplies values for an Angelov device.

This model is based on the original Angelov (Chalmers) model described in [1] and [2], but includes the latest developments made by Prof. Itcho Angelov that have not been published.

- 2. The original Angelov model is not symmetrical (which corresponds to setting Idsmod=0). ADS implementation of the Angelov model is enhanced by providing a symmetrical Ids equation which corresponds to setting Idsmod=1. It should be used when simulating switches or resistive mixers. Part of this work was published in [6].
- 3. The published Angelov model is capacitance based (which corresponds to setting Capmod=1). In general, the bias-dependent capacitor models are known to be less robust, which sometimes leads to non-convergence problems. Charge-based models are normally more robust. ADS implementation of the Angelov model is enhanced by providing a charge-based model, which corresponds to setting Capmod=2. Both of the models have been created by Prof. Angelov.
- 4. If Rcmin is specified, the resistance Rc will be calculated based on the following nonlinear equation:

$$Rc = Rcmin + \frac{Rc}{(1 + \tanh(\psi))}$$

5. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by an AllParams association.

#### **Ids Equations**

$$P1m = P1 \times (1 + B1/\cos h^{2}(B2 \times Vds))$$
  
$$Vpkm = VPKS - DVPKS + DVPKS$$

$$\times \tanh(ALPHAS \times Vds) - VSB2 \times (Vdg - VTR)^2$$

$$\begin{split} \psi &= P1m \times (Vgs - Vpkm) + P2 \times (Vgs - Vpkm)^2 + P3 \times (Vgs - Vpkm)^3 \\ \alpha &= ALPHAR + ALPHAS \times (1 + tanh(\psi)) \\ \text{For the original model (Idsmod=0)} \\ Ids &= IPK0 \times (1 + tanh(\psi)) \times tanh(\alpha \times Vds) \end{split}$$

$$\times (1 + LAMBDA \times Vds + LSB0 \times \exp(Vdg - VTR))$$

For the symmetric model (Idsmod=1)  $\psi_n = P1m \times (Vgd - Vpkm) + P2 \times (Vgd - Vpkm)^2 + P3 \times (Vgd - Vpkm)^3$   $\alpha_n = ALPHAR + ALPHAS \times (1 + tanh(\psi_n))$   $\lambda_n = LAMBDA + LVG \times (1 + tanh(\psi_n))$   $\lambda_p = LAMBDA + LVG \times (1 + tanh(\psi))$   $\lambda_{n1} = LAMBDA1 + LVG \times (1 + tanh(\psi_n))$   $\lambda_{p1} = LAMBDA1 + LVG \times (1 + tanh(\psi))$   $Idsp = IPK0 \times (1 + tanh(\psi)) \times (1 + tanh(\alpha \times Vds))$ 

$$\times \left(1 + \lambda_p \times \text{Vds} + \lambda_{p1} \times \exp\left(\frac{Vds}{Vkn} - 1\right)\right)$$

 $Idsn = IPK0 \times (1 + tanh(\psi_n)) \times (1 - tanh(\alpha_n \times Vds))$ 

$$\times \left(1 - \lambda_n \times V ds - \lambda_{n1} \times \exp\left(\frac{V ds}{V k n} - 1\right)\right)$$

 $Ids = 0.5 \times (Idsp - Idsn)$ 

### Igs, Igd Equations

For Igmod = 0  

$$Igs = IJ \times (\exp(PG \times \tanh(2 \times (Vgsc - VJG))) - \exp(PG \times \tanh(-2 \times VJG)))$$
  
 $Igd = IJ \times (\exp(PG \times \tanh(2 \times (Vgdc - VJG))) - \exp(PG \times \tanh(-2 \times VJG)))$ 

For Igmod = 1

Advanced Design System 2011.01 - Nonlinear Devices  $Igs = IJ \times (\exp(PG \times \tanh(Vgsc - VJG)) - \exp(-PG \times VJG))$ 

 $Igd = IJ \times (\exp(PG \times \tanh(Vgdc - VJG)) - \exp(-PG \times VJG))$ 

If *PG* is not specified (left blank), but *NE* is specified then:  $PG = 1/(2 \times NE \times Vt)$ where  $Vt = K \times Temp / q$ If both *PG* and *NE* are not specified then the default value for *NE* is used. (*Vgsc* and *Vgdc* are the voltages directly across each current source in the *Equivalent Circuit* diagram).

**Charge Equations** 

For Capmod = 0 (linear capacitance) Cgs = CGSPI Cgd = CGDPI For Capmod = 1  $Cgs = CGSPI + CGS0 \times (1 + \tanh{(Phi1)})(1 + \tanh{(Phi2)})$ 

 $Cgd = CGDPI + CGD0 \times ((1 - P111 + \tanh(Phi3))(1 + \tanh(Phi4)) + 2 \times P111)$ 

$$Phi1 = P10 + P11 \times Vgsc + P111 \times Vds$$

 $Phi2 = P20 + P21 \times Vds$ 

 $Phi3 = P30 - P31 \times Vds$ 

 $Phi4 = P40 + P41 \times Vgdc - P111 \times Vds$ 

For Capmod = 2  $Lc1 = 1n(\cosh(Phi1))$ 

 $Lc10 = 1n(\cosh(P10 + P111 \times Vds))$ 

 $Qgs = CGSPI \times Vgsc + CGS0$ 

 $\times ((Phi1 + Lc1 - Qgs0) \times (1 - P111 + \tanh(Phi2)) / P11 + 2 \times P111 \times Vgsc)$ 

 $Qgs0 = P10 + P111 \times Vds + Lc10$  $Lc4 = 1n(\cosh(Phi4))$ 

 $Lc40 = 1n(\cosh(P40 - P111 \times Vds))$ 

 $Qgd = CGDPI \times Vgdc + CGD0$ 

 $\times ((Phi4 + Lc4 - Qgd0) \times (1 - P111 + tanh(Phi3))/P41 + 2 \times P111 \times Vgdc)$ 

 $Qgd0 = P40 - P111 \times Vds + Lc40$ 

 $Phi1 = P10 + P11 \times Vgsc + P111 \times Vds$ 

 $Phi2 = P20 + P21 \times Vds$ 

 $Phi3 = P30 - P31 \times Vds$ 

 $Phi4 = P40 + P41 \times Vgdc - P111 \times Vds$ 

#### **Temperature Equations**

$$\begin{split} Ipk0 &= IPK0 \times (1 + TCIPK0 \times (Temp - Tnom)) \\ P1 &= P1 \times (1 + TCP1 \times (Temp - Tnom)) \\ Lsb0 &= LSB0 \times (1 + TCLSB0 \times (Temp - Tnom)) \\ Cgs0 &= CGS0 \times (1 + TCGS0 \times (Temp - Tnom)) \\ Cgd0 &= CGD0 \times (1 + TCGD0 \times (Temp - Tnom)) \\ Rc &= RC \times (1 + TCRC \times (Temp - Tnom)) \\ Crf &= CRF \times (1 + TCCRF \times (Temp - Tnom)) \end{split}$$

#### **Ids Noise**

Noimod = 0 (default value)  $I_{dtn} = |I_{DS}| + |I_{GD}|$ 

$$\frac{\langle i_d^2 \rangle}{\Delta f} = 4kTLw \sqrt{\frac{T'_D}{T}}I_{dtn} + Td1 \cdot I_{dtn}^2$$

 $T'_{D} = Td[1 + Tmn(1 + \tanh(\Psi)) \cdot |\tanh(\alpha V_{DS})| \cdot (1 + Lambda \cdot V_{DS})]$ 

where  $\Psi$ and  $\alpha$ are functions calculated for the Ids equation. Noimod=1 Parameters NoiseP, NoiseR and NoiseC model the drain and gate noise sources, and their correlation.  $\frac{\langle i_d^2 \rangle}{\Delta f} = 4kTg_m NoiseP$  $\frac{\langle i_g^2 \rangle}{\Delta f} = 4kTC_{gs}^2 \omega^2 NoiseR/g_m$  $\frac{\langle i_g, i_d^* \rangle}{\Delta f} = jNoiseC4kTC_{gs} \omega \sqrt{NoiseP \cdot NoiseR}$ 

Noimod=2 (supported for linear noise only)

 $Td = TD \times (1 + TMN \times (1 + \tanh[\psi]) \times ABS(\tanh[\alpha \times Vds] \times (1 + Lambda \times Vds)))$ 

 $Tg = Temp \times (1 + (1 + \tanh[\psi]) \times ABS(\tanh[\alpha \times Vds] \times (1 + Lambda \times Vds)))$ 

( $\psi$  and  $\alpha$  are functions calculated for the Ids equation)

#### **Ids Flicker Noise Equations**

NoiMod=0 (default value)  

$$\frac{\langle i_{fl}^{2} \rangle}{\Delta f} = 4kTLw \sqrt{\frac{T'_{D}}{T}I_{dtn} + Td1 \cdot I_{dtn}^{2}} \left[ \frac{Klf}{f^{Np}} + \frac{Klf}{1 + f^{2}/(Fgr^{2})} \right]$$

NoiMod=1 or NoiMod=2

$$\frac{\langle i_{fl}^2 \rangle}{\Delta f} = \frac{4kTg_m P \cdot Fnc}{f} + \frac{KfI_{DS}^{Af}}{f^{Ffe}}$$

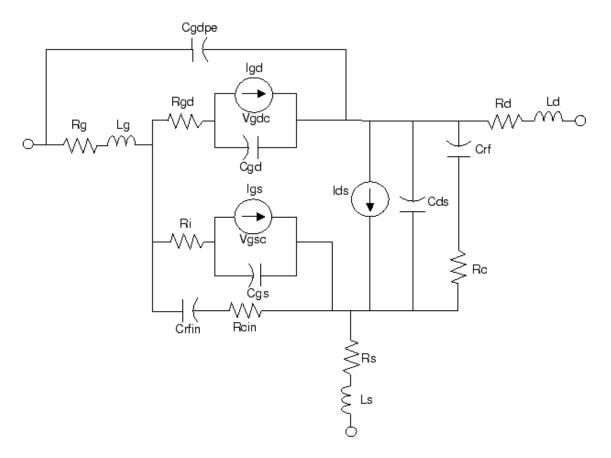
#### Igs, Igd Shot Noise and Flicker Noise Equations

$$\frac{\langle i^2 \rangle}{\frac{gs}{\Delta f}} = 2qI_{GS} + \frac{KfI_{GS}^{Af}}{f^{Ffe}}$$

$$\frac{\langle i ^{2} \rangle}{\Delta f} = 2qI_{GD} + \frac{KfI_{GD}^{Af}}{f^{Ffe}}$$

#### **Thermal Noise Equations**

Thermal noise of resistance Rgd, Rd, Rg and Rs:

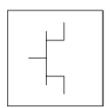

$$\frac{\langle i^2 \rangle}{\Delta f} = 4kT/R$$

Thermal noise of resistance Ri:

$$\begin{array}{l} \frac{\langle i^2 \rangle}{\Delta f} = 4kTg'/Ri \\ Tg' = Tg([1 + (1 + \tanh(\Psi)) \cdot | \tanh(\alpha V_{DS})| \cdot (1 + Lambda \cdot V_{DS})]) \end{array}$$

# where ${}^{\Psi}$ and ${}^{\alpha}$ are functions calculated for the Ids equation.

## **Equivalent Circuit**




### References

- 1. I. Angelov, H. Zirath, N. Rorsmann, "A New Empirical Nonlinear Model for HEMT and MESFET Devices," *IEEE MTT* Vol. 40, No. 12, December 1992.
- 2. I. Angelov, L. Bengtsson, M. Garcia, "Extensions of the Chalmers Nonlinear HEMT and MESFET Model," *IEEE MTT* Vol. 44, No. 10, October 1996.
- 3. M. Pospieszalski, "Modelling of noise parameters of MESFETs and MOSFETs and their frequency and temperature dependence," *IEEE Trans. MTT*., Vol. 37, pp. 1340-1350, Sept. 1989.
- 4. B. Hughes, "A Temperature Noise Model for Extrinsic FETs," *IEEE Trans. MTT* ., Vol. 40, pp. 1821-1832, Sept. 1992.
- 5. I. Angelov, "On the Performance of Low-Noise Low-DC-Power-Consumption Cryogenic Amplifiers," *IEEE Trans. MTT*., Vol. 50, No. 6, June 2002.
- 6. I. Angelov, L. Bengtsson, M. Garcia, F. van Raay, G. Kompa, "Extensions and model verification of the Chalmers Nonlinear HEMT and MESFET Model" Kassel 1997.

# Curtice2\_Model (Curtice-Quadratic GaAsFET Model)

### Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name                              | Description                                                                         | Units            | Default               |
|-----------------------------------|-------------------------------------------------------------------------------------|------------------|-----------------------|
| NFET                              | N-channel model type: yes or no                                                     | None             | yes                   |
| PFET                              | P-channel model type: yes or no                                                     | None             | no                    |
| Idsmod                            | Ids model: 1=CQ 2=CC 3=Statz 4=Materka 5=Tajima 6=symbolic 7=TOM 8=Modified Materka | None             | 1                     |
| Vto <sup>†</sup>                  | threshold voltage                                                                   | V                | -2.0                  |
| Beta <sup>+</sup> , <sup>++</sup> | transconductance                                                                    | A/V <sup>2</sup> | 1.0e-4                |
| Lambda                            | channel length modulation                                                           | 1/V              | 0.0                   |
| Alpha                             | hyperbolic tangent function                                                         | 1/V              | 2.0                   |
| Tau                               | transit time under gate                                                             | sec              | 0.0                   |
| Tnom                              | nominal ambient temperature at which these model parameters were derived            | °C               | 25                    |
| Idstc                             | Ids temperature coefficient                                                         |                  | 0.0                   |
| Vtotc                             | Vto temperature coefficient                                                         | V/°C             | 0.0                   |
| Betatce                           | BETA Exponential Temperature Coefficient                                            | %/°C             | 0.0                   |
| Rin <sup>+++</sup>                | channel resistance                                                                  | Ohm              | 0.0                   |
| Rf <sup>+++</sup>                 | gate-source effective forward- bias resistance                                      | Ohm              | infinity <sup>‡</sup> |
| Gscap                             | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                           | None             | linear                |
| Cgs <sup>+</sup> , <sup>++</sup>  | zero bias gate-source junction capacitance                                          | F                | 0.0                   |
| Cgd <sup>†</sup> , <sup>††</sup>  | zero bias gate-drain junction capacitance                                           | F                | 0.0                   |
| Rgd <sup>†††</sup>                | gate drain resistance                                                               | Ohm              | 0.0                   |
| Gdcap                             | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                           | None             | linear                |
| Fc                                | coefficient for forward bias depletion capacitance (diode model)                    | None             | 0.5                   |
| Rd <sup>+++</sup>                 | drain ohmic resistance                                                              | Ohm              | fixed at 0.0          |
| Rg                                | gate resistance                                                                     | Ohm              | fixed at 0.0          |

|                                 | Advanced Design System 2011.01 - Nonniear Devices                                                                        |      |                       |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|------|-----------------------|
| Rs <sup>+++</sup>               | source ohmic resistance                                                                                                  | Ohm  | fixed at 0.0          |
| Ld                              | drain inductance                                                                                                         | Н    | fixed at 0.0          |
| Lg                              | gate inductance                                                                                                          | Н    | fixed at 0.0          |
| Ls                              | source inductance                                                                                                        | Н    | fixed at 0.0          |
| Cds <sup>++</sup>               | drain-source capacitance                                                                                                 | F    | 0.0                   |
| Rc <sup>†††</sup>               | used with Crf to model frequency dependent output conductance                                                            | Ohm  | infinity <sup>‡</sup> |
| Crf <sup>++</sup>               | used with Rc to model frequency dependent output conductance                                                             | F    | 0.0                   |
| Gsfwd                           | 0=none, 1=linear, 2=diode                                                                                                | None | linear                |
| Gsrev                           | 0=none, 1=linear, 2=diode                                                                                                | None | None                  |
| Gdfwd                           | 0=none, 1=linear, 2=diode                                                                                                | None | None                  |
| Gdrev                           | 0=none, 1=linear, 2=diode                                                                                                | None | linear                |
| R1 <sup>+++</sup>               | approximate breakdown resistance                                                                                         | Ohm  | infinity <sup>‡</sup> |
| R2 <sup>+++</sup>               | resistance relating breakdown voltage to channel current                                                                 | Ohm  | infinity <sup>‡</sup> |
| Vbi <sup>†</sup>                | built-in gate potential                                                                                                  | V    | 0.85                  |
| Vbr                             | gate-drain junction reverse bias breakdown voltage (gate-source junction reverse bias breakdown voltage with Vds $< 0$ ) | V    | 1e100                 |
| Vjr                             | breakdown junction potential                                                                                             |      | 0.025                 |
| Is <sup>+</sup> , <sup>++</sup> | gate junction saturation current (diode model)                                                                           | А    | 1.0e-14               |
| Ir                              | gate reverse saturation current                                                                                          | A    | 1.0e-14               |
| Imax                            | explosion current                                                                                                        | А    | 1.6                   |
| Imelt                           | explosion current similar to Imax; defaults to Imax (refer to Note 2)                                                    | A    | defaults to<br>Imax   |
| Xti                             | temperature exponent for saturation current                                                                              | None | 3.0                   |
| Eg                              | energy gap for temperature effect on Is                                                                                  | eV   | 1.11                  |
| N                               | gate junction emission coefficient (diode model)                                                                         | None | 1                     |
| Fnc                             | flicker noise corner frequency                                                                                           | Hz   | 0.0                   |
| R                               | gate noise coefficient                                                                                                   | None | 0.5                   |
| Р                               | drain noise coefficient                                                                                                  | None | 1.0                   |
| С                               | gate-drain noise correlation coefficient                                                                                 | None | 0.9                   |
| Taumdl                          | use second order Bessel polynomial to model tau effect in transient simulation: yes or no                                | None | no                    |
| Kf                              | Flicker Noise Coefficient                                                                                                | None | 0.0                   |
| Af                              | Flicker Noise Exponent                                                                                                   | None | 1.0                   |
| wVgfwd                          | gate junction forward bias warning                                                                                       | V    |                       |
| wBvgs                           | gate-source reverse breakdown voltage warning                                                                            | V    |                       |
| wBvgd                           | gate-drain reverse breakdown voltage warning                                                                             | V    |                       |
| wBvds                           | drain-source breakdown voltage warning                                                                                   | V    |                       |
| wIdsmax                         | maximum drain-source current warning                                                                                     | A    |                       |
| wPmax                           | maximum power dissipation warning                                                                                        | W    |                       |
| AllParams                       | DataAccessComponent for file-based model parameter values                                                                | None | None                  |

## Notes/Equations

- 1. This model supplies values for a GaAsFET device.
- 2. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

3. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by an AllParams association.

# Equations/Discussion

## **Drain-Source Current**

Drain current in the Curtice quadratic model is based on the work of W. R. Curtice [1]. The quadratic dependence of the drain current with respect to the gate voltage is calculated with the following expression in the region  $V_{ds} \ge 0.0V$ .

 $I_{ds} = Beta \times (V_{qs} - Vto)^2 \times (1 + Lambda \times V_{ds}) \times tanh(Alpha \times V_{ds}).$ 

Assuming symmetry, in the reverse region, the drain and source swap roles and the expression becomes:

 $I_{ds} = Beta \times (V_{gd} - Vto)^2 \times (1 - Lambda \times V_{ds}) \times tanh(Alpha \times V_{ds}).$ 

The drain current is set to zero in either case if the junction voltage ( $V_{gs}$  or  $V_{gd}$ ) drops

below the threshold voltage Vto.

# Junction Charge (Capacitance)

Two options are available for modeling the junction capacitance of a device: model the junction as a linear component (a constant capacitance); model the junction using a diode depletion capacitance model. If a non-zero value of Cgs is specified and Gscap is set to 1 (linear), the gate-source junction will be modeled as a linear component. Similarly, specifying a non-zero value for Cgd and Gdcap = 1 result in a linear gate-drain model. A non-zero value for either Cgs or Cgd together with Gscap =2 (junction) or Gdcap = 2 will force the use of the diode depletion capacitance model for that particular junction. Note that each junction is modeled independent of the other; therefore, it is possible to model one junction as a linear component while the other is treated nonlinearly. The junction depletion charge and capacitance equations are summarized below.

# **Gate-source junction**

For  $V_{gc}$  < Fc × Vbi

$$Q_{gs} = 2 \times V_{bi} \times Cgs \left[1 - \sqrt{1 - \frac{V_{gc}}{Vbi}}\right]$$

$$Capacitance_{gs} = \frac{\partial Q_{gs}}{\partial V_{gc}} = \frac{Cgs}{\sqrt{1 - \frac{V_{gc}}{Vbi}}}$$

For  $V_{gc{}} \ge Fc \times Vbi$ 

$$Q_{gs} = 2 \times Vbi \times Cgs[1 - \sqrt{1 - Fc}] + \frac{Cgs}{(1 - Fc)^{3/2}}$$

$$\times \left[ \left( 1 - \frac{3 \times Fc}{2} \right) \times (V_{gc} - Fc \times Vbi) + \frac{V_{gc}^2 - (Fc \times Vbi)^2}{4 \times Vbi} \right]$$

$$Capacitance_{gs} = \frac{\partial Q_{gs}}{\partial V_{gc}} = \frac{Cgs}{(1-Fc)^{3/2}} \times \left[1 - \frac{3 \times Fc}{2} + \frac{V_{gc}}{2 \times Vbi}\right]$$

## **Gate-drain junction**

For  $V_{gd} < Fc \times Vbi$ 

$$Q_{gd} = 2 \times Vbi \times Cgd \times \left[1 - \sqrt{1 - \frac{V_{gd}}{Vbi}}\right]$$

$$Capacitance_{gd} = \frac{\partial Q_{gd}}{\partial V_{gd}} = \frac{Cgd}{\sqrt{1 - \frac{V_{gd}}{Vbi}}}$$

For  $V_{gd} \ge Fc \times Vbi$ 

$$Q_{gd} = 2 \times Vbi \times Cgd[1 - \sqrt{1 - Fc}] + \frac{Cgd}{(1 - Fc)^{3/2}}$$

$$\times \left[ \left( 1 - \frac{3 \times Fc}{2} \right) \times \left( V_{gd} - Fc \times Vbi \right) + \frac{V_{gd}^2 - (Fc \times Vbi)^2}{4 \times Vbi} \right]$$

$$Capacitance_{gd} = \frac{\partial Q_{gd}}{\partial V_{gd}} = \frac{Cgd}{(1 - Fc)^{3/2}} \times \left[1 - \frac{3 \times Fc}{2} + \frac{V_{gd}}{2 \times Vbi}\right]$$

#### Gate forward conduction and breakdown

Agilent's implementation of the Curtice quadratic model provides a few options for modeling gate conduction current between the gate-source and gate-drain junctions. The simplest model is that proposed by Curtice for his cubic polynomial model (see Curtice3). This model assumes an *effective value* of forward bias resistance Rf and an approximate breakdown resistance R1. With model parameters Gsfwd = 1 (linear) and Rf reset to non-zero, gate-source forward conduction current is given by:

$$I_{gs} = (V_{gs} - Vbi)/Rf$$
 when  $V_{gs} > Vbi$ 

= 0 when  $V_{as} \leq Vbi$ .

If Gsfwd = 2 (diode), the preceding expression for  $I_{gs}$  is replaced with the following diode expression:

$$I_{gs} = Is \times \left[ exp\left(\frac{V_{gs}}{N \times v_t}\right) - 1 \right]$$

Similarly, with parameter Gdfwd = 1 (linear) and Rf set to non-zero, gate-drain forward conduction current is given by:

$$I_{gd} = (V_{gd} - Vbi)/Rf$$
 when  $V_{gd} > Vbi$ 

= 0 when 
$$V_{gd} \leq Vbi$$
.

If Gdfwd is set to 2 (diode), the preceding expression for Igd is replaced with a diode expression:

$$I_{gd} = Is \times \left[ exp\left(\frac{V_{gd}}{N \times v_t}\right) - 1 \right]$$

The reverse breakdown current  $(I_{da})$  is given by the following expression if R1 is set non-

zero and Gdrev = 1 (linear):  $I_{gd} = V_{dg} - V_b$ /R1 when  $V_{dg} \ge V_b$  and  $V_b > 0$ 

= 0 when 
$$V_{dg} < V_b$$
 or  $V_b \le 0$ 

 $V_{b} = Vbr + R2 \times I_{ds}$ 

If Gdrev is set to 2, the preceding Igd expression is replaced with a diode expression:  $I_{gd} = -Ir \times \left[ exp\left(\frac{Vdg - Vb}{Vir}\right) - 1 \right]$  With Gsrev -= 1 (linear) and R1 set to non-zero, the gate-source reverse breakdown current Igs is given by the following expression:  $I_{as} = (V_{sg} - Vb)/R1$  when  $V_{sg} \ge Vbi$  and Vb > 0

= 0 when  $V_{sq}$  £ Vbi or Vb  $\leq$  0

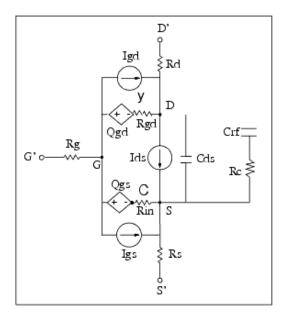
If Gsrev is set to 2, the preceding Igs expression is replaced with a diode expression.

$$I_{gs} = -Ir \times \left[ exp\left(\frac{Vsg - Vb}{Vjr}\right) - 1 \right]$$

When the diode equations are both enabled, the DC model is symmetric with respect to the drain and source terminals. The AC model will also be symmetric if, in addition to the latter, Cgs=Cgd.

## **Time delay**

This implementation models the delay as an ideal time delay. In the time domain, the drain source current for the ideal delay is given by:


 $I_{ds}(t) = I_{ds}(V_j(t - Tau), V_{ds}(t))$ 

where  $V_j = V_{gs}$  or  $V_j = V_{gd}$  (depending on whether  $V_{ds}$  is positive or negative). In the frequency domain, only the transconductance is impacted by this delay and the familiar expression for transconductance is obtained

 $y_m = g_m \times exp(-j \times \omega \times Tau)$ 

### **High-frequency output conductance**

The series-RC network in <u>Curtice2\_Model Schematic</u> is comprised of the parameters Crf and Rc and is included to provide a correction to the AC output conductance at a specific bias condition. At a frequency high enough such that CRF is an effective short, the output conductance of the device can be increased by the factor 1/Rc. (For more on this, see Reference [2].)



#### **Curtice2\_Model Schematic**

#### **Temperature Scaling**

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The saturation current Is scales as:

$$Is^{NEW} = Is \times exp\left[\left(\frac{Temp}{Tnom} - 1\right)\frac{q \times Eg}{k \times N \times Temp} + \frac{Xti}{N} \times ln\left(\frac{Temp}{Tnom}\right)\right]$$

The gate depletion capacitances Cgs and Cgd vary as:

$$Cgs^{NEW} = Cgs \left[ \frac{1 + 0.5[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + 0.5[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Tnom}]} \right]$$

$$Cgd^{NEW} = Cgd\left[\frac{1 + 0.5[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + 0.5[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Tnom}]}\right]$$

where  $\boldsymbol{\gamma}$  is a function of the junction potential and the energy gap variation with temperature.

The gate junction potential Vbi varies as:

$$Vbi^{NEW} = \frac{Temp}{Tnom} \times Vbi + \frac{2k \times Temp}{q} \ln \left( \frac{n_i^{Tnom}}{n_i^{Temp}} \right)$$

where n<sub>i</sub> is the intrinsic carrier concentration for silicon, calculated at the appropriate

temperature. The threshold voltage Vto varies as:  $Vto^{NEW} = Vto + Vtotc(Temp - Tnom)$ The transconductance Beta varies as:  $Beta^{NEW} = Beta \times 1.01^{Betatce(Temp - Tnom)}$ If Betatc = 0 and Idstc  $\neq$  0 Ids<sup>NEW</sup> = Ids  $\times$  (1 + Idstc  $\times$  (Temp - Tnom))

#### **Noise Model**

Thermal noise generated by resistors Rg, Rs, and Rd is characterized by the following spectral density:

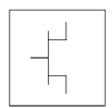
$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

Parameters P, R, and C model drain and gate noise sources.

$$\frac{\langle i_d^2 \rangle}{\Delta f} = 4k T g_m P + 4k T g_m P F nc / f + K f I ds^{Af} / f^{Ffe}$$

$$\frac{\langle i_{g}^{2} \rangle}{\Delta f} = 4kT C_{gs}^{2} \omega^{2} R/g_{m}$$

$$\frac{\langle i_g, i_d^* \rangle}{\Delta f} = 4kTj \ C_{gs} \ \omega \sqrt{PR} \ C$$


For Series IV compatibility, set P=2/3, R=0, C=0, and Fnc=0; copy Kf, Af, and Ffe from the Series IV model.

### References

- 1. W. R. Curtice, "A MESFET model for use in the design of GaAs integrated circuits," *IEEE Trans Microwave Theory Tech*, vol. MTT-28, pp. 448-456, May 1980.
- C. Camacho-Penalosa and C.S. Aitchison, "Modelling frequency dependence of output impedance of a microwave MESFET at low frequencies," *Electron. Lett.*, Vol. 21, pp. 528-529, June 6, 1985.
- 3. P. Antognetti and G. Massobrio, *Semiconductor device modeling with SPICE*, New York: McGraw-Hill, Second Edition 1993.
- 4. A. Cappy, "Noise Modeling and Measurement Techniques," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 36, No. 1, pp. 1-10, Jan. 1988.

# Curtice3\_Model (Curtice-Cubic GaAsFET Model)

### Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name                            | Description                                                                         | Units            | Default               |
|---------------------------------|-------------------------------------------------------------------------------------|------------------|-----------------------|
| NFET                            | N-channel model type: yes or no                                                     | None             | yes                   |
| PFET                            | P-channel model type: yes or no                                                     | None             | no                    |
| Idsmod                          | Ids model: 1=CQ 2=CC 3=Statz 4=Materka 5=Tajima 6=symbolic 7=TOM 8=Modified Materka | None             | 2                     |
| Beta2                           | Coefficient for pinch-off change with respect to Vds                                | 1/V              | 0.0                   |
| Rds0 <sup>+++</sup>             | DC D-S resistance at Vgs=0                                                          | Ohm              | 0                     |
| Vout0                           | output voltage (Vds) at which A0, A1, A2, A3 were evaluated                         | V                | 0                     |
| Vdsdc                           | Vds at Rds0 measured bias                                                           | V                | 0                     |
| Tau                             | transit time under gate                                                             | sec              | 0.0                   |
| Gamma                           | current saturation                                                                  | 1/V              | 2.0                   |
| Tnom                            | nominal ambient temperature at which these model parameters were derived            | °C               | 25                    |
| Idstc                           | Ids temperature coefficient                                                         | None             | 0                     |
| A0 <sup>+</sup> , <sup>++</sup> | cubic polynomial Ids equation coefficient 1                                         | A                | 0                     |
| A1 <sup>+</sup> , <sup>++</sup> | cubic polynomial Ids equation coefficient 2                                         | A/V              | 0                     |
| A2 <sup>+</sup> , <sup>++</sup> | cubic polynomial Ids equation coefficient 3                                         | A/V <sup>2</sup> | 0                     |
| A3 <sup>+</sup> , <sup>++</sup> | cubic polynomial Ids equation coefficient 4                                         | A/V <sup>3</sup> | 0                     |
| Vtotc                           | VTO temperature coefficient                                                         | V/°C             | 0.0                   |
| Betatce                         | BETA Exponential Temperature Coefficient                                            | %/°C             | 0.0                   |
| Rin <sup>+++</sup>              | channel resistance                                                                  | Ohm              | 0.0                   |
| Rf <sup>†††</sup>               | gate-source effective forward-bias resistance                                       | Ohm              | infinity <sup>‡</sup> |
| Fc                              | forward-bias depletion capacitance coefficient (diode model)                        | None             | 0.5                   |
| Gscap                           | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                           | None             | linear                |
| Cgs <sup>++</sup>               | zero-bias gate-source capacitance                                                   | F                | 0.0                   |

| Cgd <sup>++</sup>  | Advanced Design System 2011.01 - Nonlinear Devices<br>zero-bias gate-drain capacitance                                    | F    | 0.0                               |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------|
| Rgd <sup>+++</sup> | gate drain resistance                                                                                                     | Ohm  | 0.0                               |
| Gdcap              | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                                                                 | None | linear                            |
| Rd <sup>++</sup>   | drain ohmic resistance                                                                                                    | Ohm  | fixed at 0                        |
| Rg                 | gate resistance                                                                                                           | Ohm  | fixed at 0                        |
| Rs <sup>†††</sup>  | source ohmic resistance                                                                                                   | Ohm  | fixed at 0                        |
| Ld                 | drain inductance                                                                                                          | Н    | fixed at 0.0                      |
| Lg                 | gate inductance                                                                                                           | Н    | fixed at 0.0                      |
| Ls                 | source inductance                                                                                                         | Н    | fixed at 0.0                      |
| Cds <sup>††</sup>  | drain-source capacitance                                                                                                  | F    | 0.0                               |
| Crf <sup>††</sup>  | with Rds, models frequency dependent output conductance                                                                   | F    | 0.0                               |
| Rds <sup>†††</sup> | additional output resistance for RF operation                                                                             | Ohm  | 0.0                               |
| Gsfwd              | 0=none, 1=linear, 2=diode                                                                                                 | None | linear                            |
| Gsrev              | 0=none, 1=linear, 2=diode                                                                                                 | None | None                              |
| Gdfwd              | 0=none, 1=linear, 2=diode                                                                                                 | None | None                              |
| Gdrev              | 0=none, 1=linear, 2=diode                                                                                                 | None | linear                            |
| R1 <sup>+++</sup>  | approximate breakdown resistance                                                                                          | Ohm  | infinity <sup>‡</sup>             |
| R2 <sup>+++</sup>  | resistance relating breakdown voltage to channel current                                                                  | Ohm  | fixed at<br>infinity <sup>‡</sup> |
| Vbi <sup>+</sup>   | built-in gate potential                                                                                                   | V    | 0.85                              |
| Vbr                | gate-drain junction reverse bias breakdown voltage (gate- source junction reverse bias breakdown voltage with Vds $< 0$ ) | V    | 1e100                             |
| Vjr                | breakdown junction potential                                                                                              |      | 0.025                             |
| Is <sup>† ††</sup> | gate junction saturation current (diode model)                                                                            | A    | 1.0e-14                           |
| Ir                 | gate reverse saturation current                                                                                           | A    | 1.0e-14                           |
| Xti                | Saturation Current Temperature Exponent                                                                                   | None | 3.0                               |
| Eg                 | energy gap for temperature effect on Is                                                                                   | None | 1.11                              |
| N                  | gate junction emission coefficient (diode model)                                                                          | None | 1                                 |
| A5                 | time delay proportionality constant for Vds                                                                               | None | fixed at 0.0                      |
| Imax               | explosion current                                                                                                         | A    | 1.6                               |
| Imelt              | explosion current similar to Imax; defaults to Imax (refer to Note 3)                                                     | A    | defaults to<br>Imax               |
| Taumdl             | Use 2nd order Bessel polynomial to model tau effect in transient: yes or no                                               | None | no                                |
| Fnc                | flicker noise corner frequency                                                                                            | Hz   | 0.0                               |
| R                  | gate noise coefficient                                                                                                    | None | 0.5                               |
| Р                  | drain noise coefficient                                                                                                   | None | 1.0                               |
| С                  | gate-drain noise correlation coefficient                                                                                  | None | 0.9                               |
| Vto                | (not used in this model)                                                                                                  | None | None                              |
| wVgfwd             | gate junction forward bias (warning)                                                                                      | V    | None                              |
| wBvgs              | gate-source reverse breakdown voltage (warning)                                                                           | V    | None                              |
| wBvgd              | gate-drain reverse breakdown voltage (warning)                                                                            | V    | None                              |
| wBvds              | drain-source breakdown voltage (warning)                                                                                  | V    | None                              |
| wIdsmax            | maximum drain-source current (warning)                                                                                    | A    | None                              |

| wPmax                                                                                                                                                                                                                                                        | maximum power dissipation (warning)                       | W    | None |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------|------|--|
| Kf                                                                                                                                                                                                                                                           | flicker noise coefficient                                 | None | 0.0  |  |
| Af                                                                                                                                                                                                                                                           | flicker noise exponent                                    | None | 1.0  |  |
| Ffe                                                                                                                                                                                                                                                          | flicker noise frequency exponent                          | None | 1.0  |  |
| AllParams                                                                                                                                                                                                                                                    | DataAccessComponent for file-based model parameter values | None | None |  |
| <sup>+</sup> Parameter value varies with temperature based on model Tnom and device Temp. <sup>++</sup> Parameter value scales with Area. <sup>+++</sup> Parameter value scales inversely with Area. <sup>+</sup> A value of 0.0 is interpreted as infinity. |                                                           |      |      |  |

## Notes/Equations

- 1. This model supplies values for a GaAsFET device.
- 2. The Curtice cubic model is based on the work of Curtice and Ettenberg. Curtice3\_Model contains most of the features described in Curtice's original paper plus some additional features that may be turned off. The following subsections review the highlights of the model. Refer to Curtice's paper [1] for more information.
- 3. Imax and Imelt Parameters Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

4. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by an AllParams association.

### Equations/Discussion

# **Drain-Source Current**

Drain current in Curtice3\_Model is calculated with the following expression:

$$I_{ds} = I_{dso} \times tanh(Gamma \times V_{ds}), Tau_{NEW} = Tau + A5 \times Vds$$

where:

$$\begin{split} I_{dso} &= [A0 + A1 \times V_1 + A2 \times V_1^2 + A3 \times V_1^3] + (Vds - Vdsdc)/Rds0\\ V_1 &= V_{gs}(t - Tau_{NEW}) \times (1 + Beta2 \times (Vout0 - V_{ds})), \text{ when } V_{ds} \ge 0.0 \text{ V}\\ V_1 &= V_{gd}(t - Tau_{NEW}) \times (1 + Beta2 \times (Vout0 + V_{ds})), \text{ when } V_{ds} < 0.0 \text{ V} \end{split}$$

The latter results in a symmetrical drain-source current that is continuous at  $V_{ds}$ =0.0 V. For values of V below the internal calculated maximum pinchoff voltage Vpmax, which is the voltage at the local minimum of the function:

 $A0 + A1 \times n + A2 \times n^2 + A3 \times n^3$ 

1

 $I_{dso}$  is replaced with the following expression:

 $I_{dso} = [A0 + A1 \times Vpmax + A2 \times Vpmax^2 + A3 \times Vpmax^3] + (Vds - Vdsdc)/Rds0$ 

If the  $I_{dso}$  value is negative (for  $V_{ds} > 0.0V$ ), current is set to 0.

This implementation models the delay as an ideal time delay.

Note When Rds0 is defaulted to 0, the term (Vds – Vdsdc)/Rds0 is simply ignored and there is no divide by zero.

## Junction Charge (Capacitance)

Two options are provided for modeling the junction capacitance of a device: to model the junction as a linear component (a constant capacitance); to model the junction using a diode depletion capacitance model. If a non-zero value of Cgs is specified and Gscap is set to 1 (linear), the gate-source junction will be modeled as a linear component. Similarly, specifying a non-zero value for Cgd and Gdcap=1 result in a linear gate-drain model. A non-zero value for either Cgs or Cgd together with Gscap=2 (junction) or Gdcap=2 will force the use of the diode depletion capacitance model for that particular junction. Note that each junction is modeled independent of the other; therefore, it is possible to model one junction as a linear component while the other is treated nonlinearly. The junction depletion charge and capacitance equations are summarized next.

### **Gate-Source Junction**

For  $V_{ac}$  < Fc × Vbi

$$Q_{gs} = 2 \times V_{bi} \times Cgs \times \left[1 - \sqrt{1 - \frac{V_{gc}}{Vbi}}\right]$$

$$Capacitance_{gs} = \frac{\partial Q_{gs}}{\partial V_{gc}} = \frac{Cgs}{\sqrt{1 - \frac{V_{gc}}{Vbi}}}$$

For  $V_{ac} \ge Fc \times Vbi$ 

$$Q_{gs} = 2 \times V_{bi} \times Cgs \times [1 - \sqrt{1 - Fc}] + \frac{Cgs}{(1 - Fc)^{3/2}}$$

$$\times \left[ \left(1 - \frac{3 \times Fc}{2}\right) \times (V_{gc} - Fc \times Vbi) \left(\frac{V_{gc}^2 - (Fc \times Vbi)^2}{4 \times Vbi}\right) \right]$$

$$Capacitance_{gs} = \frac{\partial Q_{gs}}{\partial V_{gc}} = \frac{Cgs}{(1-Fc)^{3/2}} \times \left[1 - \frac{3 \times Fc}{2} + \frac{V_{gc}}{2 \times Vbi}\right]$$

#### **Gate-Drain Junction**

For 
$$V_{gd} < Fc \times Vbi$$
  
 $Q_{gd} = 2 \times V_{bi} \times Cgd \times \left[1 - \sqrt{1 - \frac{V_{gd}}{Vbi}}\right]$ 

$$Capacitance_{gd} = \frac{\partial Q_{gd}}{\partial V_{gd}} = \frac{Cgd}{\sqrt{1 - \frac{V_{gd}}{Vbi}}}$$

For 
$$V_{gd} \ge Fc \times Vbi$$
  
 $Q_{gd} = 2 \times V_{bi} \times Cgd \times \left( [1 - \sqrt{1 - Fc}] + \frac{Cgd}{(1 - Fc)^{3/2}} \right)$ 

$$\left[\left(1-\frac{3\times Fc}{2}\right)\times\left(V_{gd}-F(c\times Vbi)+\frac{V_{gd}^2-(Fbi)^2}{4\times Vbi}\right)\right]$$

$$Capacitance_{gd} = \frac{\partial Q_{gd}}{\partial V_{gd}} = \frac{Cgd}{(1-Fc)^{3/2}} \times \left[1 - \frac{3 \times Fc}{2} + \frac{V_{gd}}{2 \times Vbi}\right]$$

#### **Gate Forward Conduction and Breakdown**

Agilent's implementation of the Curtice quadratic model provides a few options for modeling gate conduction current between the gate-source and gate-drain junctions. The simplest model is that proposed by Curtice for his cubic polynomial model (see Curtice3). This model assumes an *effective value* of forward bias resistance Rf and an approximate breakdown resistance R1. With model parameters Gsfwd = 1 (linear) and Rf reset to nonzero, gate-source forward conduction current is given by:  $I_{as} = (V_{as} - Vbi)/Rf$  when  $V_{as} > Vbi$ 

= 0 when  $V_{qs} \leq Vbi$ .

If Gsfwd = 2 (diode), the preceding expression for I  $\,$  is replaced with the following diode

expression:

$$I_{gs} = Is \times \left[ exp\left(\frac{V_{gs}}{N \times v_t}\right) - 1 \right]$$

Similarly, with parameter Gdfwd = 1 (linear) and Rf set to non-zero, gate-drain forward conduction current is given by:  $I_{ad} = (V_{ad} - Vbi)/Rf$  when  $V_{ad} > Vbi$ 

= 0 when 
$$V_{gd} \leq Vbi$$
.

If Gdfwd is set to 2 (diode), the preceding expression for Igd is replaced with a diode expression:

$$I_{gd} = Is \times \left[ exp\left(\frac{V_{gd}}{N \times v_t}\right) - 1 \right]$$

The reverse breakdown current  $(I_{dg})$  is given by the following expression if R1 is set nonzero and Gdrev = 1 (linear):

$$I_{gd}$$
 =  $V_{dg}$  -  $V_{b})/R1$  when  $V_{dg}$   $\geq$   $V_{b}$  and  $V_{b}$   $>$  0

= 0 when 
$$V_{dg} < V_b$$
 or  $V_b \le 0$ 

 $V_{b} = Vbr + R2 \times I_{ds}$ 

If Gdrev is set to 2, the preceding Igd expression is replaced with a diode expression:

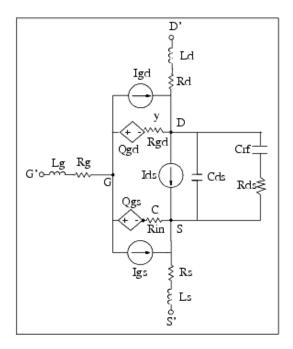
$$I_{gd} = -Ir \times \left[ exp\left(\frac{Vdg - Vb}{Vjr}\right) - 1 \right]$$

With Gsrev -= 1 (linear) and R1 set to non-zero, the gate-source reverse breakdown current Igs is given by the following expression:

$$I_{gs}$$
 = (V\_{sg} - Vb)/R1 when V\_{sg}  $\geq$  Vbi and Vb  $>$  0

= 0 when 
$$V_{sg} \leq Vbi \text{ or } Vb \leq 0$$

If Gsrev is set to 2, the preceding Igs expression is replaced with a diode expression.


$$I_{gs} = -Ir \times \left[ exp\left(\frac{Vsg - Vb}{Vjr}\right) - 1 \right]$$

When the diode equations are both enabled, the DC model is symmetric with respect to the drain and source terminals. The AC model will also be symmetric if, in addition to the latter, Cgs=Cgd.

## **High-Frequency Output Conductance**

Curtice3\_Model provides the user with two methods of modeling the high frequency output conductance. The series-RC network dispersion model (<u>Curtice Cubic Model</u>) is

comprised of the parameters Crf and Rds and is included to provide a correction to the AC output conductance at a specific bias condition. At a frequency high enough such that Crf is an effective short, the output conductance of the device can be increased by the factor 1/Rds. (Also see [2]).



#### **Curtice Cubic Model**

#### **Temperature Scaling**

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The saturation current Is scales as:

$$Is^{NEW} = Is \times exp\left[\left(\frac{Temp}{Tnom} - 1\right)\frac{q \times Eg}{k \times N \times Temp} + \frac{Xti}{N} \times ln\left(\frac{Temp}{Tnom}\right)\right]$$

The gate depletion capacitances Cgso and Cgdo vary as:

$$Cgs^{NEW} = Cgs \left[ \frac{1 + 0.5[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + 0.5[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Tnom}]} \right]$$

$$Cgd^{NEW} = Cgd\left[\frac{1 + 0.5[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + 0.5[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Tnom}]}\right]$$

where *y* is a function of junction potential and energy gap variation with temperature.

Advanced Design System 2011.01 - Nonlinear Devices The gate junction potential Vbi varies as:

$$Vbi^{NEW} = \frac{Temp}{Tnom} \times Vbi + \frac{2k \times Temp}{q} \ln\left(\frac{n_i^{Tnom}}{n_i^{Temp}}\right)$$

where  $n_i$  is the intrinsic carrier concentration for silicon, calculated at the appropriate temperature.

The cubic polynomial coefficients A0, A1, A2, and A3 vary as:  $\Delta = Vtotc(Temp - Tnom)$   $A0^{NEW} = (A0 - \Delta \times A1 + \Delta^2 \times A2 - \Delta^3 \times A3) \times 1.01^{Betatce(Temp - Tnom)}$   $A1^{NEW} = (A1 - 2\Delta \times A2 + 3\Delta^2 \times A3 - \Delta^3 \times A3) \times 1.01^{Betatce(Temp - Tnom)}$   $A2^{NEW} = (A2 - 3\Delta \times A3) \times 1.01^{Betatce(Temp - Tnom)}$   $A3^{NEW} = (A3) \times 1.01^{Betatce(Temp - Tnom)}$ 

If Betatc = 0 and Idstc  $\neq$  0 Ids<sup>NEW</sup> = Ids × (1 + Idstc × (Temp - Tnom))

## **Noise Model**

Thermal noise generated by resistors Rg, Rs and Rd is characterized by the spectral density:

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

Parameters P, R, and C model drain and gate noise sources.

$$\frac{\langle i_d^2 \rangle}{\Delta f} = 4kTg_m P + 4kTg_m PFnc / f + Kf Ids^{Af} / f^{Ffe}$$

$$\frac{\langle i_g^2 \rangle}{\Delta f} = 4kT C_{gs}^2 \omega^2 R / g_m$$

$$\frac{\langle i_g, i_d^* \rangle}{\Delta f} = 4kTj C_{gs} \omega \sqrt{PR} C$$

For Series IV compatibility, set P=2/3, R=0, C=0, and Fnc=0; copy Kf, Af, and Ffe from the Series IV model.

## **Calculation of Vto Parameter**

The Vto parameter is not used in this model. Instead, it is calculated internally to avoid the discontinuous or non-physical characteristic in ids versus vgs if A0, A1, A2, A3 are not properly extracted.

For a given set of As, ADS will try to find the maximum cutoff voltage (Vpmax), which satisfies the following conditions:

 $\begin{array}{l} \mbox{Advanced Design System 2011.01 - Nonlinear Devices} \\ f(Vpmax) = A0 + A1 \times Vpmax + A2 \times Vpmax^2 \times 2 + A3 \times Vpmax^3 \times 3 \leq 0 \\ first derivative of f(Vpmax) = 0 (inflection point) \\ second derivative of f(Vpmax) > 0 (this is a minimum) \end{array}$ 

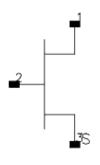
If Vpmax cannot be found, a warning message is given *cubic model does not pinch off*. During analysis, the following are calculated:

If ids < 0 then sets ids = 0.

If ids > 0 and Vc  $\leq$  Vpmax then calculates ivc as follows:

ivc = (f(Vpmax) + (vds - Vdsdc) / Rds0) × tanh(Gamma × vds)
If ivc > 0 then sets ids = ivc and gives a warning message Curtice cubic model does not
pinch off, Ids truncated at minimum.

else set ids = 0


To ensure the model is physical and continuous, it is important to obtain a meaningful set of As that Vpmax can be found.

#### References

- 1. W. R. Curtice and M. Ettenberg, "A nonlinear GaAsFET model for use in the design of output circuits for power amplifiers," *IEEE Trans of Microwave Theory Tech*, vol. MTT-33, pp. 1383-1394, Dec. 1985.
- 2. C. Camacho-Penalosa and C.S. Aitchison, "Modelling frequency dependence of output impedance of a microwave MESFET at low frequencies," *Electron. Lett.*, Vol. 21, pp. 528-529, June 6, 1985.
- 3. P. Antognetti and G. Massobrio, *Semiconductor device modeling with SPICE*, New York: McGraw-Hill, Second Edition 1993.
- 4. A. Cappy, "Noise Modeling and Measurement Techniques," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 36, No. 1, pp. 1-10, Jan. 1988.

# **EE\_FET3 (EEsof Scalable Nonlinear GaAsFet, Second Generation)**

#### **Symbol**



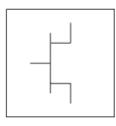
#### **Parameters**

| Name  | Description                          | Units | Default  |
|-------|--------------------------------------|-------|----------|
| Model | name of an EE_FET3_Model             | None  | EEFET3M1 |
| Ugw   | unit gate width                      | None  | 0.0      |
| Ν     | number of gate fingers               | None  | 1        |
| Temp  | device operating temperature         | °C    | 25       |
| Noise | noise generation option: yes=1, no=0 | None  | yes      |
| _M    | number of devices in parallel        | None  | 1        |

# Range of Usage

 $\begin{array}{l} Ugw > 0 \\ N > 0 \end{array}$ 

#### **Notes/Equations**


- 1. Ugw and N are used for scaling device instance as described in the EE\_FET3\_Model information.
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.

## **DC Operating Point Information**

| Name      | Description                                      | Units   |
|-----------|--------------------------------------------------|---------|
| Id        | Drain current                                    | amperes |
| Ig        | Gate current                                     | amperes |
| Is        | Source current                                   | amperes |
| Power     | DC power dissipated                              | watts   |
| Gm        | Forward transconductance (dIds/dVgs)             | siemens |
| Gds       | Output conductance (dIds/dVds)                   | siemens |
| GmAc      | Forward transconductance (dIds/dVgs + dIdb/dVgs) | siemens |
| GdsAc     | Output conductance (dIds/dVds + dIdb/dVgd)       | siemens |
| Ggs       | Gate-source conductance                          | siemens |
| Ggd       | Gate-drain conductance                           | siemens |
| dIgd_dVgs | (dIgd/dVgs)                                      | siemens |
| Cgc       | Gate-source capacitance (dQgc/dVgc)              | farads  |
| dQgc_dVgy | (dQgc/dVgy)                                      | farads  |
| Cgy       | Gate-drain capacitance (dQgy/dVgy)               | farads  |
| dQgy_dVgc | (dQgy/dVgc)                                      | farads  |
| Vgs       | Gate-source voltage                              | volts   |
| Vds       | Gate-drain voltage                               | volts   |

# **EE\_FET3\_Model (EEsof Scalable Nonlinear GaAsFet Model)**

#### Symbol



#### **Parameters**

| Name    | Description                                                           | Units | Default  |
|---------|-----------------------------------------------------------------------|-------|----------|
| Vto     | zero bias threshold                                                   | V     | -1.5     |
| Gamma   | Transconductance                                                      | 1/V   | 0.05     |
| Vgo     | gate-source voltage where transconductance is a maximum               | V     | 0.0      |
| Vdelt   | controls linearization point for transconductance characteristic      | V     | 0.0      |
| Vch     | gate-source voltage where Gamma no longer affects I-V curves          | V     | 1.0      |
| Gmmax   | peak transconductance                                                 | S     | 70.0e-03 |
| Vdso    | Drain voltage where Vo dependence is nominal                          | V     | 2.0      |
| Vsat    | drain-source current saturation                                       | V     | 1.0      |
| Кара    | output conductance                                                    | S     | 1.0      |
| Peff    | channel to backside self-heating                                      | W     | 2.0      |
| Vtso    | subthreshold onset voltage                                            | V     | -10.0    |
| Is      | gate junction reverse saturation current                              | A     | 1.0e-14  |
| N       | gate junction ideality factor                                         | None  | 1.0      |
| Ris     | source end channel resistance                                         | Ohm   | 0.0      |
| Rid     | drain end channel resistance                                          | Ohm   | 0.0      |
| Tau     | gate transit time delay                                               | sec   | 0.0      |
| Cdso    | drain-source inter-electrode capacitance                              | F     | 80.0e-15 |
| Rdb     | dispersion source output impedance                                    | Ohm   | 1.0e+9   |
| Cbs     | trapping-state capacitance                                            | F     | 1.6e-13  |
| Vtoac   | zero bias threshold (AC)                                              | V     | -1.5     |
| Gammaac | Vds dependent threshold (AC)                                          | 1/V   | 0.05     |
| Vdeltac | controls linearization point for transconductance characteristic (AC) | V     | 0.0      |
| Gmmaxac | peak transconductance (AC)                                            | S     | 60.0e-03 |
| Караас  | output conductance (AC)                                               | S     | 0.0      |
| Peffac  | channel to backside self-heating (AC)                                 | W     | 10.0     |
| Vtsoac  | subthreshold onset voltage (AC)                                       | V     | -10.0    |
| Gdbm    | additional d-b branch conductance at Vds = Vdsm                       | 0.0   |          |

Advanced Design System 2011.01 - Nonlinear Devices

| Kdb       | Advanced Design System 2011.01 - Nonlinear Dev<br>controls Vds dependence of additional d-b branch conductance. | None | 0.0       |
|-----------|-----------------------------------------------------------------------------------------------------------------|------|-----------|
| Vdsm      | voltage where additional d-b branch conductance becomes constant                                                | V    | 1.0       |
| C11o      | maximum input capacitance for Vds=Vdso and Vdso>Deltds                                                          | F    | 0.3e-12   |
| C11th     | minimum (threshold) input capacitance for Vds=Vdso                                                              | F    | 0.03e-12  |
| Vinfl     | inflection point in C11-Vgs characteristic                                                                      | V    | -1.0      |
| Deltgs    | C11th to C110 transition voltage                                                                                | V    | 0.5       |
| Deltds    | linear region to saturation region transition                                                                   | V    | 1.0       |
| Lambda    | C11-Vds characteristic slope                                                                                    | 1/V  | 1.0       |
| C12sat    | input transcapacitance for Vgs=Vinfl and Vds>Deltds                                                             | F    | 0.03e-12  |
| Cgdsat    | gate drain capacitance for Vds>Deltds                                                                           | F    | 0.05e-12  |
| Kbk       | breakdown current coefficient at threshold                                                                      | None | 0.0       |
| Vbr       | drain-gate voltage where breakdown source begins conducting                                                     | V    | 15.0      |
| Nbr       | breakdown current exponent                                                                                      | None | 2.0       |
| Idsoc     | open channel (maximum) value of Ids                                                                             | A    | 100.0e-03 |
| Rd        | drain contact resistance                                                                                        | Ohm  | 1.0       |
| Rs        | source contact resistance                                                                                       | Ohm  | 1.0       |
| Rg        | gate metallization resistance                                                                                   | Ohm  | 1.0       |
| Ugw       | unit gate width of device                                                                                       | None | 0.0       |
| Ngf       | number of device gate fingers                                                                                   | None | 1.0       |
| Tnom      | Nominal ambient temperature                                                                                     | °C   | 25.0      |
| Rgtc      | linear temperature coefficient for RG                                                                           | 1/°C | 0.0       |
| Rdtc      | linear temperature coefficient for RD                                                                           | 1/°C | 0.0       |
| Rstc      | linear temperature coefficient for RS                                                                           | 1/°C | 0.0       |
| Vtotc     | Vto temperature coefficient                                                                                     | V/°C | 0.0       |
| Gmmaxtc   | Gmmax temperature coefficient                                                                                   | S/°C | 0.0       |
| Gammatc   | Gamma temperature coefficient                                                                                   | None | 0.0       |
| Vinfltc   | Vinfl temperature coefficient                                                                                   | V/°C | 0.0       |
| Vtoactc   | Vtoac temperature coefficient                                                                                   | V/°C | 0.0       |
| Gmmaxactc | Gmmaxac temperature coefficient                                                                                 | S/°C | 0.0       |
| Gammaactc | Gammaac temperature coefficient                                                                                 | None | 0.0       |
| Xti       | Temperature Exponent for Saturation Current                                                                     | None | 3.0       |
| wVgfwd    | gate junction forward bias (warning)                                                                            | V    | None      |
| wBvgs     | gate-source reverse breakdown voltage (warning)                                                                 | V    | None      |
| wBvgd     | gate-drain reverse breakdown voltage (warning)                                                                  | V    | None      |
| wBvds     | drain-source breakdown voltage (warning)                                                                        | V    | None      |
| wIdsmax   | maximum drain-source current (warning)                                                                          | A    | None      |
| wPmax     | maximum power dissipation (warning)                                                                             | W    | None      |
| AllParams | Data Access Component (DAC) Based Parameters                                                                    | None | None      |

# Notes

- 1. This model supplies values for an EE\_FET3 device.
- 2. To prevent numerical problems, the setting of some model parameters to 0 is trapped by the simulator. The parameter values are changed:

$$Rd = 10^{-4}$$

$$Rs = 10^{-4}$$

Ris =  $10^{-4}$ Rid =  $10^{-4}$ Vsat = 0.1 Peff =  $10^{-6}$ Peffac =  $10^{-6}$ Deltds = 0.1 Deltgs = 0.1 Idsoc = 0.1 Is =  $10^{-50}$ 

3. Model parameters such as Ls, Ld, and Lg (as well as other package related parameters that are included as part of the output from the EEFET3 IC-CAP model file) are not used by the EE\_FET3 device in the simulator. Only those parameters listed are part of the EE\_FET3 device. Any extrinsic devices must be added externally by the user.

# Equations/Discussion

EE\_FET3 is an empirical analytic model that was developed by Agilent EEsof for the express purpose of fitting measured electrical behavior of GaAs FETs. The model represents a complete redesign of the previous generation model EEFET1-2 and includes the following features:

- Accurate isothermal drain-source current model fits virtually all processes.
- Self-heating correction for drain-source current.
- Improved charge model more accurately tracks measured capacitance values.
- Dispersion model that permits simultaneous fitting of high-frequency conductances and DC characteristics.
- Improved breakdown model describes gate-drain current as a function of both  $V_{gs}$

and V<sub>ds</sub>.

• Well-behaved (non-polynomial) expressions permit accurate extrapolations outside of the measurement range used to extract the model.

The model equations were developed concurrently with parameter extraction techniques to ensure the model would contain only parameters that were extractable from measured data. Although the model is amenable to automated parameter extraction techniques, it was designed to consist of parameters that are easily estimated (visually) from measured data such as  $g_m - V_{as}$  plots. The increased number of model parameters is commensurate

with the improvement in accuracy as compared with other popular empirical models. Since the model equations are all well-behaved analytic expressions, EE\_FET3 possesses no inherent limitations with respect to its usable power range. Agilent EEsof's IC-CAP program provides the user with the capability of extracting EEFET3 models from measured data.

## **Drain-Source Current**

The drain-source current model in EE\_FET3 is comprised of various analytic expressions that were developed through examination of  $g_m$  vs. bias plots on a wide class of devices

from various manufacturers. The expressions below are given for  $V_{ds} > 0.0V$  although the

model is equally valid for  $V_{ds} < 0.0V$ . The model assumes the device is symmetrical, and one need only replace  $V_{gs}$  with  $V_{gd}$  and  $V_{ds}$  with  $-V_{ds}$  in order to obtain the reverse region  $(V_{ds} < 0.0V)$  equations. The  $g_m$ ,  $g_{ds}$  and  $I_{ds}$  equations take on four different forms depending on the value of  $V_{gs}$  relative to some of the model parameters. The  $I_{ds}$ expression is continuous through at least the second derivative everywhere.

$$\begin{split} &\text{if } V_{gs} \geq V_g \text{ and } V_{delt} \leq 0.0 \\ g_{mo} = Gmmax\{1 + Gamma(Vdso - V_{ds})\} \\ &I_{dso} = Gmmax\left\{V_x(V_{gs}) - \frac{(Vgo + Vto)}{2} + Vch\right\} \\ &g_{dso} = -Gmmax(Gamma(V_{gs} - Vch)) \\ &\text{else if } V_{Delt} > 0.0 \text{ and } V_{gs} > V_{gb} \\ g_{mo} = g_{mm}(V_{gb}) + m_{g_{mm}} \times (V_{gs} - V_{gb}) \\ &I_{dso} = g_{mm}(V_{gb}) \times (V_{gs} - V_{gb}) + \frac{m_{g_{mm}}}{2}(V_{gs} - V_{gb})^2 + I_{dsm}(V_{gb}) \\ &g_{dso} = \frac{\partial(g_{mm}(V_{gb}))}{\partial V_{ds}}(V_{gs} - V_{gb}) + \frac{1}{2}(V_{gs} - V_{gb})^2 \times \frac{\partial m_{g_{mm}}}{\partial V_{ds}} - \frac{\partial V_{gb}}{\partial V_{ds}}g_{mo} \\ &\text{else if } V_{gs} \leq V_t \\ g_{mo} = 0.0 \\ &I_{dso} = 0.0 \end{split}$$

$$g_{dso} = 0.0$$
  
else

 $g_{mo} = g_{mm}(V_{gs})$   $I_{dso} = I_{dsm}(V_{gs})$   $g_{dso} = -\frac{Gmmax}{2}Gamma(V_{gs} - Vch)$ 

$$\times \left\{ \cos \left[ \pi \times \frac{V_x(V_{gs}) - (Vgo - Vch)}{Vto - Vgo} \right] + 1 \right\}$$

where:

$$g_{mm}(V) = \frac{Gmmax}{2} [1 + Gamma(Vdso - V_{ds})]$$

$$\times \left\{ \cos \left[ \pi \times \frac{V_x(V) - (Vgo - Vch)}{Vto - Vgo} \right] + 1 \right\}$$

$$\begin{split} I_{dsm}(V) &= \frac{Gmmax}{2} \Big( ((Vto - Vgo)/\pi) \sin \left[ \pi \times \frac{V_x(V) - (Vgo - Vch)}{Vto - Vgo} \right] \\ &+ V_x(V) - (Vto - Vch)) \end{split}$$

$$V_{x}(V) = (V - Vch)[1 + Gamma(Vdso - V_{ds})]$$

$$V_{g} = \frac{Vgo - Vch}{1 + Gamma(Vdso - V_{ds})} + Vch$$

$$V_{t} = \frac{Vto - Vch}{1 + Gamma(Vdso - V_{ds})} + Vch$$

$$V_{gb} = \frac{(Vgo - Vdelt) - Vch}{1 + Gamma(Vdso - V_{ds})} + Vch$$

$$\begin{split} m_{g_{mm}} &= \left. \frac{\partial g_{mm}}{\partial V} \right|_{V = V_{gb}} \\ &= -\frac{Gmmax\pi}{2(Vto - Vgo)} [1 + Gamma(Vdso - V_{ds})]^2 \\ &\times \sin \left[ -\pi \times \frac{Vdelt}{Vto - Vgo} \right] \\ g_{mm}(V_{gb}) &= \left. \frac{Gmmax}{2} [1 + Gamma(Vdso - V_{ds})] \right. \\ &\times \left\{ \cos \left[ -\pi \times \frac{Vdelt}{Vto - Vgo} \right] + 1 \right\} \\ I_{dsm}(V_{gb}) &= \left. \frac{Gmmax}{2} \left( ((Vto - Vgo)/\pi) \sin \left[ -\pi \times \frac{Vdelt}{Vto - Vgo} \right] \right. \\ &+ (Vgo - Vdelt - Vto)) \\ \left. \frac{\partial (g_{mm}(V_{gb}))}{\partial V_{ds}} &= -\frac{Gmmax}{2} Gamma \left\{ \cos \left[ -\pi \times \frac{Vdelt}{Vto - Vgo} \right] + 1 \right\} \end{split}$$

$$\frac{\partial m_{g_{mm}}}{\partial V_{ds}} = \frac{Gmmax\pi}{(Vto - Vgo)}(Gamma)[1 + Ganna(Vdso - V_{ds})]$$

$$\times \sin\left[-\pi imes rac{Vdelt}{Vto - Vgo}
ight]$$

2

$$\frac{\partial V_{gb}}{\partial V_{ds}} = \frac{(Vgo - Vdelt) - Vch}{\left[1 + Gamma(Vdso - V_{ds})\right]^2} \times Gamma$$

The preceding relations for  $I_{dso}$ ,  $g_{mo}$  and  $g_{dso}$  can now be substituted in the following equations that model the current saturation and output conductance. This portion of the model can be recognized from the work of Curtice [1].

~ \* \*

$$g'_{m} = g_{mo}(1 + Kapa \times V_{ds}) \tanh\left(\frac{3V_{ds}}{V_{sat}}\right)$$

$$I_{ds} = I_{dso}(1 + Kapa \times V_{ds}) \tanh\left(\frac{3V_{ds}}{V(sat)}\right)$$

$$g'_{ds} = \{g_{dso}(1 + Kapa \times V_{ds}) + I_{dso}Kapa\} \tanh\left(\frac{3V_{ds}}{Vsat}\right)$$

$$+ I_{dso} \times \frac{3(1 + Kapa \times V_{ds})}{Vsat} \operatorname{sech}^2 \left( \frac{3V_{ds}}{Vsat} \right)$$

These expressions do an excellent job of fitting GaAs FET I-V characteristics in regions of low power dissipation; they will also fit pulsed (isothermal) I-V characteristics. In order to model negative conductance effects due to self-heating, the thermal model of Canfield was incorporated [2]. With this final enhancement, the DC expressions for  $I_{ds}$  and

associated conductances become:

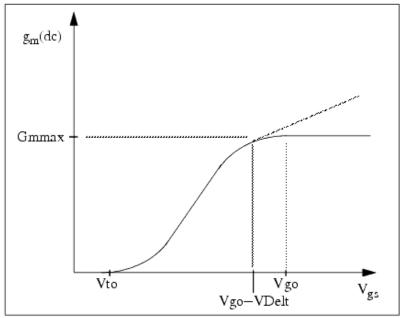
$$I_{ds} = \frac{I_{ds}}{1 + \frac{P_{diss}}{Peff}}$$

$$g_m = \frac{g'_m}{\left[1 + \frac{P_{diss}}{Peff}\right]^2}$$

$$g_{ds} = \frac{g'_{ds} - \frac{I'_{ds}^2}{Peff}}{\left[1 + \frac{P_{diss}}{Peff}\right]^2}$$

where:

$$P_{diss} = I'_{ds}V_{ds}$$


Qualitatively, operation of the drain-source model can be described as follows. The  $V_{ds}$  dependence of the equations is dominated by the parameters Vsat, Gamma,

Kapa, and Peff. Isothermal output conductance is controlled by Gamma and Kapa. The impact of Gamma on output conductance is more significant near threshold. At  $V_{as}$ =Vch,

the output conductance is controlled only by Kapa. The parameter Peff provides a correction to the isothermal model for modeling the self-heating effects manifested as a negative resistance on the I-V curves. The parameter Vsat represents the drain-source voltage at which the current saturates and output conductance becomes a constant (approximately).

The overall impact of Vch on the I-V characteristics is second order at best, and many different values of Vch will provide good fits to I-V plots. For most applications encountered, it is our experience that the default value of 1.0V is an adequate value for Vch. Similar to Vch, Vdso is a parameter that should be set rather than optimized. At  $V_{ds}$  =Vdso, the drain-source model collapses to a single voltage dependency in  $V_{gs}$ . It is recommended that the user set Vdso to a typical  $V_{ds}$  operating point in saturation. At this point, many of the parameters can be extracted right off a  $I_{ds}$  -V<sub>gs</sub> plot for  $V_{ds}$ =Vdso or preferably, a  $g_m(DC)$ -V<sub>gs</sub> plot at V<sub>ds</sub>=Vdso.

When  $V_{ds}$ =Vdso and Peff is set large (to disable the self-heating model), the significance of the parameters Vto, Vgo, Vdelt, Gmmax are easily understood from a plot of  $g_m(DC)-V$  $_{gs}$ . Gmmax is the peak constant transconductance of the model that occurs at  $V_{gs}$ =Vgo. The parameter Vto represents the gate-source voltage where  $g_m$  goes to zero. If Vdelt is set to a positive value, then it causes the transconductance to become linear at  $V_{gs}$  = Vgo-Vdelt with a slope equal to that of the underlying cosine function at this voltage. The parameter definitions are shown in the following illustration.





## **Dispersion Current (Idb)**

Dispersion in a GaAs MESFET drain-source current is evidenced by the observation that the output conductance and transconductance beyond some transition frequency is higher than that inferred by the DC measurements. A physical explanation often attributed to this phenomenon is that the channel carriers are subject to being trapped in the channelsubstrate and channel-surface interfaces. Under slowly varying signal conditions, the rate at which electrons are trapped in these sites is equal to the rate at which they are emitted back into the channel. Under rapidly varying signals, the traps cannot follow the applied signal and the *high-frequency* output conductance results.

The circuit used to model conductance dispersion consists of the devices Rdb, Cbs (these linear devices are also parameters) and the nonlinear source  $I_{db}(V_{as}, V_{ds})$ . The model is a

large-signal generalization of the dispersion model proposed by Golio et al. [3]. At DC, the drain-source current is just the current  $I_{ds}$ . At high frequency (well above transition

frequency), drain source current will be equal to  $I_{ds}$ (high frequency) =  $I_{ds}$ (dc) +  $I_{db}$ .

Linearization of the drain-source model yields the following expressions for  $y_{21}$  and  $y_{22}$  of the intrinsic EE\_FET3 model.

$$y_{21} = g_{dsgs} + g_{dbgs} - \frac{g_{dbgs}}{1 + j\omega \times Cbs(Rdb)}$$

$$y_{22} = g_{dsds} + g_{dbds} + \frac{1}{Rdb} - \frac{\left(g_{dbds} + \frac{1}{Rdb}\right)}{1 + j\omega \times Cbs(Rdb)}$$

where:

$$g_{dsgs} = \frac{\partial I_{ds}}{\partial V_{gs}}$$
$$g_{dsds} = \frac{\partial I_{ds}}{\partial V_{ds}}$$
$$g_{dbgs} = \frac{\partial I_{db}}{\partial V_{gs}}$$
$$g_{dbds} = \frac{\partial I_{db}}{\partial V_{ds}}$$

Evaluating these expressions at the frequencies  $\omega=0$  and  $\omega=infinity$  produces the following results for transconductance and output conductance:

for 
$$\omega = 0$$
,  
 $Re[y_{21}] = g_m = g_{dsgs}$ 

$$Re[y_{22}] = g_{ds} = g_{dsds}$$

for  $\omega$ =infinity,

$$Re[y_{21}] = g_m = g_{dsgs} + g_{dbgs}$$

$$Re[y_{22}] = g_{ds} = g_{dsds} + g_{dbds} + \frac{1}{Rdb}$$

Between these two extremes, the conductances make a smooth transition, the abruptness of which is governed by the time constant  $\tau_{disp} = Rdb \times Cbs$ . The frequency  $f_0$  at which the conductances are midway between these two extremes is defined as:

$$f_0 = \frac{1}{2\pi\tau_{disp}}$$

The parameter Rdb should be set large enough so that its contribution to the output conductance is negligible. Unless the user is specifically interested in simulating the device near  $f_0$ , the default values of Rdb and Cbs will be adequate for most microwave applications.

The EE\_FET3  $I_{ds}$  model can be extracted to fit either DC or AC characteristics. In order to simultaneously fit both DC I-V and AC conductances, EE\_FET3 uses a simple scheme for modeling the  $I_{db}$  current source whereby different values of the same parameters can be used in the  $I_{ds}$  equations. The DC and AC drain-source currents can be expressed as follows:

 $I_{ds}^{dc}(Voltages, Parameters) = I_{ds}(Voltages, Gmmax, Vdelt, Vto, Gamma, Gamma, Vto, Gamma, Vto, Gamma, Gamma, Vto, Gamma, Vto, Gamma, Vto, Gamma, Gamma, Vto, Gamma,$ 

Kapa, Peff, Vtso, Vgo, Vch, Vdso, Vsat)

 $I_{ds}^{ac}(Voltages, Parameters) = I_{ds}(Voltages, Gmmaxac, Vdeltac, Vtoac,$ 

Gammaac, Kappaac, Peffac, Vtsoac,

Vgo, Vch, Vdso, Vsat)

Parameters such as Vgo that do not have an AC counterpart (there is no Vgoac parameter) have been found to not vary significantly between extractions using DC measurements versus those using AC measurements. The difference between the AC and DC values of  $I_{ds}$ , plus an additional term that is a function of  $V_{ds}$  only, gives the value of I

<sub>db</sub> for the dispersion model

$$I_{db}(V_{gs}, V_{ds}) = I_{ds}^{ac}(V_{gs}, V_{ds}) - I_{ds}^{dc}(V_{gs}, V_{ds}) + I_{dbp}(V_{ds})$$

where  ${\rm I}_{\rm dbp}$  and its associated conductance are given by:

for 
$$V_{ds} > Vdsm \text{ and } Kdb \neq 0$$
:  
 $I_{dbp} = \sqrt{\frac{Gdbm}{Kdb}} \tan^{-1}((V_{ds} - Vdsm)\sqrt{Kdb(Gdbm)})$   
 $+ Gdbm(Vdsm)$ 

$$g_{dbp} = \frac{Gdbm}{(Kdb(Gdbm(V_{ds} - Vdsm)^2 + 1))}$$

for 
$$V_{ds} < -Vdsm \text{ and } Kdb \neq 0$$
:  
 $I_{dbp} = \sqrt{\frac{Gdbm}{Kdb}} \tan^{-1}((V_{ds} + Vdsm)\sqrt{Kdb(Gdbm)})$ 

 $-Gdbm \times Vdsm$ 

$$g_{dbp} = \frac{Gdbm}{(Kdb(Gdbm(V_{ds} + Vdsm)^{2} + 1))}$$
  
for  $-Vdsm \le V_{ds} \le Vdsm$   
or  $Kdb = 0$ :

 $I_{dbp} = Gdbm \times V_{ds}$ 

$$g_{dbp} = Gdbm$$

By setting the 7 high-frequency parameters equal to their DC counterparts, the dispersion model reduces to  $I_{db}=I_{dbp}$ . Examination of the  $I_{dbp}$  expression reveals that the additional setting of Gdbm to 0 disables the dispersion model entirely. The  $I_{dbp}$  current is a function of V<sub>ds</sub> only, and will impact output conductance only. However, the current function  $I_{ds}^{ac}$  will impact g<sub>m</sub> and g<sub>ds</sub>.

Therefore, the model is primarily to use  $g_m$  data as a means for tuning  $I_{ds}^{ac}$ . Once this *fitting* is accomplished, Gdbm, Kdb and Vdsm can be tuned to optimize the  $g_{ds}$  fit.

# **Gate Charge Model**

The EE\_FET3 gate charge model was developed through careful examination of extracted device capacitances over bias. The model consists of simple closed form charge expressions whose derivatives fit observed bias dependencies in capacitance data. This capacitances data can be obtained directly from measured Y-parameter data.

$$C_{11} = \frac{im[y_{11}]}{\omega} = \frac{\partial q_g}{\partial V_{gs}}$$

$$C_{12} = \frac{im[y_{12}]}{\omega} = \frac{\partial q_g}{\partial V_{ds}}$$

The capacitance data is remarkably self-consistent. In other words, a single  $q_g$  function's derivatives will fit both  $C_{11}$  data and  $C_{12}$  data. The EE\_FET3 gate charge expression is:

$$\begin{aligned} q_{g}(V_{j}, V_{o}) &= \left[\frac{(C11o - C11th)}{2}g(V_{j}) + C11th(V_{j} - Vinfl)\right] \\ &\times \left[1 + Lambda(V_{o} - Vdso)\right] - C11sat \times V_{o} \end{aligned}$$

where:

$$g(V_j) = V_j - Vinfl + \frac{Deltgs}{3} \log \left( \cosh \left( \frac{3}{Deltgs} (V_j - Vinfl) \right) \right)$$

This expression is valid for both positive and negative  $V_{ds}$ . Symmetry is forced through the following smoothing functions proposed by Statz [4]:

$$V_{j} = \frac{1}{2} \left( 2V_{gs} - V_{ds} + \sqrt{V_{ds}^{2} + Deltds^{2}} \right)$$
$$V_{o} = \sqrt{V_{ds}^{2} + Deltds^{2}}$$

Differentiating the gate charge expression wrt  $\rm V_{gs}$  yields the following expression for the gate capacitance  $\rm C_{11}$ :

$$\begin{split} C_{11}(V_j, V_o) &= \left[\frac{(C11o - C11th)}{2} \times g'(V_j) + C11th\right] \\ &\times [1 + Lambda(V_o - Vdso)] \end{split}$$

where:

$$g'(V_j) = \frac{dg(V_j)}{dV_j} = 1 + \tanh\left[\frac{3}{Deltds}(V_j - Vinfl)\right]$$

The gate transcapacitance  $C_{12}$  is defined as:

$$\begin{split} C_{12}(V_j, V_o) &= \frac{\partial q_g}{\partial V_{ds}} = \frac{\partial q_g}{\partial V_j} \frac{\partial V_j}{\partial V_{ds}} + \frac{\partial q_g}{\partial V_o} \frac{\partial V_o}{\partial V_{ds}} \\ &= C_{11}(V_j, V_o) \times \frac{1}{2} \left[ \frac{V_{ds}}{\sqrt{V_{ds}^2 + Deltds^2}} - 1 \right] \\ &+ \left[ \left[ g'(V_j) + C11th(V_j - Vinfl) \right] \times Lambda(-C12sat) \right] \\ &\times \frac{V_{ds}}{\sqrt{V_{ds}^2 + Deltds^2}} \end{split}$$

The EE\_FET3 topology requires that the gate charge be subdivided between the respective charge sources  $q_{gc}$  and  $q_{gy}$ . Although simulation could be performed directly from the nodal gate charge  $q_g$ , division of the charge into branches permits the inclusion of the resistances Ris and Rid that model charging delay between the depletion region and the channel. EE\_FET3 assumes the following form for the gate-drain charge in saturation:

$$q_{gy}(V_{gy}) = Cgdsat(V_{gy} + q_{gyo})$$

which gives rise to a constant gate-drain capacitance in saturation. The gate-source charge  $q_{gc}$  can now be obtained by subtracting the latter from the gate charge equation.

Smoothing functions can then be applied to these expressions in saturation in order to extend the model's applicable bias range to all  $\rm V_{ds}$  values.

These smoothing functions force symmetry on the  ${\rm q}_{\rm av}$  and  ${\rm q}_{\rm ac}$  charges such that

$$q_{gy} = q_{gc} = \frac{q_g}{2}$$
 at  $V_{gc} = V_{gy}$ . Under large negative  $V_{ds}$  (saturation at the source end of the device),  $q_{gy}$  and  $q_{gc}$  swap roles:

$$q_{gc}(V_{gc}) = Cgdsat(V_{gc} + q_{gco})$$

The following continuous charge equations satisfy these constraints and are specified in terms of the gate charge.

$$\begin{split} q_{gy}(V_{gc}, V_{gy}) &= \{q_g(V_{gc}, V_{gc} - V_{gy}) - Cgdsat \times V_{gc}\} \times f_2 \\ &+ Cgdsa \times V_{gy} \times f_1 \\ q_{gc}(V_{gc}, V_{gy}) &= \{q_g(V_{gc}, V_{gc} - V_{gy}) - C(gdsat \times V_{gy})\} \times f_1 \\ &+ Cgdsat \times V_{gc} \times f_2 \end{split}$$

where  $f_1$  and  $f_2$  are smoothing functions defined by

$$f_1 = \frac{1}{2} \left[ 1 + \tanh\left(\frac{3}{Deltds}(V_{gc} - V_{gy})\right) \right]$$

and

$$f_2 = \frac{1}{2} \left[ 1 - \tanh\left(\frac{3}{Deltds}(V_{gc} - V_{gy})\right) \right]$$

The capacitances associated with these *branch* charge sources can be obtained through differentiation of the  $q_{gc}$  and  $q_{gy}$  equations and by application of the chain rule to capacitances  $C_{11}$  and  $C_{12}$ . The gate charge derivatives re-formulated in terms of  $V_{gc}$  and  $V_{gy}$  are:

$$\begin{split} C_{ggy} &= \frac{\partial q_g}{\partial V_{gy}} = -C_{12}(V_{gc}, V_{gc} - V_{gy}) \\ C_{ggc} &= \frac{\partial q_g}{\partial V_{gc}} = C_{11}(V_{gc}, V_{gc} - V_{gy}) + C_{12}(V_{gc}, V_{gc} - V_{gy}) \end{split}$$

The branch charge derivatives are:

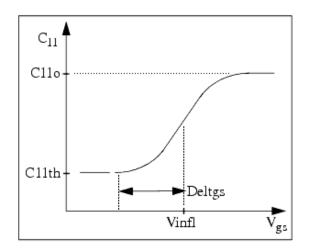
$$\begin{split} C_{gygy} &= \frac{\partial q_{gy}}{\partial V_{gy}} = \{q_g(V_{gc}, V_{gc} - V_{gy}) - Cgdsat \times V_{gc}\} \times \frac{\partial f_2}{\partial V_{gy}} \\ &+ f_2 \times C_{ggy} + Cgdsat \times \left[V_{gy} \times \frac{\partial f_1}{\partial V_{gy}} + f_1\right] \\ C_{gygc} &= \frac{\partial q_{gy}}{\partial V_{gc}} = \{q_g(V_{gc}, V_{gc} - V_{gy}) - Cgdsat \times V_{gc}\} \times \frac{\partial f_2}{\partial V_{gc}} \\ &+ f_2 \times [C_{ggc} - Cgdsat] + Cgdsat \times V_{gy} \times \frac{\partial f_1}{\partial V_{gc}} \\ C_{gcgc} &= \frac{\partial q_{gc}}{\partial V_{gc}} = \{q_g(V_{gc}, V_{gc} - V_{gy}) - Cgdsat \times V_{gy}\} \times \frac{\partial f_1}{\partial V_{gc}} \\ &+ f_1 \times C_{ggc} + Cgdsat \times \left[V_{gc} \times \frac{\partial f_2}{\partial V_{gc}} + f_2\right] \\ C_{gcgy} &= \frac{\partial q_{gc}}{\partial V_{gc}} = \{q_g(V_{gc}, V_{gc} - V_{gy}) - C(gdsat \times V_{gy})\} \times \frac{\partial f_1}{\partial V_{gc}} \end{split}$$

$$cgy = \partial V_{gy} = (q_g(e_gc, e_gc, g_y)) = (gubar + gy) = \partial V_{gy}$$

$$+f_1 \times [C_{ggy} - Cgdsat] + Cgdsat \times V_{gc} \times \frac{\partial f_2}{\partial V_{gy}}$$

where:

$$\frac{\partial f_1}{\partial V_{gc}} = \frac{3}{2 \times Deltds} \operatorname{sech}^2 \left( \frac{3(V_{gc} - V_{gy})}{Deltds} \right)$$
$$\frac{\partial f_1}{\partial V_{gy}} = \frac{\partial f_1}{\partial V_{gc}}$$
$$\frac{\partial f_2}{\partial V_{gc}} = -\frac{\partial f_1}{\partial V_{gc}}$$
$$\frac{\partial f_2}{\partial V_{gy}} = \frac{\partial f_1}{\partial V_{gc}}$$


When  $V_{ds}$ =Vdso and Vdso > Deltds, the gate capacitance  $C_{11}$  reduces to a single voltage

dependency in  $V_{as}$ . Similar to the  $I_{ds}$  model then, the majority of the important gate

charge parameters can be estimated from a single trace of a plot. In this case, the plot of interest is  $C_{11} - V_{as}$  at  $V_{ds} = Vdso$ .

The parameter definitions are shown in the following illustration. The parameter Deltds models the gate capacitance transition from the linear region of the device into saturation. Lambda models the slope of the  $C_{11}-V_{ds}$  characteristic in saturation. C12sat is used to fit

the gate transcapacitance  $(C_{12})$  in saturation.





## **Output Charge and Delay**

EE\_FET3 uses a constant output capacitance specified with the parameter Cdso. This gives rise to a drain-source charge term of the form  $q_{ds}(V_{ds}) = Cdso \times V_{ds}$ 

The drain-source current previously described in this section is delayed with the parameter Tau according to the following equation:  $I_{ds}(t) = I_{ds}(V_{gs}(t - Tau), V_{ds}(t))$ 

In the frequency domain, only the transconductance is impacted by this delay and the familiar expression for transconductance is obtained:  $y_m = g_m \times exp(-j \times \omega \times Tau)$ 

## **Gate Forward Conduction and Breakdown**

Forward conduction in the gate junction is modeled using a standard 2-parameter diode expression. The current for this gate-source current is:

$$I_{gs}(V_{gs}) = Is \times \left[e^{\frac{qV_{gs}}{nkT}} - 1\right]$$

where  ${\bf q}$  is the charge on an electron,  ${\bf k}$  is Boltzmann's constant and T is the junction temperature.

The EE\_FET3 breakdown model was developed from measured DC breakdown data and includes the voltage dependency of both gate-drain and gate-source junctions. EE\_FET3 models breakdown for  $V_{ds}$ >0V only, breakdown in the  $V_{ds}$ <0V region is not handled. The

model consists of 4 parameters that are easily optimized to measured data. The breakdown current is given by:

for  $-V_{ad} > Vbr$ 

$$I_{gd}(V_{gd}, V_{gs}) = -Kbk \left( \left[ 1 - \frac{Ids(V_{gs}, V_{ds})}{I(dsoc)} \right] \times \left( -V_{gd} - Vbr \right)^{Nbr} \right)$$

for  $-V_{gd} \leq V_{br}$ 

$$I_{gd}(V_{gd},V_{gs})\,=\,0$$

Idsoc should be set to the maximum value attainable by  $I_{ds}$  to preclude the possibility of the gate-drain current flowing in the wrong direction.

## **Scaling Relations**

Scaling of EE\_FET3 model parameters is accomplished through the use of the model parameters Ugw and Ngf and device parameters Ugw and N. From these four parameters, the following scaling relations can be defined:

$$sf = rac{Ugw^{new} imes N}{Ugw(Ngf)}$$

$$sfg = \frac{Ugw \times N}{Ugw^{new} \times Ngf}$$

where *Ugw<sup>new</sup>* represents the device parameter Ugw, the new unit gate width. Scaling will be disabled if any of the 4 scaling parameters are set to 0. The new EE\_FET3 parameters are calculated internally by the simulator according to these equations:

$$Ris^{new} = \frac{Ris}{sf}$$

 $Rid^{new} = \frac{Rid}{sf}$  $Gmmax^{new} = Gmmax(sf)$  $Gmmaxac^{new} = Gmmaxac(sf)$  $Peff^{new} = Peff \times sf$  $Peffac^{new} = Peffac(sf)$  $Rdb^{new} = \frac{Rdb}{sf}$  $Gdbm^{new} = Gdbm(sf)$  $Kdb^{new} = \frac{Kdb}{sf}$  $Is^{new} = Is \times sf$  $Kbk^{new} = Kbk(sf)$ Idsoc<sup>new</sup> = Idsoc(sf)  $Rg^{new} = \frac{Rg}{sfg}$  $Rd^{new} = \frac{Rd}{sf}$  $Rs^{new} = \frac{Rs}{sf}$  $Cbs^{new} = Cbs \times sf$  $C11o^{new} = C11o \times sf$  $C11th^{new} = C11th \times sf$  $C12sat^{new} = C12sat \times sf$  $Cgdsat^{new} = Cgdsat \times sf$ 

$$Cdso^{new} = Cdso \times sf$$

# **Temperature Scaling**

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The saturation current Is scales as:

$$Is^{NEW} = Is \times exp \left[ \left( \frac{Temp}{Tnom} - 1 \right) \frac{q \times Eg}{k \times N \times Temp} + \frac{Xti}{N} \times ln \left( \frac{Temp}{Tnom} \right) \right]$$

where:

 $E_{\rm g} = 1.11$ 

The threshold voltage Vto varies as:

$$Vto^{NEW} = Vto + Vtotc(Temp - Tnom)$$

Following are additional equations for the temperature scaling parameters:

$$RG^{NEW} = Rg[1 + Rgtc(Temp - Tnom)]$$

$$RD^{NEW} = Rd[1 + Rdtc(Temp - Tnom)]$$

$$RS^{NEW} = Rs[1 + Rstc(Temp - Tnom)]$$

$$VTOAC^{NEW} = Vtoac + Vtoactc(Temp - Tnom)$$

$$VTSO^{NEW} = Vtso + Vtotc(Temp - Tnom)$$

$$VTSOAC^{NEW} = Vtsoac + Vtoactc(Temp - Tnom)$$

$$GAMMA^{NEW} = GAMMA\left(\left\lceil \frac{Temp}{Tnom} \right\rceil^{GAMMATC}\right)$$

$$GAMMAAC^{NEW} = GAMMAAC\left(\left\lceil \frac{Temp}{Tnom} \right\rceil^{GAMMAACTC}\right)$$

$$GMMAX^{NEW} = GMMAX + GMMAXTC(Temp - Tnom)$$

$$GMMAXAC^{NEW} = GMMAXAC + GMMAXACTC(Temp - Tnom)$$

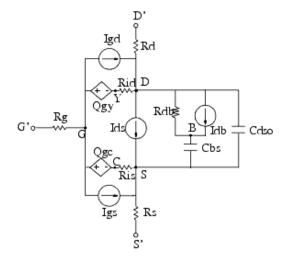
$$VINFL^{NEW} = Vinfl + Vinfltc(Temp - Tnom)$$

#### **Noise Model**

-----

Thermal noise generated by resistors Rg, Rs, Rd, Ris, Rid, and Rdb is characterized by the following spectral density.

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$


Channel noise generated by the DC transconductance gm is characterized by the following spectral density:

$$\frac{\langle i_{ds}^2 \rangle}{\Delta f} = \frac{8kTg_m}{3}$$

In these expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge, and  $\Delta f$  is the noise bandwidth.

Flicker noise for this device is not modeled in this version of the simulator. However, the bias-dependent noise sources I\_NoiseBD and V\_NoiseBD can be connected external to the device to model flicker noise.

#### **Equivalent Circuit**



#### **Device Operating Point Data**

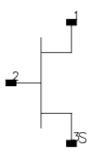
This model generates device operating point data during a DC simulation. The procedure

for viewing device operating point data for a component is in *Using Circuit Simulators* (cktsim). Data displayed for EE\_FET3\_Model (and EE\_HEMT1\_model) is:

| Id        | 0.167708      |
|-----------|---------------|
| Ig        | -9.99941e-0   |
| Is        | -0.167708     |
| Power     | 0.838539      |
| Gm        | 0.119883      |
| Gds       | 0.0109841     |
| GmAc      | 0.0487499     |
| GdsAc     | 0.00342116    |
| Ggs       | 2.31388e-017  |
| Ggd       | 0             |
| dIgd_dVgs | 0             |
| Cgc       | 1.40818e-012  |
| dQgc_dVgy | -2.28547e-013 |
| Сду       | 5e-014        |
| dQgy_dVgc | -4.57459e-025 |
| Vgs       | -0.25         |
| Vds       | 5             |

# **Conductance Model**

The detailed operating point analysis returns information on the internal calculations of EEfet3. Since the model accounts for dynamic affects found in conductance and transconductance of GaAs devices, both DC and AC operation are reported for Gm and Gds.


- Gm, Gds DC transconductance, output conductance
- GmAc, GdsAC High-frequency transconductance and output conductance
- dIgd\_dVgs Transconductance effects of the gate-drain voltage.

## References

- 1. W. R Curtice. "A MESFET model for use in the design of GaAs integrated circuits," *IEEE Transactions of Microwave Theory and Techniques*, Vol. MTT-28, pp. 448-456, May 1980.
- 2. P. C. Canfield, "Modeling of frequency and temperature effects in GaAs MESFETs" *IEEE Journal of Solid-State Circuits,* Vol. 25, pp. 299-306,Feb. 1990.
- 3. J.M. Golio, M. Miller, G. Maracus, D. Johnson, "Frequency dependent electrical characteristics of GaAs MESFETs," *IEEE Trans. Elec. Devices*, vol. ED-37, pp. 1217-1227, May 1990.
- 4. H. Statz, P. Newman, I. Smith, R. Pucel, H. Haus, "GaAs FET device and circuit simulation in SPICE," *IEEE Trans. Elec. Devices*, vol. ED-34, pp. 160-169, Feb. 1987.

# **EE\_HEMT1 (EEsof Scalable Nonlinear HEMT)**

Symbol



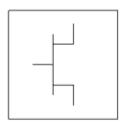
#### **Parameters**

| Name  | Description                          | Units | Default  |
|-------|--------------------------------------|-------|----------|
| Model | name of an EE_HEMT1_Model            | None  | EEHEMTM1 |
| Ugw   | new unit gate width                  | None  | 0.0      |
| Ν     | new number of gate fingers           | None  | 1.0      |
| Noise | noise generation option: yes=1, no=0 | None  | yes      |
| _M    | number of devices in parallel        | None  | 1        |

## Range of Usage

 $\begin{array}{l} Ugw > 0 \\ N > 0 \end{array}$ 

## **Notes/Equations**


- 1. Ugw and N are used for scaling device instance; refer to *EE\_HEMT1\_Model (EEsof Scalable Nonlinear HEMT Model)* (ccnld).
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.

## **DC Operating Point Information**

| Name      | Description                                      | Units   |
|-----------|--------------------------------------------------|---------|
| Id        | Drain current                                    | amperes |
| Ig        | Gate current                                     | amperes |
| Is        | Source current                                   | amperes |
| Power     | DC power dissipated                              | watts   |
| Gm        | Forward transconductance (dIds/dVgs)             | siemens |
| Gds       | Output conductance (dIds/dVds)                   | siemens |
| GmAc      | Forward transconductance (dIds/dVgs + dIdb/dVgs) | siemens |
| GdsAc     | Output conductance (dIds/dVds + dIdb/dVgd)       | siemens |
| Ggs       | Gate-source conductance                          | siemens |
| Ggd       | Gate-drain conductance                           | siemens |
| dIgd_dVgs | (dIgd/dVgs)                                      | siemens |
| Cgc       | Gate-source capacitance (dQgc/dVgc)              | farads  |
| dQgc_dVgy | (dQgc/dVgy)                                      | farads  |
| Cgy       | Gate-drain capacitance (dQgy/dVgy)               | farads  |
| dQgy_dVgc | (dQgy/dVgc)                                      | farads  |
| Vgs       | Gate-source voltage                              | volts   |
| Vds       | Gate-drain voltage                               | volts   |

# **EE\_HEMT1\_Model (EEsof Scalable Nonlinear HEMT** Model)

### Symbol



#### **Parameters**

| Name    | Description                                                  | Units | Default  |
|---------|--------------------------------------------------------------|-------|----------|
| Vto     | zero bias threshold                                          | V     | -1.5     |
| Gamma   | Transconductance parameter                                   | 1/V   | 0.05     |
| Vgo     | gate-source voltage where transconductance is a maximum      | V     | 0.0      |
| Vdelt   | Parameter which controls linearization point                 | V     | 0.0      |
| Vch     | gate-source voltage where Gamma no longer affects I-V curves | V     | 1.0      |
| Gmmax   | peak transconductance                                        | S     | 70.0e-03 |
| Vdso    | Drain voltage where Vo dependence is nominal                 | V     | 2.0      |
| Vsat    | drain-source current saturation                              | V     | 1.0      |
| Кара    | output conductance                                           | S     | 1.0      |
| Peff    | channel to backside self-heating                             | W     | 2.0      |
| Vtso    | subthreshold onset voltage                                   | V     | -10.0    |
| Is      | gate junction reverse saturation current                     | A     | 1.0e-14  |
| N       | gate junction ideality factor                                | None  | 1.0      |
| Ris     | source end channel resistance                                | Ohm   | 0.0      |
| Rid     | drain end channel resistance                                 | Ohm   | 0.0      |
| Tau     | gate transit time delay                                      | sec   | 0.0      |
| Cdso    | drain-source inter-electrode capacitance                     | F     | 80.0e-15 |
| Rdb     | dispersion source output impedance                           | Ohm   | 1.0e+9   |
| Cbs     | trapping-state capacitance                                   | F     | 1.6e-13  |
| Vtoac   | zero bias threshold (AC)                                     | V     | -1.5     |
| Gammaac | Transconductance parameter (AC)                              | 1/V   | 0.05     |
| Vdeltac | Parameter which controls linearization point (AC)            | V     | 0.0      |
| Gmmaxac | peak transconductance (AC)                                   | S     | 60.0e-03 |
| Караас  | output conductance (AC)                                      | S     | 0.0      |
| Peffac  | channel to backside self-heating (AC)                        | W     | 10.0     |
| Vtsoac  | subthreshold onset voltage (AC)                              | V     | -10.0    |
| Gdbm    | additional d-b branch conductance at Vds = VDSM              |       | 0.0      |

Advanced Design System 2011.01 - Nonlinear Devices

| Kdb            | Advanced Design System 2011.01 - Nonlinear Dev                   |      |           |
|----------------|------------------------------------------------------------------|------|-----------|
|                | Dependence of d-b branch conductance with Vds                    | None |           |
| Vdsm           | voltage where additional d-b branch conductance becomes constant | ·    | 1.0       |
| C110           | maximum input capacitance for Vds=Vdso and Vdso>Deltds           | F    | 0.3e-12   |
| C11th          | minimum (threshold) input capacitance for Vds=Vdso               | F    | 0.03e-12  |
| Vinfl          | inflection point in C11-Vgs characteristic                       | V    | 1.0       |
| Deltgs         | C11th to C11o transition voltage                                 | V    | 0.5       |
| Deltds         | linear region to saturation region transition                    | V    | 1.0       |
| Lambda         | C11-Vds characteristic slope                                     | 1/V  | 1.0       |
| C12sat         | input transcapacitance for Vgs=Vinfl and Vds>Deltds              | F    | 0.03e-12  |
| Cgdsat         | gate drain capacitance for Vds>Deltds                            | F    | 0.05e-12  |
| Kbk            | breakdown current coefficient at threshold                       | None | 0.0       |
| Vbr            | Breakdown onset voltage                                          | V    | 15.0      |
| Nbr            | breakdown current exponent                                       | None | 2.0       |
| Idsoc          | open channel (maximum) value of Ids                              | A    | 100.0e-03 |
| Rd             | drain contact resistance                                         | Ohm  | 1.0       |
| Rs             | source contact resistance                                        | Ohm  | 1.0       |
| Rg             | gate metallization resistance                                    | Ohm  | 1.0       |
| Ugw            | unit gate width of device                                        |      | 0.0       |
| Ngf            | number of device gate fingers                                    | None | 1.0       |
| Vco            | voltage where transconductance compression begins for Vds=Vdso   | V    | 10.0      |
| Vba            | transconductance compression tail-off                            | V    | 1.0       |
| Vbc            | transconductance roll-off to tail-off transition voltage         | V    | 1.0       |
| Mu             | Vo dependent transconductance compression                        | None | 1.0       |
| Deltgm         | slope of transconductance compression characteristic             | None | 0.0       |
| Deltgmac       | slope of transconductance compression characteristic (AC)        | None | 0.0       |
| Alpha          | transconductance saturation to compression transition            | V    | 1.0e-03   |
| Tnom           | Nominal ambient temperature                                      | °C   | 25        |
| Rgtc           | linear temperature coefficient for RG                            | 1/°C | 0.0       |
| Rdtc           | linear temperature coefficient for RD                            | 1/°C | 0.0       |
| Rstc           | linear temperature coefficient for RS                            | 1/°C | 0.0       |
| Vtotc          | Vto temperature coefficient                                      | V/°C | 0.0       |
| Gmmaxtc        | Gmmax temperature coefficient                                    | S/°C | 0.0       |
| Gammatc        | Gamma temperature coefficient                                    | None | 0.0       |
| Vinfltc        | Vinfl temperature coefficient                                    | V/°C | 0.0       |
| Vtoactc        | Vtoac temperature coefficient                                    | V/°C | 0.0       |
| Gmmaxactc      | Gmmaxac temperature coefficient                                  | S/°C | 0.0       |
|                | Gammaac temperature coefficient                                  | None | 0.0       |
| Xti            | Temperature Exponent for Saturation Curren                       | None | 3.0       |
| Kmod           | library model number                                             | None | 1         |
| Kver           | version number                                                   | None | 1         |
| wVgfwd         | gate junction forward bias (warning)                             | V    | None      |
| wBvgs          | gate-source reverse breakdown voltage (warning)                  | V    | None      |
| wBvgd          | gate-drain reverse breakdown voltage (warning)                   | V    | None      |
| wBvga<br>wBvds | drain-source breakdown voltage (warning)                         | V    | None      |
| wIdsmax        | maximum drain-source current (warning)                           | A    | None      |
| wPmax          | maximum power dissipation (warning)                              | W    | None      |
| AllParams      | Data Access Component (DAC) Based Parameters                     | None | None      |

# Notes/Equations

- 1. This model supplies values for an EE\_HEMT1 device.
- Model parameters such as Ls, Ld, and Lg (as well as other package related parameters that are included as part of the output from the EE\_HEMT1 IC-CAP model file) are not used by the EE\_HEMT1 component in the simulator. Only those parameters listed are part of the EE\_HEMT1 component. Any extrinsic components must be added externally by the user.
- 3. To prevent numerical problems, the setting of some model parameters to 0 is trapped by the simulator. Parameter values are changed internally as follows:

 $Rd = 10^{-4}$   $Rs = 10^{-4}$   $Rg = 10^{-4}$   $Ris = 10^{-4}$   $Rid = 10^{-4}$  Vsat = 0.1  $Peff = 10^{-6}$   $Peffac = 10^{-6}$  Deltds = 0.1 Deltgs = 0.1 Idsoc = 0.1  $Is = 10^{-50}$ 

4. When  $g_m$  is computed from operating point details, the result does not include the effects of parasitic resistance such as  $R_g$  or  $R_s$ . This generates a different result from the  $q_s$  that is computed using  $L_s$  and  $V_s$ 

the  ${\rm g}_{\rm m}$  that is computed using  ${\rm I}_{\rm ds}$  and  ${\rm V}_{\rm gs}.$ 

5. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by an AllParams association.

# Equations/Discussion

EE\_HEMT1 is an empirical analytic model that was developed by Agilent EEsof for the express purpose of fitting measured electrical behavior of HEMTs. The model includes the following features:

- Accurate isothermal drain-source current model fits virtually all processes
- Flexible transconductance formulation permits accurate fitting of  $g_m$  compression

found in HEMTs

- Self-heating correction for drain-source current
- Charge model that accurately tracks measured capacitance values
- Dispersion model that permits simultaneous fitting of high-frequency conductances and DC characteristics
- Accurate breakdown model describes gate-drain current as a function of both  $\mathrm{V}_{\mathrm{qs}}$  and

V<sub>ds</sub>.

• Well-behaved (non-polynomial) expressions permit accurate extrapolations outside of

The model equations were developed concurrently with parameter extraction techniques to ensure the model would contain only parameters that were extractable from measured data. Although the model is amenable to automated parameter extraction techniques, it was designed to consist of parameters that are easily estimated (visually) from measured data such as  $g_m$ -V<sub>as</sub> plots. The increased number of model parameters is commensurate

with the improvement in accuracy as compared with other popular empirical models. Since the model equations are all well behaved analytic expressions, EE\_HEMT1 possesses no inherent limitations with respect to its usable power range. With the parameters Vdelt and Vdeltac set to zero, EE\_FET3 becomes a subset of EE\_HEMT1. The linear transconductance region modeled with the parameter Vdelt in EE\_FET3 is omitted from EE\_HEMT1 and replaced with a series of parameters designed to model transconductance compression. Agilent EEsof's IC-CAP program provides the user with the capability of extracting EE\_HEMT1 models from measured data.

## **Drain-Source Current**

The drain-source current model in EE\_HEMT1 is comprised of various analytic expressions that were developed through examination of  $g_m$  versus bias plots on a wide class of devices from various manufacturers. The expressions below are given for  $V_{ds} > 0.0V$  although the model is equally valid for  $V_{ds} < 0.0V$ . The model assumes the device is symmetrical, and one need only replace  $V_{gs}$  with  $V_{gd}$  and  $V_{ds}$  with  $-V_{ds}$  in order to obtain the reverse region ( $V_{ds} < 0.0V$ ) equations. The  $g_m$ ,  $g_{ds}$  and  $I_{ds}$  equations take on four different forms depending on the value of  $V_{gs}$  relative to some of the model parameters. The  $I_{ds}$  expression is continuous through at least the second derivative everywhere.

$$V_{ts} = \frac{Vtso - Vch}{1 + Gamma(Vdso - Vds)} + Vch$$

$$if V_{gs} < Vts and Vtso > Vto$$

$$V_{gs} = Vts$$

$$if V_{gs} \ge V_{g}$$

$$g_{mo} = Gmmax\{1 + Gamma(Vdso - V_{ds})\}$$

$$I_{dso} = Gmmax\left\{V_{x}(V_{gs}) - \frac{(Vgo + Vto)}{2} + Vch\right\}$$

$$g_{dso} = -Gmmax \times Gamma(V_{gs} - Vch)$$

else if  $V_{as} \le V_t$ 

$$g_{mo} = 0.0$$
$$I_{dso} = 0.0$$
$$g_{dso} = 0.0$$

else

$$g_{mo} = g_{mm}(V_{gs})$$

$$I_{dso} = I_{dsm}(V_{gs})$$

$$g_{dso} = -\frac{Gmmax}{2}Gamma(V_{gs} - Vch)$$

$$(- \nabla V(V_{ss}) - (Vga - Vch))$$

$$\times \left\{ \cos \left[ \pi \times \frac{V_x(V_{gs}) - (Vgo - Vch)}{Vto - Vgo} \right] + 1 \right\}$$

where:

$$g_{mm}(V) = \frac{Gmmax}{2} [1 + Gamma(Vdso - V_{ds})]$$

$$\times \left\{ \cos\left[\pi \times \frac{V_x(V) - (Vgo - Vch)}{Vto - Vgo}\right] + 1 \right\}$$

$$I_{dsm}(V) = \frac{Gmmax}{2} \left( ((Vto - Vgo)/\pi) \sin\left[\pi \times \frac{V_x(V) - (Vgo - Vch)}{Vto - Vgo}\right] + V_x(V) - (Vto - Vch))$$

$$V_x(V) = (V - Vch) [1 + Gamma(Vdso - V_{ds})]$$

$$v_{x}(v) = (v - vch)[1 + Gamma(vasb - v_{d})]$$
$$V_{g} = \frac{Vgo - Vch}{1 + Gamma(Vdso - V_{ds})} + Vch$$
$$V_{t} = \frac{Vto - Vch}{1 + Gamma(Vdso - V_{ds})} + Vch$$

The following voltages define regions of operation that are used in the  ${\rm g}_{\rm m}$  compression terms:

$$V_{c} = Vco + Mu \times (Vdso - V_{ds})$$
$$V_{b} = Vbc + V_{c}$$
$$V_{a} = V_{b} - Vba$$

 $\label{eq:star} \begin{array}{l} & \mbox{Advanced Design System 2011.01 - Nonlinear Devices} \\ \mbox{For $V_{gs} > V_{c}$, the basic $I_{dso}$, $g_{mo}$ and $g_{dso}$ relations are modified as follows:} \\ \mbox{for $V_{gs} < V_{b}$,} \end{array}$ 

$$\begin{split} g_{mo}^{comp} &= g_{mo} - g_{mv}(V_{gs}, V_{ds}) \\ I_{dso}^{comp} &= I_{dso} - I_{dsv}(V_{gs}, V_{ds}) \\ g_{dso}^{comp} &= g_{dso} - g_{dsv}(V_{gs}, V_{ds}) \\ \text{for } V_{gs} &\geq V_b \text{ and } b \neq -1, \\ g_{mo}^{comp} &= g_{mo} - [a(V_{gs} - V_a)^b + g_{moff}] \\ I_{dso}^{comp} &= I_{dso} - \frac{a}{b+1} [(V_{gs} - V_a)^{b+1} - Vba^{b+1}] - g_{moff} \times (V_{gs} - V_b) \\ -I_{dsv}(V_b, V_{ds}) \\ g_{dso}^{comp} &= g_{dso} - Mu[a(V_{gs} - V_a)^b + g_{moff}] - g_{dsv}(V_b, V_{ds}) \\ \text{for } V_{gs} &\geq V_b \text{ and } b = -1, \\ g_{mo}^{comp} &= g_{mo} - [a(V_{gs} - V_a)^b + g_{moff}] \\ I_{dso}^{comp} &= g_{mo} - [a(V_{gs} - V_a)^b - g_{moff}] \\ I_{dso}^{comp} &= I_{dso} - a[\log(V_{gs} - V_a) - \log(Vba)] - g_{moff} \times (V_{gs} - V_b) \\ -I_{dsv}(V_b, V_{ds}) \\ g_{dso}^{comp} &= g_{dso} - a[\log(V_{gs} - V_a) - \log(Vba)] - g_{moff} \times (V_{gs} - V_b) \\ -I_{dsv}(V_b, V_{ds}) \\ g_{dso}^{comp} &= g_{dso} - \frac{Mu \times a}{(V_{gs} - V_a)} - Mu \times g_{moff} - g_{dsv}(V_b, V_{ds}) \end{split}$$

where:

$$a = \frac{g_{mv}(V_b, V_{ds}) - g_{moff}}{Vba^b}$$

$$b = \frac{s_{vb} \times Vba}{g_{mv}(V_b, V_{ds}) - g_{moff}}$$

$$s_{vb} = Deltgm \times \frac{Vbc}{\sqrt{Alpha^2 + Vbc^2}}$$

$$g_{mv}(V, V_{ds}) = Deltgm \times \left[\sqrt{Alpha^2 + (V - V_c)^2} - Alpha\right]$$

$$\begin{split} I_{dsv}(V - V_{ds}) &= Deltgm \Bigg( \frac{1}{2} \Bigg( (V - V_c) \sqrt{Alpha^2 + (V - V_c)^2} + Alpha^2 \\ &\quad * \log \Bigg[ \frac{(V - V_c) + \sqrt{Alpha^2 + (V - V_c)^2}}{Alpha} \Bigg] \Bigg) - Alpha * (V - V_c) \Bigg) \end{split}$$

 $g_{dsv}(V,V_{ds}) \ = \$ 

$$Deltgm \times Mu \left[ \frac{1}{2} \left( \frac{2(V - V_{e})^{2} + Alpha^{2}}{\sqrt{Alpha^{2} + (V - V_{e})^{2}}} + \frac{Alpha^{2}}{(V - V_{e}) + \sqrt{Alpha^{2} + (V - V_{e})^{2}}} \right) \times \left[ 1 + \frac{(V - V_{e})}{\sqrt{Alpha^{2} + (V - V_{e})^{2}}} \right] - Alpha \right]$$

where  $g_{moff} = g_{mo}(Vco, Vdso)$  means replace Vgs by Vco, Vds by Vdso; i.e., if Vco > Vgo

 $g_{moff} = \text{Gmmax}$ 

else if *Vco* < *Vto* 

$$g_{moff} = 0$$

else

$$gmoff = \frac{Gmmax}{2} \left[ \cos\left(\pi \times \frac{Vco - Vgo}{Vto - Vgo}\right) + 1 \right]$$

If junction voltage drops below the onset of subthreshold (Vts), current and conductances are modified to decay exponentially from their value at Vgs = Vts.

if Idso  $\neq$  0 and Vgs < Vts and Vtso > Vto and gmo / Idso > 0

$$arg = -\left(\frac{gmo}{Idso}\right) \times (Vts - Vgs)$$
$$Idso = Idso \times \exp(arg)$$
$$gmo = gmo \times \exp(arg)$$

 $gdso = gdso \times \exp(\arg)$ 

where:

To prevent  $g_m$  from becoming negative at high gate-source biases, it is advisable to use the parameter Deltgm under the following value:

$$Deltgm < \frac{g_{moff}}{\sqrt{Alpha^2 + Vbc^2} - Alpha}$$

The preceding relations for  $I_{dso}^{comp}$ ,  $g_{mo}^{comp}$  and  $g_{dso}^{comp}$  can now be substituted in the following equations that model current saturation and output conductance. This portion of the model can be recognized from the work of Curtice [1].

$$g'_m = g_{mo}^{comp} (1 + Kapa \times V_{ds}) \tanh\left(\frac{3V_{ds}}{V_{sat}}\right)$$

$$I'_{ds} = I_{dso}^{comp} (1 + Kapa \times V_{ds}) \tanh\left(\frac{3V_{ds}}{Vsat}\right)$$

$$g'_{ds} = \left\{ g_{dso}^{comp} (1 + Kapa \times V_{ds}) + I_{dso}^{comp} Kapa \right\} \tanh\left(\frac{3V_{ds}}{Vsat}\right)$$

$$+I_{dso}^{comp} \times \frac{3(1+Kapa \times V_{ds})}{Vsat} \operatorname{sech}^{2} \left(\frac{3V_{ds}}{Vsat}\right)$$

These expressions do an excellent job of fitting HEMT I-V characteristics in regions of low power dissipation. They will also fit pulsed (isothermal) I-V characteristics. To model negative conductance effects due to self-heating, the thermal model of Canfield was incorporated [2]. With this final enhancement, the DC expressions for  $I_{ds}$  and its

associated conductances become:

-

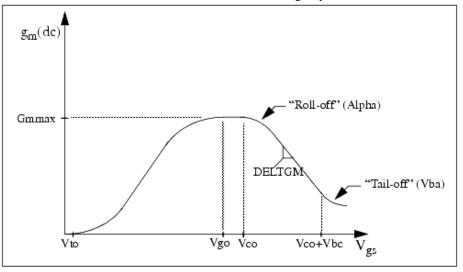
$$I_{ds} = \frac{I'_{ds}}{1 + \frac{P_{diss}}{Peff}}$$
$$g_m = \frac{g'_m}{\left[1 + \frac{P_{diss}}{Peff}\right]^2}$$

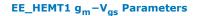
$$g_{ds} = \frac{g'_{ds} - \frac{I'_{ds}^2}{Peff}}{\left[1 + \frac{P_{diss}}{Peff}\right]^2}$$

where:

$$P_{diss} = I'_{ds}V_{ds}$$

Qualitatively, the operation of the drain-source model can be described as follows. The  $V_{ds}$  dependence of the equations is dominated by the parameters Vsat, Gamma,


Kapa, and Peff. Isothermal output conductance is controlled by Gamma and Kapa. The impact of Gamma on output conductance is more significant near threshold. At  $V_{as} = Vch$ ,


the output conductance is controlled only by Kapa. Peff provides a correction to the isothermal model for modeling the self-heating effects manifested as a negative resistance on the I-V curves. Vsat represents the drain-source voltage at which the current saturates and output conductance becomes a constant (approximately). Mu also impacts the I-V curves in the g<sub>m</sub> compression region, but its effect is second order. In most cases, the g<sub>m</sub>

fit is more sensitive to the parameter Mu.

The overall impact of Vch on the I-V characteristics is second order at best, and many different values of Vch will provide good fits to I-V plots. For most applications encountered, the default value of 1.0V is an adequate value for Vch. Similar to Vch, Vdso is a parameter that should be set rather than optimized. At  $V_{ds}$ =Vdso, the drain-source model collapses to a single voltage dependency in  $V_{gs}$ . It is recommended that the user set Vdso to a typical  $V_{ds}$  operating point in saturation. At this point, many of the parameters can be extracted from a  $I_{ds}$ - $V_{gs}$  plot for  $V_{ds}$ =Vdso or, preferably, a  $g_m(dc)$ - $V_{gs}$  plot at  $V_{ds}$ =Vdso.

When  $V_{ds}$ =Vdso and Peff is set large (to disable the self-heating model), the significance of Vto, Vgo, Gmmax, Vco, Vba, Vbc, Deltgm and Alpha are easily understood from a plot of  $g_m(dc)-V_{gs}$ . Gmmax is the peak transconductance of the model that occurs at  $V_{gs}$ =Vgo. Vto represents the gate-source voltage where  $g_m$  goes to zero. Transconductance compression begins at  $V_{gs}$ =Vco. Alpha controls the abruptness of this transition while Deltgm controls the slope of the  $g_m$  characteristic in compression. At  $V_{gs}$ =Vco+Vbc, the linear  $g_m$  slope begins to tail-off and asymtotically approach zero. The shape of this *tail-off* region is controlled by Vba. The parameter definitions are illustrated in <u>EE\_HEMT1</u> <u>gm-Vgs Parameters</u>.





#### **Dispersion Current (Idb)**

Dispersion in a GaAs MESFET or HEMT drain-source current is evidenced by the observation that the output conductance and transconductance beyond some transition frequency is higher than that inferred by the DC measurements. A physical explanation often attributed to this phenomenon is that the channel carriers are subject to being trapped in the channel-substrate and channel-surface interfaces. Under slowly varying signal conditions, the rate at which electrons are trapped in these sites is equal to the rate at which they are emitted back into the channel. Under rapidly varying signals, the traps cannot follow the applied signal and the *high-frequency* output conductance results.

The circuit used to model conductance dispersion consists of the Rdb, Cbs (these linear components are also parameters) and the nonlinear source  $I_{db}(V_{gs}, V_{ds})$ . The model is a large-signal generalization of the dispersion model proposed by Golio et al. [3]. At DC, the drain-source current is just the current  $I_{ds}$ . At high frequency (well above the transition frequency), the drain source current will be equal to  $I_{ds}$ (high frequency) =  $I_{ds}(dc) + I_{db}$ . Linearization of the drain-source model yields the following expressions for  $y_{21}$  and  $y_{22}$  of the intrinsic EE\_HEMT1 model:

$$y_{21} = g_{dsgs} + g_{dbgs} - \frac{g_{dbgs}}{1 + j\omega \times Cbs(Rdb)}$$
$$y_{22} = g_{dsds} + g_{dbds} + \frac{1}{Rdb} - \frac{\left(g_{dbds} + \frac{1}{Rdb}\right)}{1 + j\omega \times Cbs(Rdb)}$$

where:

Advanced Design System 2011.01 - Nonlinear Devices

$$g_{dsgs} = \frac{\partial I_{ds}}{\partial V_{gs}}$$
$$g_{dsds} = \frac{\partial I_{ds}}{\partial V_{ds}}$$
$$g_{dbgs} = \frac{\partial I_{db}}{\partial V_{gs}}$$
$$g_{dbds} = \frac{\partial I_{db}}{\partial V_{ds}}$$

ъ.т

Evaluating these expressions at the frequencies  $\omega = 0$  and  $\omega = infinity$ , produces the following results for transconductance and output conductance: for  $\omega = 0$ ,

$$Re[y_{21}] = g_m = g_{dsgs}$$
$$Re[y_{22}] = g_{ds} = g_{dsds}$$

for  $\omega$  = infinity,

 $Re[y_{21}] = g_m = g_{dsgs} + g_{dbgs}$ 

$$Re[y_{22}] = g_{ds} = g_{dsds} + g_{dbds} + \frac{1}{Rdb}$$

Between these two extremes, the conductances make a smooth transition, the abruptness of which is governed by the time constant  $\tau disp = Rdb \times Cbs$ . The frequency  $f_0$  at which

the conductances are midway between these two extremes is defined as:

$$f_0 = \frac{1}{2\pi\tau_{disp}}$$

The parameter Rdb should be set large enough so that its contribution to the output conductance is negligible. Unless the user is specifically interested in simulating the device near  $f_0$ , the default values of Rdb and Cbs will be adequate for most microwave applications.

The EE\_HEMT1 I<sub>ds</sub> model can be extracted to fit either DC or AC characteristics. In order

to simultaneously fit both DC I-V characteristics and AC conductances, EE\_HEMT1 uses a simple scheme for modeling the  $\rm I_{db}$  current source whereby different values of the same

parameters can be used in the I equations. The DC and AC drain-source currents can be

Advanced Design System 2011.01 - Nonlinear Devices ds

expressed as follows:

$$I_{ds}^{dc}$$
(Voltages, Parameters) =  $I_{ds}$ 

(Voltages, Gmmax, Vdelt, Vto, Gamma, Kapa, Peff, Vtso, Deltgm, Vgo, Vch, Vdso, Vsat)

 $I_{ds}^{ac}$  (Voltages, Parameters) =  $I_{ds}$ (Voltages, Gmmaxac, Vdeltac, Vto, Gammaac, Kapaac, Peffac, Vtsoac, Deltgmac, Vgo, Vch, Vdso, Vsat)

Parameters such as Vgo that do not have an AC counterpart (there is no Vgoac parameter) have been found not to vary significantly between extractions utilizing DC measurements versus those using AC measurements. The difference between the AC and DC values of Ids, plus an additional term that is a function of Vds only, gives the value of Idb for the dispersion model:

$$I_{db}(V_{gs}, V_{ds}) = I_{ds}^{ac}(V_{gs}, V_{ds}) - I_{ds}^{dc}(V_{gs}, V_{ds}) + I_{dbp}(V_{ds})$$

where  $I_{dbp}$  and its associated conductance are given by: for  $V_{ds} > Vdsm$  and  $Kdb \neq 0$ :

$$I_{dbp} = \sqrt{\frac{Gdbm}{Kdb}} \tan^{-1}((V_{ds} - Vdsm)\sqrt{Kdb(Gdbm)} + Gdbm \times Vdsm)$$
$$g_{dbp} = \frac{Gdbm}{(Kdb(Gdbm(V_{ds} - Vdsm)^2 + 1))}$$

for  $V_{ds} \leq Vdsm$  and  $Kdb \neq 0$ :

$$I_{dbp} = \sqrt{\frac{Gdbm}{Kdb}} \tan^{-1}((V_{ds} + Vdsm)\sqrt{Kdb(Gdbm)}) - Gdsm \times Vdsn$$
$$g_{dbp} = \frac{(Gdbm)}{(Kdb(Gdbm(V_{ds} + Vdsm)^2 + 1))}$$

for

-

$$-Vdsm \le V_{ds} \le Vdsm$$
 or  $Kdb = 0$ 

$$I_{dsm} = Gdbm \times V_{ds}$$
$$g_{dbm} = Gdbm$$

By setting the eight high-frequency parameters equal to their DC counterparts, the

dispersion model reduces to  $I_{db} = I_{dbp}$ . Examination of the  $I_{dbp}$  expression reveals that the additional setting of Gdbm to zero disables the dispersion model entirely. Since the  $I_{dbp}$  current is a function of  $V_{ds}$  only, it will impact output conductance only. However, the current function:

$$I_{ds}^{AC}$$

will impact both  $g_m$  and  $g_{ds}$ . For this reason, the model is primarily intended to utilize  $g_m$  data as a means for tuning:

$$I_{ds}^{AC}$$

Once this *fitting* is accomplished, the parameters Gdbm, Kdb and Vdsm can be tuned to optimize the  $g_{ds}$  fit.

# **Gate Charge Model**

The EE\_HEMT1 gate charge model was developed through careful examination of extracted device capacitances over bias. The model consists of simple closed form charge expressions whose derivatives fit observed bias dependencies in capacitance data. This capacitance data can be obtained directly from measured Y-parameter data:

$$C_{11} = \frac{im[y_{11}]}{\omega} = \frac{\partial q_g}{\partial V_{gs}}$$
$$C_{12} = \frac{im[y_{12}]}{\omega} = \frac{\partial q_g}{\partial V_{ds}}$$

The capacitance data is remarkably self-consistent. In other words, a single  $q_g$  function's derivatives will fit both C 11 data and C 12 data. The EE\_HEMT1 gate charge expression is:

$$\begin{aligned} q_{g}(V_{j}, V_{o}) &= \left[\frac{C11o - C11th}{2}g(V_{j}) + C11th(V_{j} - Vinfl)\right] \\ &\times \left[1 + Lambda(V_{o} - Vdso)\right] - C12sat \times V_{o} \end{aligned}$$

where:

$$g(V_j) = V_j - Vinfl + \frac{Deltgs}{3} \ln \left( \cosh \left( \frac{3}{Deltgs} (V_j - Vinfl) \right) \right)$$

Advanced Design System 2011.01 - Nonlinear Devices

This expression is valid for both positive and negative  $V_{ds}$ . Symmetry is forced through the following smoothing functions proposed by Statz [4]:

$$V_{j} = \frac{1}{2} \left( 2V_{gs} - V_{ds} + \sqrt{V_{ds}^{2} + Deltds^{2}} \right)$$
$$V_{o} = \sqrt{V_{ds}^{2} + Deltds^{2}}$$

Differentiating the gate charge expression wrt  $V_{gs}$  yields the following expression for the gate capacitance *C* 11:

$$C_{11}(V_j, V_o) = \left[\frac{C11o - C11th}{2}g'(V_j) + C11th\right] \times \left[1 + Lambda(V_o - Vdso)\right]$$

where:

$$g'(V_j) = \frac{dg(V_j)}{dV_j} = 1 + \tanh\left[\frac{3}{Deltgs}(V_j - Vinfl)\right]$$

The gate transcapacitance  $C_{12}$  is defined as:

$$\begin{split} C_{12}(V_{j}, V_{o}) &= \frac{\partial q_{g}}{\partial V_{ds}} = \frac{\partial q_{g}}{\partial V_{j}} \frac{\partial V_{j}}{\partial V_{ds}} + \frac{\partial q_{g}}{\partial V_{o}} \frac{\partial V_{o}}{\partial V_{ds}} \\ &= C_{11}(V_{j}, V_{o}) \times \frac{1}{2} \left[ \frac{V_{ds}}{\sqrt{V_{ds}^{2} + Deltds^{2}}} - 1 \right] \\ &+ \left[ \frac{C11o - C11th}{2} g(V_{j} - Vinfl) \right] \\ &\times Lambda - C12sat \times \frac{V_{ds}}{\sqrt{V_{ds}^{2} + Deltds^{2}}} \end{split}$$

The EE\_HEMT1 topology requires that the gate charge be subdivided between the respective charge sources q gc and q gy. Although simulation could be performed directly from the nodal gate charge  $q_{q'}$  division of the charge into branches permits the inclusion

of the resistances Ris and Rid that model charging delay between the depletion region and the channel. EE\_HEMT1 assumes the following form for the gate-drain charge in saturation:

$$q_{gy}(V_{gy}) = Cgdsat \times (V_{gy} + q_{gyo})$$

which gives rise to a constant gate-drain capacitance in saturation.

The gate-source charge  $q_{gc}$  can now be obtained by subtracting the latter from the gate charge equation. Smoothing functions can then be applied to these expressions in saturation in order to extend the model's applicable bias range to all  $V_{ds}$  values. These smoothing functions force symmetry on the  $q_{qv}$  and  $q_{qc}$  charges such that:

$$q_{gy} = q_{gc} = \frac{q_g}{2}$$

at V gc = V gy. Under large negative  $V_{ds}$  (saturation at the source end of the device),  $q_{gy}$  and  $q_{ac}$  swap roles, i.e:

$$q_{gc}(V_{gc}) = Cgdsat \times (V_{gc} + q_{gco})$$

The following continuous charge equations satisfy these constraints and are specified in terms of the gate charge:

$$\begin{split} q_{gy}(V_{gc},V_{gy}) &= \{q_g(V_{gc},V_{gc}-V_{gy}) - Cgdsat \times V_{gc}\} \times f_2 \\ &+ Cgdsat \times V_{gy} \times tf_1 \\ q_{gc}(V_{gc},V_{gy}) &= \{q_g(V_{gc},V_{gc}-V_{gy}) - Cgdsat \times V_{gy}\} \times f_1 \\ &+ C(Ggdsat) \times V_{gc} \times f_2 \end{split}$$

where  $f_1$  and  $f_2$  are smoothing functions defined by:

$$f_1 = \frac{1}{2} \left[ 1 + \tanh\left(\frac{3}{Deltds}(V_{gc} - V_{gy})\right) \right]$$

and

$$f_2 = \frac{1}{2} \left[ 1 - \tanh\left(\frac{3}{Deltds}(V_{gc} - V_{gy})\right) \right]$$

The capacitances associated with these *branch* charge sources can be obtained through differentiation of the  $q_{gc}$  and  $q_{gy}$  equations and by application of the chain rule to the capacitances *C*11 and *C*12. The gate charge derivatives re-formulated in terms of  $V_{gc}$  and  $V_{gy}$  are:

Advanced Design System 2011.01 - Nonlinear Devices

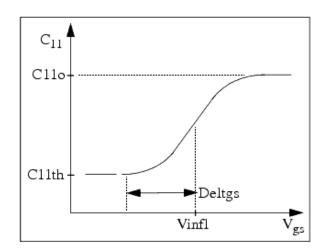
$$C_{ggy} = \frac{\partial q_g}{\partial V_{gy}} = -C_{12}(V_{gc}, V_{gc} - V_{gy})$$
$$C_{ggc} = \frac{\partial q_g}{\partial V_{gc}} = C_{11}(V_{gc}, V_{gc} - V_{gy}) + C_{12}(V_{gc}, V_{gc} - V_{gy})$$

The branch charge derivatives are:

$$\begin{split} C_{gygy} &= \frac{\partial q_{gy}}{\partial V_{gy}} = \{q_g(V_{gc}, V_{gc} - V_{gy}) - Cgdsat \times V_{gc}\} \times \frac{\partial f_2}{\partial V_{gy}} \\ &+ f_2 \times C_{ggy} + Cgdsat \times \left[V_{gy} \times \frac{\partial f_1}{\partial V_{gy}} + f_1\right] \\ C_{gygc} &= \frac{\partial q_{gy}}{\partial V_{gc}} = \{q_g(V_{gc}, V_{gc} - V_{gy}) - Cgdsat \times V_{gc}\} \times \frac{\partial f_2}{\partial V_{gc}} \\ &+ f_2 \times [C_{ggc} - Cgdsat] + Cgdsat \times V_{gy} \times \frac{\partial f_1}{\partial V_{gc}} \\ C_{gcgc} &= \frac{\partial q_{gc}}{\partial V_{gc}} = \{q_g(V_{gc}, V_{gc} - V_{gy}) - Cgdsat \times V_{gy}\} \times \frac{\partial f_1}{\partial V_{gc}} \\ &+ f_1 \times C_{ggc} + Cdsat \times \left[V_{gc} \times \frac{\partial f_2}{\partial V_{gc}} + f_2\right] \\ C_{gcgy} &= \frac{\partial q_{gc}}{\partial V_{gy}} = \{q_g(V_{gc}, V_{gc} - V_{gy}) - Cgdsat \times V_{gy}\} \times \frac{\partial f_1}{\partial V_{gc}} \end{split}$$

$$+f_1 \times [C_{ggy} - Cgdsat] + Cgdsat \times V_{gc} \times \frac{\partial f_2}{\partial V_{gy}}$$

where:


$$\frac{\partial f_1}{\partial V_{gc}} = \frac{3}{2 \times Deltds} \operatorname{sech}^2 \left( \frac{3(V_{gc} - V_{gy})}{Deltds} \right)$$
$$\frac{\partial f_1}{\partial V_{gy}} = -\frac{\partial f_1}{\partial V_{gc}}$$

$$\frac{\partial f_2}{\partial V_{gc}} = -\frac{\partial f_1}{\partial V_{gc}}$$
$$\frac{\partial f_2}{\partial V_{gy}} = \frac{\partial f_1}{\partial V_{gc}}$$

When  $V_{ds}$ =Vdso and Vdso>>Deltds, the gate capacitance C11 reduces to a single voltage dependency in  $V_{gs}$ . Similar to the  $I_{ds}$  model, the majority of the important gate charge parameters can then be estimated from a single trace of a plot. In this case, the plot of interest is  $C11-V_{gs}$  at  $V_{ds}$  = Vdso. The parameter definitions are shown in the following illustration, "EE\_HEMT1 C11-Vgs Parameters".

The parameter Deltds models the gate capacitance transition from the linear region of the device into saturation. Lambda models the slope of the  $C11-V_{ds}$  characteristic in

saturation. C12sat is used to fit the gate transcapacitance (C12) in saturation.



EE\_HEMT1 C<sub>11</sub>-V<sub>qs</sub> Parameters

# **Output Charge and Delay**

EE\_HEMT1 uses a constant output capacitance specified with the parameter Cdso. This gives rise to a drain-source charge term of the form:

$$q_{ds}(V_{ds}) = Cdso \times V_{ds}$$

The drain-source current described previously, is delayed with the parameter TAU according to the following equation:

$$I_{ds}(t) = I_{ds}(V_{gs}(t - Tau), V_{ds}(t))$$

In the frequency domain, only the transconductance is impacted by this delay and the

 $y_m = g_m \times exp(-j \times \omega \times Tau)$ 

#### **Gate Forward Conduction and Breakdown**

Forward conduction in the gate junction is modeled using a standard 2-parameter diode expression. The current for this gate-source current is:

 $I_{gs}(V_{gs}) = IS \times \left[e^{\frac{qV_{gs}}{nkT}} - 1\right]$ 

where q is the charge on an electron, k is Boltzmann's constant, and T is the junction temperature.

The EE\_HEMT1 breakdown model was developed from measured DC breakdown data and includes the voltage dependency of both gate-drain and gate-source junctions. EE\_HEMT1 models breakdown for Vds > 0V only, breakdown in the Vds < 0V region is not handled. The model consists of four parameters that are easily optimized to measured data. The breakdown current is given by:

for  $-V_{qd} > Vbr$ 

$$I_{gd}(V_{gd}, V_{gs}) = -Kbk \left[1 - \frac{Ids(V_{gs}, V_{ds})}{Idsoc}\right] \times (-V_{gd} - Vbr)^{Nbr}$$

for  $-V_{ad} \leq Vbr$ 

$$I_{gd}(V_{gd}, V_{gs}) = 0$$

Care must be exercised in setting Idsoc. This parameter should be set to the maximum value attainable by  $I_{ds}$ . This precludes the possibility of the gate-drain current flowing in the wrong direction.

#### **Scaling Relations**

Scaling of EE\_HEMT1 model parameters is accomplished through model parameters Ugw and Ngf and device parameters Ugw (same name as the model parameter) and N. From these four parameters, the following scaling relations can be defined:

$$sf = \frac{Ugw^{new} \times N}{Ugw \times Ngf}$$

$$sfg = \frac{Ugw \times N}{Ugw^{new} \times Ngf}$$

where Ugw<sup>new</sup> represents the device parameter Ugw, the new unit gate width.

Scaling will be disabled if any of the four scaling parameters are set to 0. The new EE\_HEMT1 parameters are calculated internally by the simulator according to the following equations:

$$Ris^{new} = \frac{Ris}{sf}$$

$$Rid^{new} = \frac{Rid}{sf}$$

$$Gmmax^{new} = Gmmax \times sf$$

$$Gmmaxac^{new} = Gmmaxac \times sf$$

$$Deltgm^{new} = Deltgm \times sf$$

$$Deltgmac^{new} = Deltgmac \times sf$$

$$Peff^{new} = Peff \times sf$$

$$Peffac^{new} = Peffac \times sf$$

$$Rdb^{new} = \frac{Rdb}{sf}$$

$$Gdbm^{new} = Gdbm \times sf$$

$$Kdb^{new} = \frac{Kdb}{sf}$$

$$Is^{new} = Is \times sf$$

$$Kbk^{new} = Kbk \times sf$$

$$Idsoc^{new} = Idsocs \times sf$$

$$Rg^{new} = \frac{Rg}{sfg}$$

$$Rd^{new} = \frac{Rd}{sf}$$

$$Rs^{new} = \frac{Rs}{sf}$$

$$Cbs^{new} = Cbs \times sf$$

$$C11o^{new} = C11o \times sf$$

$$C11th^{new} = C11th \times sf$$

$$C12sat^{new} = C12sat \times sf$$

$$Cgdsat^{new} = Cgdsat \times sf$$

$$Cdso^{new} = Cdso \times sf$$

**D** 1

#### Noise Model

Thermal noise generated by resistors Rg, Rs, Rd, Ris, Rid, and Rdb is characterized by the following spectral density.

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

Channel noise generated by the DC transconductance  $g_m$  is characterized by the following spectral density:

$$\frac{\langle i_{ds}^2 \rangle}{\Delta f} = \frac{8kTg_m}{3}$$

In the preceding expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge, and  $\Delta f$  is the noise bandwidth.

Flicker noise for this device is not modeled in this version of the simulator. However, the bias-dependent noise sources I\_NoiseBD and V\_NoiseBD can be connected external to the device to model flicker noise.

#### **Temperature Scaling**

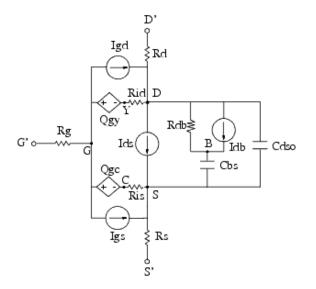
The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several

model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The saturation current Is scales as:

$$Is^{NEW} = Is \times exp\left[\left(\frac{Temp}{Tnom} - 1\right)\frac{q \times Eg}{k \times N \times Temp} + \frac{Xti}{N} \times ln\left(\frac{Temp}{Tnom}\right)\right]$$

where

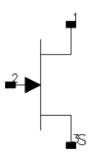

$$E_{g} = 1.11$$

The threshold voltage Vto varies as:

$$Vto^{NEW} = Vto + Vtotc(Temp - Tnom)$$

Following are additional equations for the temperature scaling parameters:

$$\begin{split} RG^{NEW} &= Rg[1 + Rgtc(Temp - Tnom)] \\ RD^{NEW} &= Rd[1 + Rdtc(Temp - Tnom)] \\ RS^{NEW} &= Rs[1 + Rstc(Temp - Tnom)] \\ VTOAC^{NEW} &= Vtoac + Vtoactc(Temp - Tnom) \\ VTSO^{NEW} &= Vtso + Vtotc(Temp - Tnom) \\ VTSOAC^{NEW} &= Vtsoac + Vtoactc(Temp - Tnom) \\ GAMMA^{NEW} &= GAMMA \Big( \Big[ \frac{Temp}{Tnom} \Big]^{GAMMATC} \Big) \\ GAMMAAC^{NEW} &= GAMMAAC \Big( \Big[ \frac{Temp}{Tnom} \Big]^{GAMMAACTC} \Big) \\ GMMAX^{NEW} &= GMMAX + GMMAXTC(Temp - Tnom) \\ GMMAXAC^{NEW} &= GMMAXAC + GMMAXACTC(Temp - Tnom) \\ VINFL^{NEW} &= Vinfl + Vinfltc(Temp - Tnom) \end{split}$$




#### References

- 1. W. R. Curtice, "A MESFET model for use in the design of GaAs integrated circuits," *IEEE Transactions of Microwave Theory and Techniques,* Vol. MTT-28, pp. 448-456, May 1980.
- 2. P. C. Canfield, "Modeling of frequency and temperature effects in GaAs MESFETs" *IEEE Journal of Solid-State Circuits,* Vol. 25, pp. 299-306, Feb. 1990.
- 3. J. M. Golio, M. Miller, G. Maracus, D. Johnson, "Frequency dependent electrical characteristics of GaAs MESFETs," *IEEE Trans. Elec. Devices*, vol. ED-37, pp. 1217-1227, May 1990.
- 4. H. Statz, P. Newman, I. Smith, R. Pucel, H. Haus. "GaAs FET device and circuit simulation in SPICE," *IEEE Trans. Elec. Devices*, vol. ED-34, pp. 160-169, Feb. 1987.

# **GaAsFET (Nonlinear Gallium Arsenide FET)**

Symbol



#### Parameters

| Name  | Description                                                                      | Units | Default  |
|-------|----------------------------------------------------------------------------------|-------|----------|
| Model | name of a GaAsFET model                                                          | None  | MESFETM1 |
| Area  | scaling factor that scales certain parameter values of the associated model item | None  | 1.0      |
| Temp  | device operating temperature                                                     | °C    | 25       |
| Trise | temperature rise over ambient                                                    | °C    | 0        |
| Noise | noise generation option: yes=1, no=0                                             | None  | yes      |
| _M    | number of devices in parallel                                                    | None  | 1        |

#### **Range of Usage**

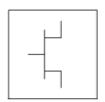
Area > 0

#### **Notes/Equations**

- 1. Advanced\_Curtice2\_Model, Curtice2\_Model, Curtice3\_Model, Materka\_Model, Modified\_Materka\_Model, Statz\_Model, and Tajima\_Model are the nonlinear model items that define the GaAsFET.
- 2. The Area parameter permits changes to a specific semiconductor because semiconductors may share the same model.
  - Parameters scaled proportionally to Area: A0, A1, A2, A3, Beta, Cgs, Cgd, Cgs, Cds, Is.
  - Resistive parameters scaled inversely proportional to Area: Rd, Rg, Rs. For example, Model = Curtice2 and Area=3 use the following calculations: Rd/3: Cgs × 3 Beta × 3
     Rg/3: Cgdo × 3
     Rs/3: Cds × 3
     These calculations have the same effect as placing three devices in parallel to simulate a larger device and are much more efficient.
- 3. The Temp parameter specifies the physical (operating) temperature of the device. If

this is different than the temperature at which the model parameters are valid or extracted (specified by the Tnom parameter of the associated model item) certain model parameters are scaled such that the device is simulated at its operating temperature. Refer to the appropriate model to see which parameter values are scaled.

4. The following table lists the DC operating point parameters that can be sent to the dataset.


| Name      | Description                           | Units   |
|-----------|---------------------------------------|---------|
| Id        | Drain current                         | amperes |
| Ig        | Gate current                          | amperes |
| Is        | Source current                        | amperes |
| Power     | DC power dissipated                   | watts   |
| Gm        | Forward transconductance (dIds/dVgs)  | siemens |
| Gds       | Output conductance (dIds/dVds)        | siemens |
| Ggs       | Gate to source conductance            | siemens |
| Ggd       | Gate to drain conductance             | siemens |
| dIgs_dVgd | (dIgs/dVgd)                           | siemens |
| dIgd_dVgs | (dIgd/dVgs)                           | siemens |
| dIds_dVgb | Backgate transconductance (dIds/dVgb) | siemens |
| Cgs       | Gate-source capacitance               | farads  |
| Cgd       | Gate-drain capacitance                | farads  |
| Cds       | Drain-source capacitance              | farads  |
| dQgs_dVgd | (dQgs/dVgd)                           | farads  |
| dQgd_dVgs | (dQgd/dVgs)                           | farads  |
| Vgs       | Gate-source voltage                   | volts   |
| Vds       | Drain-source voltage                  | volts   |

#### DC Operating Point Information

5. This device has no default artwork associated with it.

# Materka\_Model (Materka GaAsFET Model)

#### Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name             | Description                                                                         | Units | Default      |
|------------------|-------------------------------------------------------------------------------------|-------|--------------|
| NFET             | N-channel model type: yes or no                                                     | None  | yes          |
| PFET             | P-channel model type: yes or no                                                     | None  | no           |
| Idsmod           | Ids model: 1=CQ 2=CC 3=Statz 4=Materka 5=Tajima 6=symbolic 7=TOM 8=Modified Materka | None  | 4            |
| Idss             | saturation drain current                                                            | А     | 0            |
| Vto <sup>†</sup> | Value of V1 below which Ids = Ids(V1=VTO,Vds)                                       | V     | -2.0         |
| Alpha            | hyperbolic tangent function                                                         | V     | 2.0          |
| Beta2            | coefficient for pinch-off change with respect to Vds                                | 1/V   | 0            |
| Tau              | transit time under gate                                                             | sec   | 0            |
| Lambda           | channel length modulation                                                           | 1/V   | 0.0          |
| Rin              | channel resistance                                                                  | Ohm   | 0.0          |
| Fc               | coefficient for forward bias depletion capacitance (diode model)                    | None  | 0.5          |
| Gscap            | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                           | None  | linear       |
| Cgs              | zero bias gate-source junction capacitance                                          | F     | 0.0          |
| Gdcap            | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                           | None  | linear       |
| Cgd              | zero bias gate-drain junction capacitance                                           | F     | 0.0          |
| Rd               | drain ohmic resistance                                                              | Ohm   | fixed at 0   |
| Rg               | gate resistance                                                                     | Ohm   | fixed at 0   |
| Rs               | source resistance                                                                   | Ohm   | fixed at 0   |
| Ld               | drain inductance                                                                    | Н     | fixed at 0.0 |
| Lg               | gate inductance                                                                     | Н     | fixed at 0.0 |
| Ls               | source inductance                                                                   | Н     | fixed at 0.0 |
| Cds              | Drain-source cap.                                                                   | F     | 0.0          |
| Gsfwd            | 0-none, 1=linear, 2=diode                                                           | None  | linear       |

| Advanced Design Sy | ystem 2011.01 - | Nonlinear Devices |
|--------------------|-----------------|-------------------|
|--------------------|-----------------|-------------------|

| Gsrev            | Advanced Design System 2011.01 - Nonlinear Devices<br>0-none, 1=linear, 2=diode | None | None                |
|------------------|---------------------------------------------------------------------------------|------|---------------------|
| Gdfwd            | 0-none, 1=linear, 2=diode                                                       | None | None                |
| Gdrev            | 0-none, 1=linear, 2=diode                                                       | None | linear              |
| Vbi <sup>†</sup> | built-in gate potential                                                         | V    | 0.85                |
| Vjr              | Breakdown junction potential                                                    | V    | 0.025               |
| Is               | gate junction reverse saturation current (diode model)                          | А    | 1.0e-14             |
| Ir               | gate reverse saturation current                                                 | А    | 1.0e-14             |
| Imax             | explosion current                                                               | А    | 1.6                 |
| Imelt            | explosion current similar to Imax; defaults to Imax (refer to Note 2)           | A    | defaults to<br>Imax |
| N                | gate junction ideality factor (diode model)                                     | None | 1                   |
| Vbr              | gate junction reverse bias breakdown voltage                                    | V    | 1e100               |
| Fnc              | flicker noise corner frequency                                                  | Hz   | 0.0                 |
| R                | gate noise coefficient                                                          | None | 0.5                 |
| Р                | drain noise coefficient                                                         | None | 1                   |
| С                | gate-drain noise correlation coefficient                                        | None | 0.9                 |
| Taumdl           | Use 2nd order Bessel polynomial to model tau effect in transient: yes or no     | None | no                  |
| Tnom             | nominal ambient temperature at which these model parameters were derived        | °C   | 25                  |
| wVgfwd           | gate junction forward bias (warning)                                            | V    | None                |
| wBvgs            | gate-source reverse breakdown voltage (warning)                                 | V    | None                |
| wBvgd            | gate-drain reverse breakdown voltage (warning)                                  | V    | None                |
| wBvds            | drain-source breakdown voltage (warning)                                        | V    | None                |
| wIdsmax          | maximum drain-source current (warning)                                          | А    | None                |
| wPmax            | maximum power dissipation (warning)                                             | W    | None                |
| AllParams        | Data Access Component (DAC) Based Parameters                                    | None | None                |
| + Paramet        | er value varies with temperature based on model Tnom and device Temp.           |      |                     |

#### Notes/Equations

- 1. This model supplies values for a GaAsFET device.
- 2. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

3. Drain current in the Materka\_Model is calculated with the following expression:

 $Vp = Vto + Beta2 \times Vds$ if (Vfc - Vp  $\leq$  0 or Vp  $\geq$  0)

$$TI = ABS (Alpha \times Vds)$$
  
TanhF = tanh (TI/(Vgc - Vp))

$$\textit{Ids} = \textit{Idss} \times \left(\frac{\textit{Vgc}}{\textit{V}_{P}} - 1\right)^{2} \times \textit{TanhF} \times \left(1 + \textit{Lambda} \times \textit{Vds}\right)$$

4. The P, R, and C parameters model drain and gate noise sources.

$$\frac{\left\langle i_{d}^{2}\right\rangle}{\Delta f} = 4kTg_{m}P\left(1 + \frac{f_{NC}}{f}\right)$$
$$\frac{\left\langle i_{g}^{2}\right\rangle}{\Delta f} = 4kTC_{gs}^{2}\omega^{2}R/g_{m}$$
$$\frac{\left\langle i_{g}, i_{d}^{*}\right\rangle}{\Delta f} = 4kTjC_{gs}\omega\sqrt{PRC}$$

5. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by an AllParams association.

#### References

1. A. Cappy, "Noise Modeling and Measurement Techniques," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 36, No. 1, pp. 1-10, Jan. 1988.

# Mesfet\_Form (Symbolic MESFET Model)

Symbol



#### **Parameters**

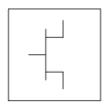
| Name    | Description                                                                         | Units            | Default    |
|---------|-------------------------------------------------------------------------------------|------------------|------------|
| NFET    | N-channel model type: yes or no                                                     | None             | yes        |
| PFET    | P-channel model type: yes or no                                                     | None             | no         |
| Idsmod  | Ids model: 1=CQ 2=CC 3=Statz 4=Materka 5=Tajima 6=symbolic 7=TOM 8=Modified Materka | None             | 6          |
| Ids     | user-defined equation for drain-source current                                      | None             | see Note 1 |
| Qgs     | user-defined equation for gate-source charge                                        | None             | see Note 1 |
| Qgd     | user-defined equation for gate-drain charge                                         | None             | see Note1  |
| Igd     | user-defined equation for gate-drain current                                        | None             | see Note 1 |
| Igs     | user-defined equation for gate-source current                                       | None             | see Note 1 |
| Beta    | transconductance                                                                    | A/V <sup>2</sup> | 1.0e-4     |
| Lambda  | channel length modulation parameter                                                 | 1/V              | 0.0        |
| Alpha   | current saturation                                                                  | 1/V              | 2.0        |
| В       | doping tail extending                                                               | None             | 0.3        |
| Tnom    | nominal ambient temperature                                                         | °C               | 25         |
| Idstc   | IDS temperature coefficient                                                         | None             | 0.0        |
| Vbi     | built-in gate potential                                                             | V                | 0.85       |
| Tau     | transit time under gate                                                             | sec              | 0.0        |
| Rds0    | dc drain-source resistance at Vgs = 0                                               | Ohm              | 0          |
| Betatce | BETA exponential temperature coefficient                                            | %/°C             | 0.0        |
| Delta1  | capacitance transition voltage                                                      | V                | 0.3        |
| Delta2  | capacitance threshold transition voltage                                            | V                | 0.2        |
| Gscap   | 0=none, 1=linear, 2 = junction, 3 = Statz Charge, 4 = Symbolic, 5 = Statz Cap       | None             | linear     |
| Gdcap   | 0=none, 1=linear, 2 = junction, 3 = Statz Charge, 4 = Symbolic, 5 = Statz Cap       | None             | linear     |
| Cgs     | zero-bias G-S junction cap                                                          | F                | 0.0        |
| Cgd     | zero-bias G-D junction cap                                                          | F                | 0.0        |
| Rgs     | G-S resistance                                                                      | Ohm              | 0.0        |
| Rgd     | gate drain resistance                                                               | Ohm              | 0.0        |

Advanced Design System 2011.01 - Nonlinear Devices

|            | Advanced Design System 2011.01 - Nonmear Devices                            |      |                   |
|------------|-----------------------------------------------------------------------------|------|-------------------|
| Rf         | G-S effective forward-bias resistance                                       | Ohm  | infinity†         |
| Tqm        | temperature coefficient for triquint junction capacitance                   | None | 0.2               |
| Vmax       | maximum junction voltage before capacitance limiting                        |      | 0.5               |
| Fc         | coefficient for forward-bias depletion cap                                  | None | 0.5               |
| Rd         | drain ohmic resistance                                                      | Ohm  | fixed at 0        |
| Rg         | gate resistance                                                             | Ohm  | fixed at 0        |
| Rs         | source ohmic resistance                                                     | Ohm  | fixed at C        |
| Ld         | drain inductance                                                            | Н    | fixed at<br>0.0   |
| Lg         | gate inductance                                                             | н    | fixed at<br>0.0   |
| Ls         | source inductance                                                           | н    | fixed at<br>0.0   |
| Cds        | drain-source cap                                                            | F    | 0.0               |
| Crf        | used with RC to model frequency-dependent output conductance                | F    | 10 <sup>100</sup> |
| Rc         | used with CRC to model frequency-dependent output conductance               | Ohm  | infinity†         |
| Gsfwd      | 0=none, 1=linear, 2=diode                                                   | None | linear            |
| Gdfwd      | 0=none, 1=linear, 2=diode                                                   | None | None              |
| Gsrev      | 0=none, 1=linear, 2=diode, 3=custom                                         | None | None              |
| Gdrev      | gate junction forward bias warning                                          | None | linear            |
| Vjr        | breakdown junction potential                                                |      | 0.025             |
| Is         | gate-junction saturation current                                            | А    | 1.0e-14           |
| Ir         | gate rev saturation current                                                 | А    | 1.0e-14           |
| Imax       | expression current                                                          | А    | 1.6               |
| Xti        | saturation current temperature exponent                                     | None | 3.0               |
| N          | gate junction emission coefficient                                          | None | 1                 |
| Eg         | energy tap for temperature effect on IS                                     | None | 1.1.1             |
| Vbr†       | gate junction reverse bias breakdown voltage                                | V    | 1e100             |
| Vtotc      | VTO temperature coefficient                                                 | V/°C | 0.0               |
| Rin        | channel resistance                                                          | Ohm  | 0.0               |
| Taumdl     | use 2nd order Bessel polynomial to model tau effect in transient: yes or no | None | no                |
| Fnc        | flicker noise corner frequency                                              | Hz   | 0.0               |
| R          | gate noise coefficient                                                      | None | 0.5               |
| С          | gate-drain noise correlation coefficient                                    | None | 0.9               |
| Р          | drain noise coefficient                                                     | None | 1.0               |
| wVgfwd     | gate junction forward bias (warning                                         | V    | None              |
| wBvgs      | gate-source reverse breakdown voltage (warning)                             | V    | None              |
| wBvgd      | gate-drain reverse breakdown voltage (warning)                              | V    | None              |
| wBvds      | drain-source breakdown voltage (warning)                                    | V    | None              |
| wIdsmax    | maximum drain-source current (warning)                                      | A    | None              |
| wPmax      | maximum power dissipation                                                   | W    | None              |
| AllParams  | Data Access Component (DAC) Based Parameters                                | None | None              |
| + Value of | 0.0 is interpreted as infinity.                                             |      |                   |

#### **Notes/Equations**

- 1. Equations for default settings:
  - $Ids = (100mA) \times ((1+_v2))^2) \times tanh(_v1)$   $Qgs = (1pf) \times (_v1) - (1pf) \times ((_v2) - (_v1)) \times (_v1)$   $Qgd = (1prf) \times (_v1) - ((v2) - (v1)) \times (_v1)$   $Igd = ramp ((10 + (_v1)) / 10)$  $Igs = ramp ((10 + (_v1)) / 10)$
- 2. Imax and Imelt Parameters


Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the *Imelt* value is less than the *Imelt* value, the *Imelt* value is increased to the *Imelt* value.

If *Imelt* is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if *Imax* is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model *Imelt* default value (which is the same as the model *Imelt* default value).

# Modified\_Materka\_Model (Modified Materka GaAsFET Model)

#### Symbol



#### **Parameters**

| Name   | Description                                                                         | Units | Default      |
|--------|-------------------------------------------------------------------------------------|-------|--------------|
| NFET   | N-channel model type: yes or no                                                     | None  | yes          |
| PFET   | P-channel model type: yes or no                                                     | None  | no           |
| Idsmod | Ids model: 1=CQ 2=CC 3=Statz 4=Materka 5=Tajima 6=symbolic 7=TOM 8=Modified Materka | None  | 8            |
| Idss   | saturation drain current                                                            | А     | 0            |
| Vto    | threshold voltage                                                                   | V     | -2.0         |
| Beta2  | coefficient for pinch-off change with respect to Vds                                | 1/V   | 0            |
| Ee     | exponent defining dependence of saturation current                                  | 1/V   | 2.0          |
| Ke     | description of dependence on gate voltage                                           | V     | 0.0          |
| Kg     | dependence on Vgs of drain slope in linear region                                   | V     | 0.0          |
| SI     | linear region slope of Vgs-0 drain characteristic                                   | None  | 1.0          |
| Ss     | saturation region drain slope characteristic at vgs=0                               | None  | 0.0          |
| Tau    | transit time under gate                                                             | sec   | 0.0          |
| Rgs    | channel resistance                                                                  | Ohm   | 0.0          |
| Rgd    | gate drain resistance                                                               | Ohm   | 0.0          |
| Fc     | coefficient for forward bias depletion capacitance (diode model)                    | None  | 0.5          |
| Gscap  | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                           | None  | linear       |
| Cgs    | zero bias gate-source junction capacitance                                          | F     | 0.0          |
| Gdcap  | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                           | None  | linear       |
| Cgd    | zero bias gate-drain junction capacitance                                           | F     | 0.0          |
| Rd     | drain ohmic resistance                                                              | Ohm   | fixed at 0   |
| Rg     | gate resistance                                                                     | Ohm   | fixed at 0   |
| Rs     | source ohmic resistance                                                             | Ohm   | fixed at 0   |
| Ld     | drain inductance                                                                    | Н     | fixed at 0.0 |
| Lg     | gate inductance                                                                     | Н     | fixed at 0.0 |
| Ls     | source inductance                                                                   | Н     | fixed at 0.0 |
| Cds    | drain-source capacitance                                                            | F     | fixed at 0.0 |
| Gsfwd  | 0-none, 1=linear, 2=diode                                                           | None  | linear       |

#### Advanced Design System 2011.01 - Nonlinear Devices

| Gsrev            | 0-none, 1=linear, 2=diode                                                              | None | None                |
|------------------|----------------------------------------------------------------------------------------|------|---------------------|
| Gdfwd            | 0-none, 1=linear, 2=diode                                                              | None | None                |
| Gdrev            | 0-none, 1=linear, 2=diode                                                              | None | linear              |
| Vbi <sup>†</sup> | built-in gate potential                                                                | V    | 0.85                |
| Vjr              | Breakdown junction potential                                                           | V    | 0.025               |
| Is               | gate junction saturation current (diode model)                                         | А    | 1.0e-14             |
| Ir               | gate reverse saturation current                                                        | А    | 1.0e-14             |
| Imax             | explosion current                                                                      | А    | 1.6                 |
| Imelt            | explosion current similar to Imax; defaults to Imax (refer to Note 3)                  | A    | defaults to<br>Imax |
| N                | gate junction emission coefficient (diode model)                                       | None | 1                   |
| Fnc              | flicker noise corner frequency                                                         | Hz   | 0.0                 |
| Lambda           | channel length modulation                                                              | 1/V  | 0.0                 |
| Vbr              | reverse bias breakdown voltage                                                         | V    | 1e100               |
| R                | gate noise coefficient                                                                 | None | 0.5                 |
| Р                | drain noise coefficient                                                                | None | 1                   |
| С                | gate-drain noise correlation coefficient                                               | None | 0.9                 |
| Taumdl           | Use 2nd order Bessel polynomial to model tau effect in transient simulation: yes or no | None | no                  |
| wVgfwd           | gate junction forward bias warning                                                     | V    | None                |
| wBvgs            | gate-source reverse breakdown voltage warning                                          | V    | None                |
| wBvgd            | gate-drain reverse breakdown voltage warning                                           | V    | None                |
| wBvds            | drain-source breakdown voltage warning                                                 | V    | None                |
| wIdsmax          | maximum drain-source current warning                                                   | А    | None                |
| wPmax            | maximum power dissipation warning                                                      | W    | None                |
| AllParams        | Data Access Component (DAC) Based Parameters                                           | None | None                |

#### **Notes/Equations**

- 1. This model supplies values for a GaAsFET device.
- 2. Drain current in the Modified\_Materka\_Model is calculated as follows:

 $Vp = Vto + Beta2 \times Vds$ 

if (Vfc - Vp  $\leq$  0 or Vp  $\geq$  0) and Ids=0

else

$$power0 = \left(1 - \frac{Vgc}{Vp}\right)^{(Ee + Ke \times Vgc)}$$

```
      fi = Idss \times power0 \\ gi= tanh (SI \times Vds/(Idss \times (1-Kg \times Vgc))) \\ hi = 1 + Ss \times Vds/Idss \\ Ids = fi \times gi \times hi
```

3. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be

specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

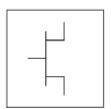
If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

4. The P, R, and C parameters model drain and gate noise sources.

$$\frac{\langle i_d^2 \rangle}{\Delta f} = 4kTg_m P(1 + f_{NC}/f)$$

$$\frac{\langle i_g^2 \rangle}{\Delta f} = 4kT C_{gs}^2 \omega^2 R/g_m$$

$$\frac{\langle i_g, i_d^*}{\Delta f} = 4kTj C_{gs} \omega\sqrt{PR} C$$


5. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by an AllParams association.

#### References

1. A. Cappy, "Noise Modeling and Measurement Techniques," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 36, No. 1, pp. 1-10, Jan. 1988.

# Statz\_Model (Statz Raytheon GaAsFET Model)

#### Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name                             | Description                                                                            | Units            | Default |
|----------------------------------|----------------------------------------------------------------------------------------|------------------|---------|
| NFET                             | N-channel type: yes or no                                                              | None             | yes     |
| PFET                             | P-channel type: yes or no                                                              | None             | no      |
| Idsmod                           | Ids model: 1=CQ 2=CC 3=Statz 4=Materka 5=Tajima 6=symbolic<br>7=TOM 8=Modified Materka | None             | 3       |
| Vto <sup>++</sup>                | threshold voltage                                                                      | V                | -2.0    |
| Beta <sup>+, ++</sup>            | transconductance                                                                       | A/V <sup>2</sup> | 1.0e-4  |
| Lambda                           | output conductance                                                                     | 1/V              | 0.0     |
| Alpha                            | current saturation                                                                     | 1/V              | 2.0     |
| В                                | Doping tail extending parameter                                                        | None             | 0.3     |
| Tnom                             | nominal ambient temperature                                                            | °C               | 25      |
| Trise                            | Temperature rise over ambient                                                          | °C               | None    |
| Idstc                            | Ids temperature coefficient                                                            | None             | 0.0     |
| Vbi <sup>++</sup>                | built-in gate potential                                                                | V                | 0.85    |
| Tau                              | transit time under gate                                                                | sec              | 0.0     |
| Betatce                          | drain current exponential temperature coefficient                                      | %/°C             | 0.0     |
| Delta1                           | capacitance saturation transition voltage                                              | V                | 0.3     |
| Delta2                           | capacitance threshold transition voltage                                               | V                | 0.2     |
| Gscap                            | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                              | None             | linear  |
| Cgs <sup>+</sup> , <sup>++</sup> | zero bias gate-source junction capacitance                                             | F                | 0.0     |
| Gdcap                            | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                              | None             | linear  |
| Cgd <sup>+, ++</sup>             | zero bias gate-drain junction capacitance                                              | F                | 0.0     |
| Rgd‡                             | gate drain resistance                                                                  | Ohm              | 0.0     |
| Tqm                              | junction capacitance temperature coefficient                                           | None             | 0.2     |
| Vmax                             | maximum junction voltage before capacitance limiting                                   |                  | 0.5     |

#### Advanced Design System 2011.01 - Nonlinear Devices

| Fc               | Advanced Design System 2011.01 - Nonlinear Devices<br>coefficient for forward bias depletion capacitance (diode model) | None | 0.5                     |
|------------------|------------------------------------------------------------------------------------------------------------------------|------|-------------------------|
| Rd <sup>‡</sup>  | drain ohmic resistance                                                                                                 | Ohm  | fixed at 0              |
| Rg               | gate resistance                                                                                                        | Ohm  | fixed at 0              |
| Rs <sup>‡</sup>  | source ohmic resistance                                                                                                | Ohm  | fixed at 0              |
| Ld               | drain inductance                                                                                                       | Н    | fixed at 0.0            |
| Lg               | gate inductance                                                                                                        | Н    | fixed at 0.0            |
| Ls               | source inductance                                                                                                      | Н    | fixed at 0.0            |
| Cds <sup>†</sup> | drain-source capacitance                                                                                               | F    | 0.0                     |
| Crf <sup>†</sup> | used with Rc to model frequency dependent output conductance                                                           | F    | 0.0                     |
| Rc <sup>‡</sup>  | used with Crf to model frequency dependent output conductance                                                          | Ohm  | infinity <sup>+++</sup> |
| Gsfwd            | 0-none, 1=linear, 2=diode                                                                                              | None | linear                  |
| Gsrev            | 0-none, 1=linear, 2=diode                                                                                              | None | none                    |
| Gdfwd            | 0-none, 1=linear, 2=diode                                                                                              | None | none                    |
| Gdrev            | 0-none, 1=linear, 2=diode                                                                                              | None | linear                  |
| Vjr              | breakdown junction potential                                                                                           |      | 0.025                   |
| Is <sup>†</sup>  | gate junction saturation current (diode model)                                                                         | A    | 1.0e-14                 |
| Ir <sup>†</sup>  | gate reverse saturation current                                                                                        | A    | 1.0e-14                 |
| Imax             | explosion current                                                                                                      | A    | 1.6                     |
| Imelt            | explosion current similar to Imax; defaults to Imax (refer to Note 3)                                                  | A    | defaults to<br>Imax     |
| Xti              | temperature exponent for saturation current                                                                            | None | 3.0                     |
| N                | gate junction emission coefficient                                                                                     | None | 1                       |
| Eg               | energy gap for temperature effect on Is                                                                                | None | 1.11                    |
| Vbr              | Gate junction reverse bias breakdown voltage                                                                           | V    | 1e100                   |
| Vtotc            | Vto temperature coefficient                                                                                            | V/°C | 0.0                     |
| Rin <sup>‡</sup> | channel resistance                                                                                                     | Ohm  | 0.0                     |
| Taumdl           | Use 2nd order Bessel polynomial to model tau effect in transient: yes or no                                            | None | no                      |
| Fnc              | flicker noise corner frequency                                                                                         | Hz   | 0.0                     |
| R                | gate noise coefficient                                                                                                 | None | 0.5                     |
| С                | gate-drain noise correlation coefficient                                                                               | None | 0.9                     |
| Р                | drain noise coefficient                                                                                                | None | 1.0                     |
| wVgfwd           | gate junction forward bias warning                                                                                     | V    | None                    |
| wBvgs            | gate-source reverse breakdown voltage warning                                                                          | V    | None                    |
| wBvgd            | gate-drain reverse breakdown voltage warning                                                                           | V    | None                    |
| wBvds            | drain-source breakdown voltage warning                                                                                 | V    | None                    |
| wIdsmax          | maximum drain-source current warning                                                                                   | A    | None                    |
| wPmax            | maximum power dissipation warning                                                                                      | W    | None                    |
| Kf               | flicker noise coefficient                                                                                              | None | 0.0                     |
| Af               | flicker noise exponent                                                                                                 | None | 1.0                     |
| Ffe              | flicker noise frequency exponent                                                                                       | None | 1.0                     |
| AllParams        | DataAccessComponent for file-based model parameter values                                                              | None | None                    |

<sup>+</sup> Parameter value scales with Area.<sup>++</sup> Parameter value varies with temperature based on model Tnom and

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname GaAs Idsmod=3[parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by GaAsFET components to refer to the model. The third parameter indicates the type of model; for this model it is *GaAs*. Idsmod=3 is a required parameter that is used to tell the simulator to use the Statz equations. Use either parameter NFET=yes or PFET=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

# Example:

model gf1 GaAs Idsmod=3 \
Vto=-2.5 Beta=1e-3 NFET=yes

# **Notes/Equations**

- 1. This model supplies values for a GaAsFET device.
- Statz\_Model implementation is based on the work of Statz et al [1]. In particular, the expressions for drain source current and gate charge are implemented exactly as published in [1]. The Statz model also includes a number of features that (although not described in the Statz article) are generally accepted to be important features of a GaAsFET model. These include a gate delay factor (Tau), an input charging resistance (Ri), gate junction forward conduction and breakdown.
- 3. Imax and Imelt Parameters Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

4. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by

an AllParams association.

# **Equations/Discussion**

# **Drain-Source Current**

Statz\_Model DC drain-source current is given by these expressions:

For 0 < Vds < 3 / a

$$I_{ds} = \frac{\beta V_{gs} - Vto^2}{1 + \beta V_{gs} - Vto} \left[ 1 - \left[ 1 - \frac{\alpha V_{ds}}{3} \right]^3 \right] (1 + \lambda V_{ds})$$

where a is Alpha,  $\beta$  is Beta,  $\Theta$  is B. For Vds  $\geq$  3/a

$$\mathbf{I}_{ds} = \frac{\beta (V_{gs} - Vto)^2}{1 + \beta (V_{gs} - Vto)} (1 + \lambda V_{ds})$$

The current is set to zero for  $V_{as}$  < Vto.

where a is Alpha,  $\beta$  is Beta,  $\Theta$  is B.

# Gate Charge

You are provided with two options in modeling the junction capacitance of a device. The first is to model the junction as a linear component (a constant capacitance). The second is to model the junction using a diode depletion capacitance model. If a non-zero value of Cgs is specified and Gscap is set to 1 (linear), the gate-source junction will be modeled as a linear component. Similarly, specifying a non-zero value for Cgd and Gdcap = 1 result in a linear gate-drain model. A non-zero value for either Cgs or Cgd together with Gscap =2 (junction) or Gdcap = 2 will force the use of the diode depletion capacitance model for that particular junction. Note that each junction is modeled independent of the other; hence, it is possible to model one junction as a linear component while the other is treated nonlinearly. The junction depletion charge and capacitance equations are summarized below.

The gate charge in Statz\_Model is given by, for  $V_{new} > V_{max}$ ,

$$Q_{g} = Cgs\left(2 \times Vbi\left(1 - \sqrt{1 - \frac{V_{max}}{Vbi}}\right) + \frac{V_{new} - V_{max}}{\sqrt{1 - \frac{V_{max}}{Vbi}}}\right) + Cgd \times V_{eff2}$$

for  $V_{new} \le V_{max}$ 

Advanced Design System 2011.01 - Nonlinear Devices

$$Q_g = Cgs \times 2 \times Vbi \left(1 - \sqrt{1 - \frac{V_{new}}{Vbi}}\right) + Cgd \times V_{eff2}$$

where:

$$V_{max} = Min (Fc \times Vbi, V_{max})$$

$$V_{new} = \frac{1}{2} \left( V_{eff1} + Vto + \sqrt{(V_{eff1} - Vto)^2 + Delta2^2} \right)$$

$$V_{eff1} = \frac{1}{2} \left\{ V_{gc} + V_{gd} + \sqrt{(V_{gc} - V_{gd})^2 + Delta1^2} \right\}$$

and

$$V_{eff2} = \frac{1}{2} \left\{ V_{gc} + V_{gd} - \sqrt{(V_{gc} - V_{gd})^2 + Delta 1^2} \right\}$$

The inclusion of Ri requires that one of the controlling voltages be switched from  $V_{gs}$  to V  $_{gc}$ . This results in a symmetry between the d-c nodes instead of the d-s nodal symmetry described in the Statz paper (of course, if Ri is set to zero, the model reduces to the exact representation in the Statz paper).

To implement this model in a simulator, the gate charge must be partitioned between the g-c and g-d branches. Implementation of the Statz model partitions the gate charge according to the work of Divekar [2]. Under this partitioning scheme, the gate-source charge is given by:

for  $V_{new} > V_{max}$ ,

$$Q_{gs} = Cgs \left( 2 \times Vbi \left( 1 - \sqrt{1 - \frac{V_{max}}{Vbi}} \right) + \frac{V_{new} - V_{max}}{\sqrt{1 - \frac{V_{max}}{Vbi}}} \right)$$

for  $V_{new} \le V_{max}$ 

$$Q_{gs} = Cgs \times 2 \times Vbi \left(1 - \sqrt{1 - \frac{V_{new}}{Vbi}}\right)$$

while the gate-drain charge is,

$$Q_{gd} = Cgd \times V_{eff2}$$

The small-signal capacitances (equations 16 and 17 in the Statz paper) are related to the charge partial derivatives through the following expressions:

$$C_{gs} = \frac{\partial Q_{gs}}{\partial V_{gc}} + \frac{\partial Q_{gd}}{\partial V_{gc}}$$
$$C_{gd} = \frac{\partial Q_{gs}}{\partial V_{gd}} + \frac{\partial Q_{gd}}{\partial V_{gd}}$$

Although the drain-source current model and the gate-conduction model (next section) are well behaved for negative  $V_{ds}$  (as well as the zero crossing), the charge model may cause convergence problems in the region  $V_{ds} < 0.0V$ . The reason for this is that the charge partitioning is somewhat artificial in that  $Q_{gs}$  and  $Q_{gd}$  should *swap* roles for negative  $V_{ds}$  but don't. It is recommended that this model be used for positive  $V_{ds}$  only.

#### Gate forward conduction and breakdown

Implementation of Statz\_Model places a diode model in both the gate-source and gatedrain junctions to model forward conduction current and reverse breakdown current. These currents are calculated with these expressions:

Gate-Source Current for  $V_{\sigma s} > -10 \times N \times v_t$ 

$$I_{gs} = Is \times \left[ exp\left(\frac{V_{gs}}{N \times v_t}\right) - 1 \right]$$

for -Vbr + 50  $\times$  v<sub>t</sub> < V<sub>as</sub>  $\leq$  -10  $\times$  N  $\times$  v<sub>t</sub>

$$I_{gs} = Is \times [exp(-10) - 1] + g_{gs} \times (V_{gs} - 10 \times N \times v_t)$$

where:

$$g_{gs} = Is \times \frac{exp(-10)}{N \times v_t}$$

for  $V_{qs} \leq -Vbr + 50 \times v_t$ 

$$I_{gs} = -Is \times \exp\left(\frac{-Vbr + V_{gs}}{N \times v_t}\right) + Is \times [exp(-10) - 1] + g_{gs} \times (V_{gs} - 10 \times N \times v_t)$$

**Gate-Drain Current** 

for  $V_{ad}$  > -10 × N ×  $v_t$ 

$$I_{gd} = Is \times \left[ exp\left( \frac{V_{gd}}{N \times v_t} \right) - 1 \right]$$

for -Vbr + 50  $\times$  v<sub>t</sub> < V<sub>ad</sub>  $\leq$  -10  $\times$  N  $\times$  v<sub>t</sub>

$$I_{gd} = Is \times [exp(-10) - 1] + g_{gd} \times (V_{gd} - 10 \times N \times v_t)$$

where:

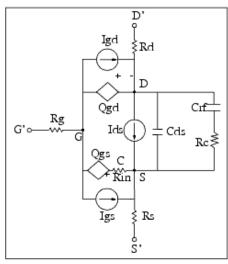
$$g_{gd} = Is \times \frac{exp-10}{N \times v_t}$$

for  $V_{ad} \leq -Vbr + 50 \times v_t$ 

$$I_{gd} = -Is \times \exp\left(\frac{-(Vbr + V_{gd})}{N \times v_t}\right) Is \times [exp(-10) - 1] + g_{gd} \times (V_{gd} - 10 \times N \times v_t)$$

#### **Time Delay**

Like Curtice2\_Model and Curtice3 \_Model, Statz\_Model uses an ideal time delay to model transit time effects under the gate. In the time domain, the drain source current for the ideal delay is given by:


$$I_{ds}(t) = I_{ds}(V_i(t-Tau), V_{ds}(t))$$

where  $V_j = V_{gs}$  or  $V_j = V_{gd}$  (depending on whether  $V_{ds}$  is positive or negative). In the frequency domain, only the transconductance is impacted by this delay and the familiar expression for transconductance is obtained:

$$y_m = g_m \times exp(-j \times \omega \times Tau)$$

#### **High-Frequency Output Conductance**

The series-RC network, <u>shown below</u>, is comprised of the Crf and Rc parameters and is included to provide a correction to the AC output conductance at a specific bias condition. At a frequency high enough such that Crf is an effective short, the output conductance of the device can be increased by the factor 1/Rc. (Also see [3].)



#### Statz\_Model Schematic

#### **Temperature Scaling**

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The saturation current Is scales as:

$$Is^{NEW} = Is \times exp\left[\left(\frac{Temp}{Tnom} - 1\right)\frac{q \times Eg}{k \times N \times Temp} + \frac{Xti}{N} \times ln\left(\frac{Temp}{Tnom}\right)\right]$$

The gate depletion capacitances Cgs and Cgd vary as:

$$Cgs^{NEW} = Cgs \left(1 + Tqm \left(4 \times 10^{-4} (Temp - Tnom) - \left(\frac{Vbi^{NEW}}{Vbi}\right) - 1\right)\right)$$

$$Cgd^{NEW} = Cgd\left(1 + Tqm\left(4 \times 10^{-4}(Temp - Tnom) - \left(\frac{Vbi^{NEW}}{Vbi}\right) - 1\right)\right)$$

Where VbiNEW is the temperature scaled value of Vbi at Temp.

The gate junction potential Vbi varies as:

$$Vbi^{NEW} = \frac{Temp}{Tnom} \times Vbi + \frac{2k \times Temp}{q} \ln \left( \frac{n_i^{Tnom}}{n_i^{Temp}} \right)$$

where  $n_i$  is the intrinsic carrier concentration for silicon, calculated at the appropriate temperature.

The threshold voltage Vto varies as:

$$Vto^{NEW} = Vto + Vtotc(Temp - Tnom)$$

The transconductance Beta varies as:

$$Beta^{NEW} = Beta \times 1.01^{Betatce(Temp - Tnom)}$$

# Noise Model

Thermal noise generated by resistors Rg, Rs, Rd and Rin is characterized by the spectral density:

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

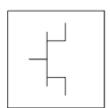
Parameters P, R, and C model drain and gate noise sources.

$$\frac{\langle i_d^2 \rangle}{\Delta f} = 4kTg_m P + 4kTg_m PFnc / f + Kf Ids^{Af} / f^{Ffe}$$

$$\frac{\langle i_g^2 \rangle}{\Delta f} = 4kTC_{gs}^2 \omega^2 R/g_m$$

$$\frac{\langle i_g, i_d^* \rangle}{\Delta f} = 4kTj C_{gs} \omega \sqrt{PR} C$$

For Series IV compatibility, set P=2/3, R=0, C=0, and Fnc=0; copy Kf, Af, and Ffe from the Series IV model.


# References

- 1. H. Statz, P. Newman, I. Smith, R. Pucel and H. Haus. "GaAs FET device and circuit simulation in SPICE," *IEEE Trans, on Electron Devices,* vol. ED-34, pp. 160-169, Feb. 1987.
- 2. D. Divekar, Comments on `GaAs FET device and circuit simulation in SPICE, ' IEEE Transactions on Electron Devices, Vol. ED-34, pp. 2564-2565, Dec. 1987.
- 3. C. Camacho-Penalosa and C.S. Aitchison. "Modelling frequency dependence of output impedance of a microwave MESFET at low frequencies," *Electron. Lett.*, Vol. 21, pp. 528-529, June 6, 1985.
- 4. P. Antognetti and G. Massobrio. *Semiconductor device modeling with SPICE,* New York: McGraw-Hill, Second Edition 1993.

Advanced Design System 2011.01 - Nonlinear Devices 5. A. Cappy, "Noise Modeling and Measurement Techniques," *IEEE Transactions on Microwave Theory and Techniques,* Vol. 36, No. 1, pp. 1-10, Jan. 1988.

# Tajima\_Model (Tajima GaAsFET Model)

### Symbol



### **Parameters**

Model parameters must be specified in SI units.

| Name              | Description                                                                              | Units | Default      |
|-------------------|------------------------------------------------------------------------------------------|-------|--------------|
| NFET              | N-channel model type: yes or no                                                          | None  | yes          |
| PFET              | P-channel model type: yes or no                                                          | None  | no           |
| Idsmod            | Ids model type: 1=CQ 2=CC 3=Statz 4=Materka 5=Tajima 6=symbolic 7=TOM 8=Modified Materka | None  | 5            |
| Vdss              | drain current saturation voltage                                                         | V     | 1.0          |
| Vto               | value of V1 below which Ids = Ids(V1=VT0,Vds)                                            | V     | -2.0         |
| Beta2             | coefficient for pinch-off change with respect to Vds                                     | 1/V   | 0            |
| Та                | `a' coefficient                                                                          | None  | 2            |
| Tb                | `b' coefficient                                                                          | None  | 0.6          |
| Tm                | `m' coefficient                                                                          | None  | 3.0          |
| Idss              | saturation drain current                                                                 | A     | 0            |
| Rin <sup>++</sup> | channel resistance                                                                       | Ohm   | 0.0          |
| Fc                | coefficient for forward bias depletion capacitance (diode model)                         | None  | 0.5          |
| Gscap             | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                                | None  | linear       |
| Cgs <sup>++</sup> | zero bias gate-source junction capacitance                                               | F     | 0.0          |
| Gdcap             | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                                | None  | linear       |
| Cgd <sup>++</sup> | zero bias gate-drain junction capacitance                                                | F     | 0.0          |
| Rd                | drain ohmic resistance                                                                   | Ohm   | fixed at 0   |
| Rg                | gate resistance                                                                          | Ohm   | fixed at 0   |
| Rs                | source ohmic resistance                                                                  | Ohm   | fixed at 0   |
| Ld                | drain inductance                                                                         | Н     | fixed at 0.0 |
| Lg                | gate inductance                                                                          | Н     | fixed at 0.0 |
| Ls                | source inductance                                                                        | Н     | fixed at 0.0 |
| Cds <sup>++</sup> | drain-source capacitance                                                                 | F     | 0.0          |

| Crf <sup>††</sup> | used to model frequency-dependent output conductance                  | ,<br> F | 0.0                 |
|-------------------|-----------------------------------------------------------------------|---------|---------------------|
| -                 |                                                                       |         |                     |
| Rc <sup>+++</sup> | additional output resistance for RF operation                         | Ohm     | infinity‡           |
| Gsfwd             | 0=none, 1=linear, 2=diode                                             | None    | linear              |
| Gsrev             | 0=none, 1=linear, 2=diode                                             | None    | none                |
| Gdfwd             | 0=none, 1=linear, 2=diode                                             | None    | none                |
| Gdrev             | 0=none, 1=linear, 2=diode                                             | None    | linear              |
| Vbi <sup>†</sup>  | built-in gate potential                                               | V       | 0.85                |
| Is                | gate junction reverse saturation current (diode model)                | А       | 1.0e-14             |
| Imax              | explosion current                                                     | А       | 1.6                 |
| Imelt             | explosion current similar to Imax; defaults to Imax (refer to Note 4) | A       | defaults to<br>Imax |
| N                 | gate junction emission coefficient (diode model)                      | None    | 1                   |
| Fnc               | flicker noise corner frequency                                        | Hz      | 0.0                 |
| R                 | gate noise coefficient                                                | None    | 0.5                 |
| Р                 | drain noise coefficient                                               | None    | 1.0                 |
| С                 | gate-drain noise correlation coefficient                              | None    | 0.9                 |
| Tnom              | nominal ambient temperature                                           | ° C     | 25                  |
| wVgfwd            | gate junction forward bias warning                                    | V       | None                |
| wBvgs             | gate-source reverse breakdown voltage warning                         | V       | None                |
| wBvgd             | gate-drain reverse breakdown voltage warning                          | V       | None                |
| wBvds             | drain-source breakdown voltage warning                                | V       | None                |
| wIdsmax           | maximum drain-source current warning                                  | A       | None                |
| wPmax             | maximum power dissipation warning                                     | W       | None                |
| WFIIIdA           |                                                                       |         |                     |

scales with Area. <sup>+++</sup> Parameter value scales inversely with Area. <sup>+</sup> A value of 0.0 is interpreted as infinity.

### **Notes/Equations**

- 1. This model supplies values for a GaAsFET device.
- 2. The P, R, and C parameters model drain and gate noise sources.

$$\frac{\langle i_d^2 \rangle}{\Delta f} = 4k T g_m P (1 + f_{NC}/f)$$

$$\frac{\langle i_g^2 \rangle}{\Delta f} = 4k T C_{gs}^2 \omega^2 R/g_m$$

$$\frac{\langle i_g, i_d^* \rangle}{\Delta f} = 4k T j C_{gs} \omega \sqrt{PR} C$$

3. Additional parameter equations are given:

$$\begin{split} \textbf{u}_{p} &= Vto - Beta^{2} \times Vds - Vbi \\ uc &= (ugs - Vbi - up)/up \\ If \textbf{u}_{p} &\geq 0 \text{ or } \textbf{u}_{c} &\geq 0, \text{ then ids } = 0 \end{split}$$

else:

$$id_{1} = \left[\frac{\left(\exp\left(Tm \bullet \upsilon c\right)^{-1}\right)}{Tm} - \upsilon c\right] / \left[1 - \frac{\left(1 - \exp\left(-Tm\right)\right)}{Tm}\right]$$
$$id_{2} = Idss \bullet \left[1 - \exp\left(\left(\frac{\upsilon ds}{Vdss}\right) - Ta\left(\frac{\upsilon ds}{Vdss}\right)^{2} - Tb\left(\frac{\upsilon ds}{Vdss}\right)^{3}\right)\right]$$

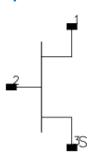
 $ids = id_1 \times id_2$ 

4. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).


5. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). A nonlinear device model parameter value that is explicitly specified will override the value set by an AllParams association.

# References

1. A. Cappy, "Noise Modeling and Measurement Techniques," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 36, No. 1, pp. 1-10, Jan. 1988.

# **TOM3 (TriQuint TOM3 Scalable Nonlinear FET)**

Symbol



### **Parameters**

| Name  | Description                                                            | Units | Default    |
|-------|------------------------------------------------------------------------|-------|------------|
| Model | name of a TOM3_Model                                                   | None  | TOM3M1     |
| W     | gate width                                                             | m     | no scaling |
| Ng    | number of gate fingers                                                 | None  | no scaling |
| Temp  | device instance temperature                                            | °C    | 25         |
| Trise | device temperature relative to circuit ambient (if Temp not specified) | °C    | 0          |
| Noise | noise generation option: yes or no                                     | None  | yes        |
| _M    | number of devices in parallel                                          | None  | 1          |

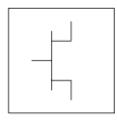
### Range of Usage

W > 0Ng > 0

### **Notes/Equations**

- 1. W and Ng are used for scaling device instance. See TOM3\_Model information for details. Area/finger scaling is performed only if both W and Ng are specified and their values are positive.
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.

### **DC Operating Point Information**


| Advanced Design System | 2011.01 - Nonlinear Devices |
|------------------------|-----------------------------|
|                        |                             |

| Name      | Description                           | Units   |
|-----------|---------------------------------------|---------|
| Id        | Drain current                         | amperes |
| Ig        | Gate current                          | amperes |
| Is        | Source current                        | amperes |
| Power     | DC power dissipated                   | watts   |
| Gm        | Forward transconductance (dIds/dVgsi) | siemens |
| Gds       | Output conductance (dIds/dVds)        | siemens |
| Cgs       | Gate-source capacitance (dQg/dVgsi)   | farads  |
| Cgd       | Gate-drain capacitance (dQg/dVgdi)    | farads  |
| Ggse      | Gate-source diode conductance         | siemens |
| Ggde      | Gate-drain diode conductance          | siemens |
| Ggsi      | Gate-source leakage conductance       | siemens |
| Ggdi      | Gate-drain leakage conductance        | siemens |
| Vgse      | Gate-source voltage                   | volts   |
| Vgde      | Gate-drain voltage                    | volts   |
| Vcvs      | Gate voltage offset                   | volts   |
| dVcvs_dVc | Controlling coefficient for VCVS      |         |
| Vgs       | External gate-source voltage          | volts   |
| Vds       | External drain-source voltage         | volts   |

3. This device has no default artwork associated with it.

# TOM3\_Model (TriQuint TOM3 Scalable Nonlinear FET Model)

### Symbol



#### **Parameters**

## Model parameters must be specified in SI units.

| Name                               | Description                                                     | Units            | Default |
|------------------------------------|-----------------------------------------------------------------|------------------|---------|
| NFET                               | N-channel type: yes or no                                       | None             | YES     |
| PFET                               | P-channel type: yes or no                                       | None             | NO      |
| Tnom                               | model temperature at which all parameters were derived          | °C               | 25      |
| Ugw                                | gate width to which model parameters are normalized             | m                | 1e-6    |
| Ngf                                | number of gate fingers to which model parameters are normalized | None             | 1       |
| Vto <sup>†</sup>                   | threshold voltage                                               | V                | -2.0    |
| Alpha <sup>†</sup>                 | saturation parameter in Ids equation                            | 1/V              | 3.0     |
| Beta <sup>+</sup> , <sup>+++</sup> | transconductance parameter in Ids equation                      | A/V <sup>Q</sup> | 0.05    |
| Lambda                             | channel length modulation / output conductance                  | 1/V              | 0       |
| Gamma <sup>†</sup>                 | coefficient for pinch-off change with respect to Vds            | None             | 0.1     |
| Q                                  | power generalizing the square-law for Ids current               | None             | 2.0     |
| К                                  | knee function power law coefficient                             | None             | 3.0     |
| Vst <sup>†</sup>                   | subthreshold slope voltage                                      | V                | 0.05    |
| Mst <sup>†</sup>                   | parameter for subthreshold slope voltage dependence on Vds      | 1/V              | 0       |
| Ilk <sup>+++</sup>                 | reverse leakage saturation current - diode models               | A                | 0.1e-6  |
| Plk                                | reverse leakage reference voltage - diode models                | V                | 2.25    |
| Kgamma                             | feedback coefficient for the internal VCVS                      | None             | 0.33    |
| Taugd                              | series Ctau-Rtau time constant (implicit definition of Rtau)    | sec              | 1.0e-9  |
| Ctau                               | dispersion model capacitance                                    | F                | 1.0e-15 |
| Qgql <sup>+++</sup>                | low-power gate charge nonlinear term coefficient                | С                | 0.2e-12 |
| Qgqh <sup>†††</sup>                | high-power gate charge nonlinear term coefficient               | С                | 0.1e-12 |
| +++                                | reference current in high-power gate charge nonlinear Ids term  | A                | 0.1e-3  |

| Qgi0                 | Advanced Design System 2011.01 - Nommear Devices                 | ,<br>    |         |
|----------------------|------------------------------------------------------------------|----------|---------|
| Qgag                 | low-power gate charge nonlinear term exponential coefficient     | 1/V      | 0.75    |
| Qgad                 | low-power gate charge nonlinear term exponential Vds coefficient | 1/V      | 0.65    |
| Qggb <sup>††</sup>   | transition coefficient for combined low-high power charge        | 1/W      | 3.0     |
| Qgcl <sup>+++</sup>  | low-power gate charge linear terms coefficient                   | F        | 0.1e-12 |
| Qgsh <sup>+++</sup>  | high-power gate charge linear Vgsi term coefficient              | F        | 0.2e-12 |
| Qgdh <sup>+++</sup>  | high-power gate charge linear Vgdi term coefficient              | F        | 0.1e-12 |
| Qgg0 <sup>+++</sup>  | combined low-high power additional linear terms coefficient      | F        | 0       |
| Capmod               | capacitance model: 1=bias-dependent capacitances, 2=charge       | None     | 2       |
| Cds <sup>+++</sup>   | drain-source capacitance                                         | F        | 0       |
| Tau                  | transit time under gate                                          | sec      | 0       |
| Rd <sup>+, ++</sup>  | drain ohmic resistance                                           | Ohm      | 0       |
| Rdtc                 | temperature linear coefficient for Rd                            | 1/°C     | 0       |
| Rg <sup>‡</sup>      | gate resistance                                                  | Ohm      | 0       |
| Rgmet <sup>‡</sup>   | gate metal resistance                                            | Ohm      | 0       |
| Rs <sup>†, ††</sup>  | source ohmic resistance                                          | Ohm      | 0       |
| Rstc                 | temperature linear coefficient for Rs                            | 1/°C     | 0       |
| Is <sup>†, †††</sup> | saturation current in forward gate current diode models          | A        | 1e-12   |
| Eta                  | emission coefficient for gate diode models                       | None     | 1.25    |
| Alphatce             | temperature exponential coefficient for Alpha                    | 1/°C     | 0       |
| Gammatc              | temperature linear coefficient for Gamma                         | 1/°C     | 0       |
| Msttc                | temperature linear coefficient for Mst                           | 1/(V °C) | 0       |
| Vsttc                | temperature linear coefficient for Vst                           | V/°C     | 0       |
| Vtotc                | temperature linear coefficient for Vto                           | V/°C     | 0       |
| Betatce              | temperature exponential coefficient for Beta                     | 1/°C     | 0       |
| Xti                  | temperature exponent for saturation current                      | None     | 2.5     |
| Eg                   | energy gap for temperature effect on Is                          | eV       | 1.11    |
| Imax                 | explosion current                                                | A        | 1.6     |
| Fnc                  | flicker noise corner frequency                                   | Hz       | 0       |
| R                    | gate noise coefficient                                           | None     | 0.5     |
| Р                    | drain noise coefficient                                          | None     | 1.0     |
| С                    | gate-drain noise correlation coefficient                         | None     | 0.9     |
| Kf                   | flicker noise coefficient                                        | None     | 0       |
| Af                   | flicker noise exponent                                           | None     | 1.0     |
| Ffe                  | flicker noise frequency exponent                                 | None     | 1.0     |
| wVgfwd               | gate junction forward bias warning                               | V        | None    |
| wBvgs                | gate-source reverse breakdown voltage warning                    | V        | None    |
| wBvgd                | gate-drain reverse breakdown voltage warning                     | V        | None    |
| wBvds                | drain-source breakdown voltage warning                           | V        | None    |
| wIdsmax              | maximum drain-source current warning                             | А        | None    |
| wPmax                | maximum power dissipation warning                                | W        | None    |
| AllParams            | Data Access Component (DAC) Based Parameters                     | None     | None    |

<sup>+</sup> Parameter value varies with temperature based on model Tnom and device Temp. <sup>++</sup> Parameter value scales inversely with area. <sup>+++</sup> Parameter value scales with area. <sup>+</sup> Total gate resistance is Rg + Rgmet.

### Notes/Equations

 The published TOM3 model [1, 2] is capacitance-based, which corresponds to setting Capmod=1 (refer to <u>Gate Capacitances</u>). In general, the bias-dependent capacitor models are known to be less robust, which sometimes leads to non-convergence problems. ADS implementation of TOM3 is enhanced by providing a charge-based model, which corresponds to setting Capmod=2 (refer to <u>Gate Charge Model</u>). Charge-based models are normally more robust and they are better justified theoretically.

Please note that the distribution of the charge between the drain and source is not exactly the same for the two modes of the capacitance model. Therefore, simulation results for the two modes may slightly differ.

- 2. This model supplies values for a TOM3 device.
- 3. Implementation of the TOM3 model is based on [1] and [2].
- 4. All model parameters except for Vto (and Vtotc) are identical for the corresponding N- and P-channel devices. The signs of Vto and Vtotc must be changed in order to generate consistent results for N- and P-type transistors.
- 5. The dispersion branch consists of a series connection of a capacitance Ctau and a resistance Rtau. Rtau does not appear among the model parameters; instead, the model parameters include the time constant Taugd of that branch, and thus Rtau is implicitly defined as Rtau = Taugd / Ctau.
- 6. To prevent numerical problems, the setting of some model parameters to 0 is trapped by the simulator. The following parameters are maintained by the simulator at a minimum value:

## Rd = 1e-4 Rs = 1e-4 Rg = 1e-4

If the user wants any of the extrinsic resistances Rd, Rg, and Rs to be exactly zero, their values should not be entered. The default is a short circuit. If a value is entered, it must be positive.

7. Imax and Imelt Parameters

Imax specifies the P-N junction explosion current for D1, D2, D3 and D4 diodes. Imax can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

The Imelt parameter, available in several other ADS models, is not currently implemented in the TOM3 model.

- 8. For SDD compatibility use Taugd = 1.0e-6 if "tau\_gd = Slow" mode was used, Taugd= 10.0e-9 if "taug\_gd=Fast" mode was used, and Rgmet = 0.1, Rdtc = 0.0044, Rstc = 0.0016, Xti = 2 × Eta, Eg = 0.9, Imax = 1.0e6.
- 9. Several parameters are restricted to values > 0. If the user violates this restriction, an error message will be written in the status window, and the simulation will not proceed.
- 10. Model parameters such as Ls, Ld, Lg are not currently used by the TOM3 device in the simulator. Extrinsic components must be added externally by the user.

### **DC Drain-Source Current**

The TOM3 DC drain-source current is calculated using the following equations [2].

$$I_{ds} = I_0 \times (1 + \lambda V_{ds})$$

where:

$$\begin{split} I_0 &= \beta \times (V_G)^Q \times f_k \\ f_k &= \frac{\alpha V_{ds}}{\left(1 + \left(\alpha V_{ds}\right)^k\right)^{1/k}} \\ V_G &= Q \times V_{ST} \times \ln(1 + \exp(u)) \\ u &= \frac{V_{gsi} - V_{TO} + \gamma V_{ds}}{Q \times V_{ST}} \\ V_{ST} &= V_{ST0} \times (1 + M_{ST0} \times V_{ds}) \end{split}$$

The model parameters for the drain current are:  $\lambda$  (Lambda),  $\beta$  (Beta), Q (Q), a (Alpha), k (K),  $V_{TO}$ (Vto),  $\gamma$  (Gamma),  $V_{STO}$ (Vst) and MST0 (Mst).

For time-varying drain-source current, the voltage  $V_{asi}$  is delayed by the transit time Tau.

### **Gate Capacitances**

The gate capacitances in the TOM3 model are derived from the following charge equations (see [1, 2]). The total gate charge is given as:

$$Q_{GG} = Q_{GL} \times f_T + Q_{GH} \times (1 - f_T) + Q_{GG0} \times (V_{gsi} + V_{gdi})$$

where

$$f_T = \exp(-Q_{GGB} \times I_{ds} \times V_{ds})$$

is a transition function combining the low power charge

$$Q_{GL} = Q_{GQL} \times \exp\left(Q_{GAG} \times (V_{gsi} + V_{gdi})\right) \times \cosh\left(Q_{GAD} \times V_{ds}\right) + Q_{GCL} \times (V_{gsi} + V_{gdi})$$

with the high power charge

$$\boldsymbol{Q}_{GH} = \left(\boldsymbol{Q}_{GQH} \times \ln\left(1 + \frac{\boldsymbol{I}_{ds}}{\boldsymbol{Q}_{GI0}}\right) + \boldsymbol{Q}_{GSH} \times \boldsymbol{V}_{gsi}\right) + \boldsymbol{Q}_{GDH} \times \boldsymbol{V}_{gdi}$$

The model parameters for the gate charge are:  $Q_{GG0}$  (Qgg0),  $Q_{GGB}$  (Qggb),  $Q_{GQL}$  (Qgql),  $Q_{GAG}$  (Qgag),  $Q_{GAD}$  (Qgad),  $Q_{GCL}$  (Qgcl),  $Q_{GQH}$  (Qgqh),  $Q_{GI0}$  (Qgi0),  $Q_{GSH}$  (Qgsh) and Q <sub>GDH</sub> (Qgdh).

There are two capacitance models in the TOM3 implementation in ADS. The first model corresponds to other TriQuint implementations of the TOM3 model, including the SDD implementation in ADS. That model is invoked by setting Capmod = 1 (bias-dependent capacitances). The gate-source and gate-drain self-capacitances are then defined as:

$$C_{gs} = \frac{\partial Q_{GG}}{\partial V_{gsi}} \bigg|_{V_{gdi} = \text{const}}$$
$$C_{gd} = \frac{\partial Q_{GG}}{\partial V_{gdi}} \bigg|_{V_{gdi} = \text{const}}$$

$$\sum_{gd} = \left. \overline{\partial V_{gdi}} \right|_{V_{gsi} = \text{ const}}$$

and, correspondingly, their contribution to the drain, gate and source currents follows the partitioning as:

$$I_{Cgsi} = C_{gs}(V_{gsi}, V_{gdi}) \times \frac{dV_{gsi}}{dt}$$

and

$$I_{Cgdi} = C_{gd}(V_{gsi}, V_{gdi}) \times \frac{dV_{gdi}}{dt}$$

### **Gate Charge Model**

The other capacitance model in the TOM3 implementation in ADS is invoked by setting Capmod = 2 (charge model). The total gate charge is partitioned 50/50 onto the gate-source and gate-drain charges. Their derivatives with respect to the voltages  $V_{asi}$  and  $V_{adi}$ 

define the corresponding self- and trans-capacitances. For this release the user cannot control how the gate charge is partitioned.

### **Gate Diode Currents**

The four diodes in the TOM3 model are intended to account for gate diode, leakage and breakdown. The following equations are used for the respective diodes [2].

Diodes D1 and D2:

$$I_{gse} = I_s \times \left( \exp\left(\frac{V_{gse}}{\eta V_T}\right) - 1 \right)$$
$$I_{gde} = I_s \times \left( \exp\left(\frac{V_{gde}}{\eta V_T}\right) - 1 \right)$$

Diodes D3 and D4:

$$I_{Dgsi} = I_{LK} \times \left(1 - \exp\left(\frac{-V_{gsi}}{\varphi_{LK}}\right)\right)$$

$$I_{Dgdi} = I_{LK} \times \left(1 - \exp\left(\frac{-V_{gdi}}{\varphi_{LK}}\right)\right)$$

where VT is the thermal voltage:

$$V_T = \frac{k \times T}{q}$$

 $k = 1.38 \times 10^{-23}$  (Boltzmann's constant)

$$q = 1.602 \times 10^{-19}$$
 (electron charge)

 $I_s$  (Is), η (Eta),  $I_{LK}$  (Ilk),  $\varphi_{LK}$  (Plk) are the model parameters. T is either equal to the device instance parameter Temp, or if Temp is not specified then T =

ambient\_circuit\_temperature + Trise.  $V_{gse}$ ,  $V_{gde}$ ,  $V_{gsi}$  and  $V_{gdi}$  are instantaneous voltages across the respective diodes. Please note that the models are symmetric for the drain and source diodes.

# **Dimensional Scaling Relations**

For each device instance, area/finger scaling is performed only if both W and Ng device parameters are specified and their values are positive. The width scaling factor is determined as:

width\_scale = W / Ugw

where W is the actual device gate width and Ugw is a model parameter whose meaning is the gate width to which all model parameters have been normalized (or Ugw is the actual gate width of the measured device if the extracted model parameters have not been normalized).

Similarly, the finger scaling factor is determined as;

finger\_scale = Ng / Ngf

where Ng is the actual device number of fingers and Ngf is a model parameter whose meaning is the number of gate fingers to which all the model parameters have been normalized (or Ngf is the actual number of gate fingers of the measured device if the extracted model parameters have not been normalized).

It is strongly recommended that model parameters Ugw and Ngf are always specified without relying on their default values.

The following model parameters are scaled with *area = width\_scale \* finger\_scale* 

Beta, Is, Cds, Qgql, Qgqh, Qgi0, Qgcl, Qgsh, Qgdh, Qgg0, Ilk

The following model parameters are scaled inversely with area:

Qqqb, Rd, Rs, Rq

Rgmet is scaled with:

width\_scale / finger\_scale

# **Drain Dispersion and Self-Heating Effects**

The TOM3 model topology is almost identical to other GaAs FET models. The main difference is an addition of a VCVS which modifies the internal gate voltages based on a portion of  $V_{ds}$ . According to the authors of the model, this internal feedback accounts well

for self-heating effects.

The branch Rtau-Ctau, as in other GaAs FET models, accounts for drain dispersion.

# **Temperature Scaling Relations**

The TOM3 model uses an extensive set of temperature scaling relations that permit the analysis of drain current, gate current, capacitances, and even parasitic resistances over ambient temperature changes. The scaling relations assume the unscaled (nominal) parameters were extracted at Tnom.

It is strongly recommended that the model parameter Thom is always specified without relying on its default value.

The parameters are scaled to an arbitrary operating temperature through the temperature scaling relations. Note that the user specifies the temperatures in °C and the program converts them to units of Kelvin. Three types of scaling equations are used for the TOM3 model parameters: linear, exponential and diode.

The following equations summarize temperature scaling. The value of T is either the device instance parameter Temp, or if Temp is not specified then it is evaluated as:

*T* = ambient\_circuit\_temperature + Trise.

For linear scaling, absolute scale, the equation is:

$$Par = Par_{nom} + scale \times (T - T_{nom})$$

For linear scaling, relative scale, the equation is:

$$Par = Par_{nom} \times (1 + scale \times (T - T_{nom}))$$

For exponential scaling, the equation is:

$$Par = Par_{nom} \times (1.01)^{scale \times (T - T_{nom})}$$

For diode saturation current scaling, the equation is:

$$Is = Is_{nom} \times \exp\left(\frac{E_g}{\eta \frac{kT_{nom}}{q}} - \frac{E_g}{\eta \frac{kT}{q}} + \frac{X_{ti}}{\eta} \ln\left(\frac{T}{T_{nom}}\right)\right)$$

where:

 $Is_{nom}$  (Is),  $E_g$  (Eg),  $X_{ti}$  (Xti) and  $\eta$  (Eta) are model parameters  $k = 1.38 \times 10^{-23}$  (Boltzmann's constant)  $q = 1.602 \times 10^{-19}$  (electron charge)

This type of temperature scaling applies to Is, the saturation current for D1 and D2 diodes. The energy gap Eg is not scaled with the temperature. The following parameters are scaled linearly (absolute scale) with temperature:

Vto, Gamma, Vst, and Mst

Scale factors are Vtotc, Gammatc, Vsttc, and Msttc, respectively.

The following parameters are scaled linearly (relative scale) with temperature:

Rd and Rs

Scale factors are Rdtc and Rstc, respectively.

The following parameters are scaled exponentially with temperature:

Alpha, Beta

Scale factors are Alphatce and Betatce, respectively.

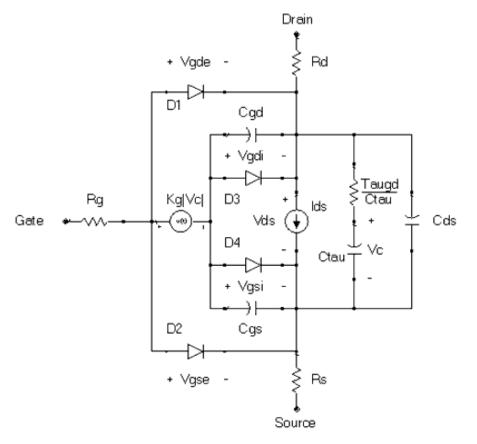
### **Noise Model**

Thermal noise generated by resistors Rg, Rs and Rd is characterized by the following

spectral density.

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

Parameters P, R, and C model drain and gate noise sources [3].


$$\frac{\langle i_d^2 \rangle}{\Delta f} = 4kTg_m P + 4kTg_m PFnc / f + Kf Ids^{Af} / f^{Ffe}$$

$$\frac{\langle i_g^2 \rangle}{\Delta f} = 4kTC_{gs}^2 \omega^2 R/g_m$$

$$\frac{\langle i_g, i_d^* \rangle}{\Delta f} = 4kTj C_{gs} \omega \sqrt{PR} C$$

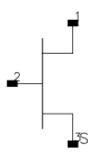
For SDD compatibility, set P=2/3, R=0, C=0, and Fnc=0; copy Kf, Af, and Ffe from the SDD model.

### **Equivalent Circuit**



### References

- 1. R. B. Hallgren and P. H. Litzenberg, "TOM3 Capacitance Model: Linking Large- and Small-Signal MESFET Models in SPICE," *IEEE Trans. Microwave Theory and Techniques*, vol. 47, 1999, pp. 556-561.
- 2. R. B. Hallgren and D. S. Smith, "TOM3 Equations," a document provided by TriQuint, Revised: 2 December 1999.
- 3. A. Cappy, "Noise Modeling and Measurement Techniques," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 36, No. 1, pp. 1-10, Jan. 1988.


# **TOM4 (TriQuint TOM4 Scalable Nonlinear FET)**

🖯 Note

Some information for this model was not available when ADS 2008 Update 1 was released. For updated documentation see our website at:

http://www.agilent.com/find/eesof-docs Select ADS 2008 Update 1, then choose Components > Analog/RF > Nonlinear Devices > TOM4

### Symbol



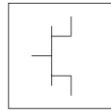
### **Parameters**

| Name  | Description                                                            | Units | Default    |
|-------|------------------------------------------------------------------------|-------|------------|
| Model | Name of a TOM4_Model                                                   | None  | TOM4M1     |
| W     | Gate width                                                             | m     | no scaling |
| Ng    | Number of gate fingers                                                 | None  | no scaling |
| Temp  | Device instance temperature                                            | °C    | 25         |
| Trise | Device temperature relative to circuit ambient (if Temp not specified) | °C    | 0          |
| Mode  | Nonlinear spectral model on/off                                        | None  | 1          |
| Noise | Noise generation option: yes (1) or no (0)                             | None  | 1          |

### **Netlist syntax**

modelName:instanceName d g s parm=value

# TOM4\_Model (TriQuint TOM4 Scalable Nonlinear FET Model)


### 🖯 Note

Some information for this model was not available when ADS 2008 Update 1 was released. For updated documentation see our website at:

http://www.agilent.com/find/eesof-docs

Select ADS 2008 Update 1, then choose Components > Analog/RF > Nonlinear Devices > TOM4 Model

### Symbol

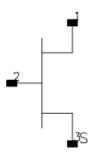


#### **Parameters**

Model parameters must be specified in SI units.

| Name (Alias) | Description                             | Units  | Default  |
|--------------|-----------------------------------------|--------|----------|
| Tnom         | Parameter measurement temperature       | °C     | 25       |
| BETA         | Channel current scaling parameter       | Α / μm | 0.0002   |
| LAMBDA       | Channel channel current slope parameter | 1/V    | -0.044   |
| ALF0         | Knee function parameter                 | 1 / V  | 2.8      |
| KALF         | Knee parameter correction factor        | 1 / V  | -0.7     |
| GAMMA        | Threshold voltage reduction parameter   | None   | 0.062    |
| VTO          | Threshold voltage                       | V      | -0.5     |
| Q_0          | Channel current power law exponent      | None   | 1.6      |
| KQ1          | First order Q correction factor         | 1 / V  | 0        |
| KQ2          | Second order Q correction factor        | 1 / V  | 0        |
| VST          | Channel current subthreshold parameter  | V      | 0.05     |
| MST          | Subthreshold slope parameter            | 1 / V  | 0        |
| ISO          | Gate diode saturation current           | Α / μm | 1.4e-014 |
| ETA          | Gate diode ideality factor              | None   | 1.25     |
| KGAMMA       | GD feedback parameter                   | None   | 0.033    |
| R_S          | Extrinsic Source resistance             | Ω-µm   | 370      |
| R_D          | Eextrinsic Drain resistance             | Ω-µm   | 715      |
| R_G          | Extrinsic Gate resistance               | Ω-µm   | 750      |
| CDS          | Drain-source capacitance                | F /µm  | 2.6e-016 |
| TAU          | Channel conductance time delay          | sec    | 4e-012   |
| C_J          | Junction capacitance scaling parameter  | F / μm | 1e-012   |
| V_J          | Junction capacitance voltage parameter  | V      | 0.6      |
| М_Ј          | Junction capacitance slope parameter    | None   | 0.5      |
| F_C          | Junction voltage limit parameter        | None   | 0.9      |
|              |                                         |        |          |

Advanced Design System 2011.01 - Nonlinear Devices


| CGGI     | Depleted capacitance scaling parameter                        | F / μm      | 1e-015        |
|----------|---------------------------------------------------------------|-------------|---------------|
| CGSS     | Minimum gate-source capacitance                               | F / μm      | 3e-016        |
| KGIL     | Depleted capacitance low-side slope                           | 1 / V       | 2e-016        |
| KGIH     | Depleted capacitance high-side slope                          | 1 / V       | 2e-016        |
| VTH      | Depleted capacitance partition voltage                        | V           | 0.3           |
| CGG0     | Series capacitance scaling parameter                          | F / μm      | 1e-015        |
| CGDS     | Minimum gate-drain capacitance                                | F / μm      | 3e-016        |
| KG01     | Series capacitance first-order correction factor              | 1 / V       | 2e-016        |
| KG02     | Series capacitance second-order correction factor             | 1 / V       | 2e-016        |
| PHI0     | Junction capacitance offset voltage                           | V           | 0.2           |
| KPHI     | Offset voltage correction factor                              | 1 / V       | 0             |
| T_D      | Gate diode diffusion time constant                            | sec         | 1e-006        |
| ILK      |                                                               |             | 3.8e-012      |
| PLK      |                                                               |             | 0.844         |
| ALPHATCE | Temperature exponential coefficient for Alpha                 | 1/°C        | -0.4          |
| GAMMATC  | Temperature linear coefficient for Gamma                      | 1/°C        | 0             |
| CGSTCE   |                                                               | 1/°C        | 0             |
| CGDTCE   |                                                               | 1/°C        | 0             |
| MSTTC    | Temperature linear coefficient for Mst                        | 1/(V<br>°C) | 0             |
| VSTTC    | Temperature linear coefficient for Vst                        | V/°C        | 0             |
| VTOTC    | Temperature linear coefficient for Vto                        | V/°C        | -0.00091      |
| BETATCE  | Temperature exponential coefficient for Beta                  | 1/°C        | 0             |
| Af       | Flicker noise exponent                                        | None        | 1             |
| Kf       | Flicker noise coefficient                                     | None        | 3.86e-<br>011 |
| Ffe      | Flicker noise frequency exponent                              | None        | 1             |
| E_G      | Energy gap for temperature effect on Is                       | eV          | 0.3           |
| XTI      | Temperature exponent for saturation current                   | None        | 2             |
| CapMod   | Capacitance model: 1=bias-dependent capacitances,<br>0=charge | None        | 1             |

# Netlist syntax

model ModelName TOM4 ...

# **TOM (TriQuint Scalable Nonlinear GaAsFET)**

Symbol



### **Parameters**

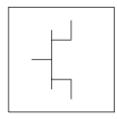
| Name  | Description                          | Units | Default |
|-------|--------------------------------------|-------|---------|
| Model | name of a TOM_Model                  | None  | TOMM1   |
| W     | new unit gate width, in length units |       | 1.0     |
| N     | new number of gate fingers           | None  | 0       |
| Temp  | device operating temperature         | °C    | 25      |
| _M    | number of devices in parallel        | None  | 1       |

### Range of Usage

W > 0 N > 0

### **Notes/Equations**

- 1. W and N are used for scaling device instance as described in the TOM\_Model information.
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.


### **DC Operating Point Information**

| Name      | Description                           | Units   |
|-----------|---------------------------------------|---------|
| Id        | Drain current                         | amperes |
| Ig        | Gate current                          | amperes |
| Is        | Source current                        | amperes |
| Power     | DC power dissipated                   | watts   |
| Gm        | Forward transconductance (dIds/dVgs)  | siemens |
| Gds       | Output conductance (dIds/dVds)        | siemens |
| Ggs       | Gate to source conductance            | siemens |
| Ggd       | Gate to drain conductance             | siemens |
| dIgs_dVgd | (dIgs/dVgd)                           | siemens |
| dIgd_dVgs | (dIgd/dVgs)                           | siemens |
| dIds_dVgb | Backgate transconductance (dIds/dVgb) | siemens |
| Cgs       | Gate-source capacitance               | farads  |
| Cgd       | Gate-drain capacitance                | farads  |
| Cds       | Drain-source capacitance              | farads  |
| dQgs_dVgd | (dQgs/dVgd)                           | farads  |
| dQgd_dVgs | (dQgd/dVgs)                           | farads  |
| Vgs       | Gate-source voltage                   | volts   |
| Vds       | Drain-source voltage                  | volts   |

3. This device has no default artwork associated with it.

# **TOM\_Model (TriQuint Scalable Nonlinear GaAsFET Model)**

### Symbol



### **Parameters**

Model parameters must be specified in SI units.

| Name                   | Description                                                                            | Units            | Default |
|------------------------|----------------------------------------------------------------------------------------|------------------|---------|
| Idsmod                 | Ids model: 1=CQ 2=CC 3=Statz 4=Materka 5=Tajima 6=symbolic<br>7=TOM 8=Modified Materka | None             | 7       |
| Vto <sup>†</sup>       | nonscalable portion of threshold voltage                                               | V                | -2.0    |
| Alpha                  | saturation voltage coefficient                                                         | 1/V              | 2.0     |
| Beta <sup>+, +++</sup> | transconductance coefficient                                                           | A/V <sup>Q</sup> | 1.0e-4  |
| Tqdelta <sup>++</sup>  | output feedback coefficient                                                            | 1/W              | 0.0     |
| Tqgamma                | DC drain pull coefficient                                                              | None             | 0.0     |
| TggammaAc              | AC pinchoff change with vds                                                            | None             | 0.0     |
| Tnom                   | nominal ambient temperature at which these model parameters were derived               | °C               | 25      |
| Q                      | power law exponent                                                                     | None             | 2.0     |
| Tau                    | gate transit time delay                                                                | sec              | 0.0     |
| Vtotc                  | Vto temperature coefficient                                                            | V/°C             | 0.0     |
| Betatce                | drain current exponential temperature coefficient                                      | %/°C             | 0.0     |
| Cgs <sup>+, +++</sup>  | zero-bias gate-source capacitance                                                      | F                | 0.0     |
| Cgd <sup>+, +++</sup>  | zero-bias gate-drain capacitance                                                       | F                | 0.0     |
| Vbi                    | gate diode built-in potential                                                          | V                | 0.85    |
| Tqm                    | temperature coefficient for TriQuint junction capacitance                              | None             | 0.2     |
| Vmax                   | maximum junction voltage before capacitance limiting                                   |                  | 0.5     |
| Fc                     | coefficient for forward bias depletion capacitance (diode model)                       | None             | 0.5     |
| Delta1                 | capacitance saturation transition voltage                                              | V                | 0.3     |
| Delta2                 | capacitance threshold transition voltage                                               | V                | 0.2     |
| М                      | grading coefficient                                                                    | None             | 0.5     |

Advanced Design System 2011.01 - Nonlinear Devices

|                      | Advanced Design System 2011.01 - Nonlinear Devices                              |      |                     |
|----------------------|---------------------------------------------------------------------------------|------|---------------------|
| Is <sup>+, +++</sup> | gate diode saturation current (diode model)                                     | A    | 1.0e-14             |
| N                    | gate diode emission coefficient (diode model)                                   | None | 1                   |
| Eg                   | energy gap for temperature effect on Is                                         |      | 1.11                |
| Xti                  | temperature exponent for saturation current                                     | None | 3.0                 |
| Vbr                  | Gate diode breakdown voltage                                                    | V    | 1e100               |
| Rg <sup>‡‡</sup>     | gate ohmic resistance                                                           | Ohm  | fixed at 0          |
| Rd <sup>++</sup>     | drain contact resistance                                                        | Ohm  | fixed at 0          |
| Rs <sup>††</sup>     | source contact resistance                                                       | Ohm  | fixed at 0          |
| Trg1                 | linear temperature coefficient for Rg                                           | 1/°C | 0.0                 |
| Trd1                 | linear temperature coefficient for Rd                                           | 1/°C | 0.0                 |
| Trs1                 | linear temperature coefficient for Rs                                           | 1/°C | 0.0                 |
| Cds <sup>+++</sup>   | drain source capacitance                                                        | F    | 0.0                 |
| Rdb                  | R for frequency-dependent output conductance                                    | Ohm  | 0.0                 |
| Cbs                  | C for frequency-dependent output capacitance                                    | F    | 0.0                 |
| Rgmet <sup>‡‡</sup>  | gate metal resistance                                                           | Ohm  | 0.0                 |
| Vtosc <sup>++</sup>  | scalable portion of threshold voltage                                           | V    | 0                   |
| Ris <sup>††</sup>    | source end channel resistance                                                   | Ohm  | 0.0                 |
| Rid <sup>++</sup>    | drain end channel resistance                                                    | Ohm  | 0.0                 |
| Vgr                  | Vg(s,d)c includes voltage across Rg(s,d): yes or no                             | None | No                  |
| Imax                 | explosion current                                                               | A    | 1.6                 |
| Imelt                | explosion current similar to Imax; defaults to Imax (refer to Note 4)           | A    | defaults to<br>Imax |
| Fnc                  | flicker noise corner frequency                                                  | Hz   | 0.0                 |
| R                    | gate noise coefficient                                                          | None | 0.5                 |
| Р                    | drain noise coefficient                                                         | None | 1.0                 |
| С                    | gate drain noise correlation coefficient                                        | None | 0.9                 |
| Taumdl               | Use 2nd order Bessel polynomial to model tau effect in transient: yes or no     | None | no                  |
| Ugw                  | unit gate width of device                                                       | um   | 1e-6                |
| Ngf                  | number of device gate fingers                                                   | None | 1                   |
| wVgfwd               | gate junction forward bias warning                                              | V    | None                |
| wBvgs                | gate-source reverse breakdown voltage warning                                   | V    | None                |
| wBvgd                | gate-drain reverse breakdown voltage warning                                    | V    | None                |
| wBvds                | drain-source breakdown voltage warning                                          | V    | None                |
| wIdsmax              | maximum drain-source current warning                                            | A    | None                |
| wPmax                | maximum power dissipation warning                                               | W    | None                |
| Gscap                | 0=none, 1=linear, 2=junction, 3=Statz charge, 5=Statz cap                       | None | Statz               |
| Gsfwd                | 0=none, 1=linear, 2=diode                                                       | None | diode               |
| Gsrev                | 0=none, 1=linear, 2=diode                                                       | None | diode               |
| Gdcap                | 0=None 1=Linear 2=Junction 3=Statz charge 5=Statz cap 6=Statz charge conserving | None | Statz               |
| Gdfwd                | 0=none, 1=linear, 2=diode                                                       | None | diode               |
| Gdrev                | 0=none, 1=linear, 2=diode                                                       | None | diode               |

Advanced Design System 2011.01 - Nonlinear Devices

| Kf        | flicker noise coefficient                    | None | 0.0  |
|-----------|----------------------------------------------|------|------|
| Af        | flicker noise exponent                       | None | 1.0  |
| Ffe       | flicker noise frequency exponent             | None | 1.0  |
| AllParams | Data Access Component (DAC) Based Parameters | None | None |

<sup>+</sup> Parameter value varies with temperature based on model Tnom and device Temp.<sup>++</sup> Parameter value scales inversely with Area.<sup>+++</sup> Parameter value scales with Area.<sup>+</sup> Value of 0.0 is interpreted as infinity.<sup>++</sup> Total gate resistance is Rg + Rgmet.

## Notes/Equations

- 1. This model supplies values for a TOM device.
- 2. Implementation of the TOM model is based on the work of McCaman et al, and includes some features not covered in McCaman's work. These enhancements include scaling with gate area and a seamless method for simulating with two different values for the parameters Tqgamma and TqgammaAc (one extracted at DC and the other adjusted to fit AC output conductance).
- 3. Model parameters such as Ls, Ld, Lg are not used by the TOM device in the simulator. Only those parameters in the parameters list are part of the TOM device. Extrinsic devices must be added externally by the user.
- 4. Imax and Imelt Parameters Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

5. To prevent numerical problems, the setting of some model parameters to 0 is trapped by the simulator. The parameter values are changed internally:

 $Rd = 10^{-4}$   $Rs = 10^{-4}$   $Rg = 10^{-4}$   $Ris = 10^{-4}$   $Rid = 10^{-4}$   $Rgmet = 10^{-4}$ 

Other parameters are restricted to values > 0. If the user violates this restriction, the parameters will be internally fixed by the simulator:

Vbi = 0.1N = 1.0 Tqdelta= 0.0

Equations/Discussion

### **DC Drain-Source Current**

The Tom DC drain-source current model is an enhanced version of the one published by McCamant et al. It includes the same features as the version implemented by TriQuint in PSPICE for their foundry customers (minus temperature effects). The TOM model DC drain-source current is given by the following expressions:

$$Ids = \frac{Idso}{1 + \delta \times Vds \times Idso}$$

where

$$Idso = \beta (V_{gs} - V_t)^Q \times \left[1 - \left[1 - \frac{\alpha V ds}{3}\right]^3\right]$$

for 0 < Vds < 3/a

$$Idso = \beta (V_{es} - V_t)^Q$$

for Vds  $\geq 3/a$ 

The threshold voltage  $V_t$  is given by:

Vt = (Vto + Vtosc) - Tqgamma × Vds

where  $\delta$  is Tqdelta, a is Alpha,  $\beta$  is Beta, and Vtosc represents the scalable portion of the zero-bias threshold voltage.

The current is set to zero for Vgs < Vt.

### **Gate Capacitances**

The gate capacitances in the TOM model come from Statz et al.

The gate-source capacitance:

$$\frac{Cgs}{\sqrt{1-\frac{Vn}{Vbi}}} \times \frac{1}{2} \left[ 1 + \frac{Veff - Vto}{\sqrt{(Veff - Vto)^2 + Delta2^2}} \right] \times \frac{1}{2} \left[ 1 + \frac{Vgs - Vgd}{\sqrt{(Vgs - Vgd)^2 + Delta^2}} \right] + Cgd \times \frac{1}{2} \left[ 1 - \frac{Vgs - Vgd}{\sqrt{(Vgs - Vgd)^2 + Delta^2}} \right]$$

The gate-drain capacitance:

$$\frac{Cgs}{\sqrt{1 - \frac{Vn}{Vbi}}} \times \frac{1}{2} \left[ 1 + \frac{Veff - Vto}{\sqrt{(Veff - Vto)^2 + Delta2^2}} \right] \times \frac{1}{2} \left[ 1 - \frac{Vgs - Vgd}{\sqrt{(Vgs - Vgd)^2 + Delta^2}} \right] + Cgd \times \frac{1}{2} \left[ 1 + \frac{Vgs - Vgd}{\sqrt{(Vgs - Vgd)^2 + Delta^2}} \right]$$

where

Delta = Delta1 if Delta1 is specified, otherwise Delta =  $\frac{1}{Alpha}$ 

$$Veff = \frac{1}{2}(Vgs + Vgd + \sqrt{(Vgs - Vgd)^{2} + Delta^{2}})$$
$$Vnew = \frac{1}{2}(Veff + Vto + \sqrt{(Veff - Vto)^{2} + Delta2^{2}})$$

 $Vn = Vnew if Vnew < Min (Fc \times Vbi, Vmax) otherwise Vn = Min (Fc \times Vbi, Vmax)$ 

### **High-Frequency Output Conductance**

In their paper McCaman et al., discuss the effects of the parameter ccnld-4-20-532.gif! on the output conductance of the TOM model. Agilent's implementation permits the user to input both a DC (Tqgamma) and high frequency (TqgammaAc) value into the model. Given these two  $\gamma$  values, two separate values of the drain-source current function Ids can be calculated, one for DC and one for AC:

Ids<sup>DC</sup> = Ids (Vgs (t-Tau), Vds, Tqgamma) Ids<sup>AC</sup> = Ids (Vgs (t-Tau), Vds, TqgammaAc)

These two current functions can be seamlessly integrated into the nonlinear model by setting the current source in the equivalent circuit to the difference of these two functions: Idb (Vgs (t-Tau), Vds) =  $Ids^{AC} - Ids^{DC}$ 

The circuit elements Rdb and Cbs are both linear elements that are used to control the frequency at which the current source Idb becomes a factor. Note that at DC the source Idb has no impact on the response and the drain-source current is just the DC value. At very high frequency and with Rdb set to a very large quantity, the sources Ids and Idb add, giving the AC value for the drain-source current. The frequency at which the current (conductance) is midway between its two transitional extremes is:

$$f_o = \frac{1}{2\pi\tau_{disp}}$$

where

$$\tau_{disp} = Rdb \times Cbs$$

The user may select this transition frequency by setting the parameters Rdb and Cbs. However, it is recommended that Rdb be kept at a large value so it remains an effective open to the circuit.

Parameters Rdb and Cbs should not be set to zero; they should either be set to non-zero values or left blank. When they are left blank, the drain-source current dispersion effect is not modeled.

### **Dimensional Scaling Relations**

Scaling of TOM\_Model parameters is accomplished through the use of the model parameters Ugw and Ngf and the device parameters Ugw (same name as the model parameter) and N. From these four parameters, the following scaling relations can be defined:

$$sf = \frac{W \times N}{Ugw \times Ngf}$$
$$sfg = \frac{Ugw \times N}{W \times Ngf}$$

where W represents the device parameter Ugw, the new unit gate width. Scaling will be disabled if N is not specified. The new parameters are calculated internally by the simulator according to the following equations:

$$Beta^{new} = Beta \times sf$$

$$Tq delta^{new} = \frac{Tq delta}{sf}$$

$$Vtosc^{new} = \frac{Vtosc}{sf}$$

$$Is^{new} = Is \times sf$$

$$Ris^{new} = \frac{Ris}{sf}$$

$$Rid^{new} = \frac{Rid}{sf}$$

### **Temperature Scaling Relations**

TOM\_Model uses an extensive set of temperature scaling relations that permit the analysis

of drain current, gate current, capacitances and even parasitic resistances over ambient temperature changes. The scaling relations assume the unscaled (nominal) parameters were extracted at Tnom. The parameters are scaled to an arbitrary operating ambient temperature (Temp) through the temperature scaling relations. Note that the user must specify the temperatures Temp and Tnom in °C; the program converts these temperatures to units of Kelvin. The equations that follow use temperature in Kelvin.

$$Vbi(Temp) = Vbi \times \left(\frac{Temp}{Tnom}\right) - 3V_t \log\left(\frac{Temp}{Tnom}\right)$$

$$-E_{g}(Tnom) \times \left(\frac{Temp}{Tnom}\right) + E_{g}(Temp)$$

$$Beta(Temp) = Beta \times 1.01^{Betatce \times (Temp - Tnon)}$$

 $Vto(Temp) = Vto + Vtotc \times (Temp - Tnom)$ 

$$Is(Temp) = exp\left[\left(\frac{Temp}{Tnom} - 1\right) \times \frac{Eg}{V_t}\right] \times Is\left(\frac{Temp}{Tnom}\right)^{\frac{Xti}{N}}$$

$$Rd(Temp) = Rd \times (1 + Trd1 \times (Temp - Tnom))$$

$$Rs(Temp) = Rs \times (1 + Trs 1 \times (Temp - Tnom))$$

$$Cgs(Temp) = Cgs \left[ 1 + Tqm \times \left[ 4.0 \times 10^{-4} (Temp - Tnom) + 1 - \frac{Vbi(Temp)}{Vbi} \right] \right]$$

$$Cgd(Temp) = Cgd \left[ 1 + Tqm \times \left[ 4.0 \times 10^{-4} \times \left( (Temp - Tnom) + 1 - \frac{Vbi(Temp)}{Vbi} \right) \right] \right]$$

where:

$$V_t = \frac{V \times Temp}{q}$$
$$E_g(T) = \frac{1.519 - 5.405 \times 10^{-4} T^2}{T + 204}$$

where:

.

K = Boltzmann's constant = 
$$8.62 \times 10^{-5} eV K^{-1}$$

q = electron charge = 
$$1.602 \times 10^{-19} C$$

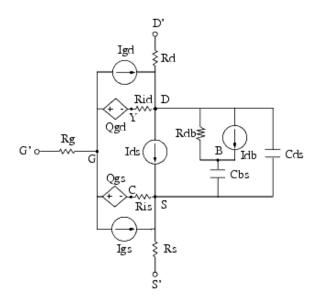
### **Noise Model**

\_

Thermal noise generated by resistors Rg, Rs and Rd is characterized by the following spectral density.

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

Parameters P, R, and C model drain and gate noise sources.

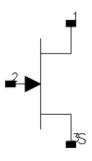

$$\frac{\langle i_d^2 \rangle}{\Delta f} = 4kTg_m P + 4kTg_m PFnc / f + Kf Ids^{Af} / f^{Ffe}$$

$$\frac{\langle i_g^2 \rangle}{\Delta f} = 4kT C_{gs}^2 \omega^2 R / g_m$$

$$\frac{\langle i_g, i_d^* \rangle}{\Delta f} = 4kTj C_{gs} \omega \sqrt{PR} C$$

For Series IV compatibility, set P=2/3, R=0, C=0, and Fnc=0; copy Kf, Af, and Ffe from the Series IV model.

### **Equivalent Circuit**




References

- 1. A. McCaman, G. McCormack and D. Smith. "An Improved GaAs MESFET Model for SPICE", *IEEE Trans. on Microwave Theory Tech*., vol. MTT-38, pp. 822-824, June 1990.
- 2. H. Statz, P. Newman, I. Smith, R. Pucel and H. Haus. "GaAs FET Device and Circuit Simulation in SPICE", *IEEE Trans. on Electron Devices*, vol. ED-34, pp. 160-169, Feb. 1987.
- 3. A. Cappy, "Noise Modeling and Measurement Techniques," *IEEE Transactions on Microwave Theory and Techniques*, Vol. 36, No. 1, pp. 1-10, Jan. 1988.

# TriQuintMaterka (TriQuint-Materka Nonlinear FET)

Symbol



### Parameters

| Name  | Description                                                            | Units | Default    |
|-------|------------------------------------------------------------------------|-------|------------|
| Model | name of a TriQuintMaterka_Model instance                               | None  | MESFETM1   |
| W     | gate width                                                             | m     | 1.0        |
| Ν     | number of gate fingers                                                 | None  | no scaling |
| Temp  | device instance temperature                                            | °C    | 25         |
| Trise | device temperature relative to circuit ambient (if Temp not specified) | °C    | 0          |
| Noise | noise generation option: yes or no                                     | None  | yes        |
| _M    | number of devices in parallel                                          | None  | 1          |

### **Range of Usage**

W > 0N > 0 (if specified)

### **Notes/Equations/References**

1. W and N are used for scaling the device instance. Refer to *TriQuintMaterka\_Model* (*TriQuint-Materka Nonlinear FET Model*) (ccnld) for details.

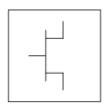
| 0 | Note        |    |
|---|-------------|----|
|   | Area/finger | sr |

Area/finger scaling will be disabled if N is not specified.

The default value for W is 1 m, while typical values are in the order of micrometers; so, the recommendation is to not rely on this default value.

 The Temp parameter specifies the physical (operating) temperature of the device. If this is different than the temperature at which the model parameters are valid or extracted (specified by the Tnom parameter of the corresponding TriQuintMaterka\_Model) certain parameters and responses are scaled so that the device is simulated at its operating temperature. Refer to *TriQuintMaterka\_Model*

(*TriQuint-Materka Nonlinear FET Model*) (ccnld) for details.
3. The following table lists the DC operating point parameters that can be sent to the dataset.


### **DC Operating Point Information**

| Name      | Description                           | Units   |
|-----------|---------------------------------------|---------|
| Id        | Drain current                         | amperes |
| Ig        | Gate current                          | amperes |
| Is        | Source current                        | amperes |
| Power     | DC power dissipated                   | watts   |
| Gm        | Forward transconductance (dIds/dVgs)  | siemens |
| Gds       | Output conductance (dIds/dVds)        | siemens |
| Ggs       | Gate to source conductance            | siemens |
| Ggd       | Gate to drain conductance             | siemens |
| dIgs_dVgd | (dIgs/dVgd)                           | siemens |
| dIgd_dVgs | (dIgd/dVgs)                           | siemens |
| dIds_dVgb | Backgate transconductance (dIds/dVgb) | siemens |
| Cgs       | Gate-source capacitance               | farads  |
| Cgd       | Gate-drain capacitance                | farads  |
| Cds       | Drain-source capacitance              | farads  |
| dQgs_dVgd | (dQgs/dVgd)                           | farads  |
| dQgd_dVgs | (dQgd/dVgs)                           | farads  |
| Vgs       | Gate-source voltage                   | volts   |
| Vds       | Drain-source voltage                  | volts   |

4. This device has no default artwork associated with it.

# TriQuintMaterka\_Model (TriQuint-Materka Nonlinear FET Model)

### Symbol



### **Parameters**

Model parameters must be specified in SI units.

| Name   | UCM/SDD Name | Description                                                     | Units | Default |
|--------|--------------|-----------------------------------------------------------------|-------|---------|
| Idsmod |              | Ids model (do not change the default value)                     | None  | 9       |
| NFET   |              | N-channel type: yes or no                                       | None  | yes     |
| PFET   |              | P-channel type: yes or no                                       | None  | no      |
| Tnom   |              | model temperature at which all parameters were derived          | °C    | 25      |
| Ugw    |              | gate width to which model parameters are normalized             | m     | 1e-6    |
| Ngf    |              | number of gate fingers to which model parameters are normalized | None  | 1       |
| Idss   | IDSS         | saturation drain current                                        | A     | 0       |
| Vto    | VPO          | threshold voltage                                               | V     | -2.0    |
| Beta2  | GAMA         | coefficient for pinch-off change with respect to Vds            | None  | 0       |
| Ee     | E            | exponent defining dependence of saturation current              | None  | 2.0     |
| Ke     | KE           | coefficient for exponent dependence on gate voltage             | 1/V   | 0       |
| Kg     | KG           | drain current dependence on Vgs in linear region                | 1/V   | 0       |
| SI     | SL           | linear region slope of Vgs=0 drain characteristic               | 1/Ohm | 1.0     |
| Ss     | SS           | saturation region drain slope characteristic at Vgs=0           | 1/Ohm | 0       |
| Tau    | TAU          | transit time under gate                                         | sec   | 0       |
| Idstc  |              | Ids temperature linear coefficient                              | 1/°C  | 0       |
| Vtotc  |              | Vto temperature linear coefficient                              | V/°C  | 0       |
| Gsfwd  |              | gate-source forward model: 0=none 1=linear 2=diode              | None  | diode   |
| Gdfwd  |              | gate-drain forward model: 0=none 1=linear                       | None  | None    |

|        |                                    | 2=diode                                                           | <u> </u>             |              |
|--------|------------------------------------|-------------------------------------------------------------------|----------------------|--------------|
| Is     | IGO                                | gate junction saturation current                                  | A                    | 1.0e-14      |
| Alfg   | ALFG                               | Schottky current exponent multiplier                              | 1/V                  | 22           |
| Eg     |                                    | energy gap for temperature effect on Is                           | eV                   | 1.11         |
| Xti    |                                    | temperature exponent for saturation current                       | None                 | 3.0          |
| Rf     |                                    | gate forward resistance if Gsfwd or Gdfwd = linear                | Ohm                  | open circuit |
| Gsrev  |                                    | gate-source breakdown model: 0=none 1=linear 2=diode              | None                 | None         |
| Gdrev  |                                    | gate-drain breakdown model: 0=none 1=linear 2=diode               | None                 | diode        |
| Ir     | IGD0                               | gate reverse saturation current                                   | А                    | 1.0e-14      |
| Vbr    | VBR, refer to note 4               | gate junction reverse bias breakdown voltage                      | V                    | 1e100        |
| Alpvb  | ALPVB                              | breakdown exponent fitting factor                                 | 1/V                  | 0.4          |
| AlfdA  | A                                  | fitting factor in Igd current exponent                            | 1/V                  | 0            |
| AlfdB  | В                                  | fitting factor in Igd current exponent                            | 1/\(V <sup>2</sup> ) | 0            |
| R1     |                                    | breakdown resistance if Gsrev or Gdrev = linear                   | Ohm                  | open circuit |
| R2     |                                    | resistance relating breakdown voltage to channel                  | Ohm                  | 0            |
| Gscap  |                                    | mode: 0=none, 1=const, 2=junction, 3=Statz<br>charge, 5=Statz cap | None                 | None         |
| Cgs    | CGS                                | zero bias gate-source junction capacitance                        | F                    | 0            |
| Gdcap  |                                    | mode 0=none, 1=const, 2=junction, 3=Statz<br>charge, 5=Statz cap  | None                 | const        |
| Cgd    | CGD                                | zero bias gate-drain junction capacitance                         | F                    | 0            |
| Vbi    |                                    | built-in gate potential \(junction capacitance models)            | V                    | 0.85         |
| Fc     |                                    | coefficient for forward bias depletion junction capacitance       | None                 | 0.5          |
| Delta1 |                                    | capacitance saturation transition voltage \(Statz models)         | V                    | 0.3          |
| Delta2 |                                    | capacitance threshold transition voltage \(Statz models)          | V                    | 0.2          |
| Vmax   |                                    | maximum voltage before capacitance limiting \(Statz models)       | V                    | 0.5          |
| Rin    | RI                                 | channel resistance                                                | Ohm                  | 0            |
| RLgs   | RGS, refer to note 5               | gate-source leakage resistance                                    | Ohm                  | open circuit |
| RLgd   | RGD, refer to note 5<br>and note 6 | gate-drain leakage resistance                                     | Ohm                  | open circuit |
| Rc     | RRF, refer to note 7               | dispersion model resistance                                       | Ohm                  | 0            |
| Crf    | CRF, refer to note 7               | dispersion model capacitance                                      | F                    | 0            |
| Cds    | CDS                                | drain-source capacitance                                          | F                    | 0            |
| Rd     | RD                                 | drain resistance                                                  | Ohm                  | 0            |
| Trd1   |                                    | temperature linear coefficient for Rd                             | 1/°C                 | 0            |
| Rg     | RG                                 | gate resistance                                                   | Ohm                  | 0            |
| Trg1   |                                    | temperature linear coefficient for Rd                             | 1/°C                 | 0            |
| Rs     | RS                                 | source resistance                                                 | Ohm                  | 0            |
| Trs1   |                                    | temperature linear coefficient for Rd                             | 1/°C                 | 0            |

| Ld        | LD | Advanced Design System 2011.01 - Nonlinear Devices<br>drain inductance      | Н    | 0                   |
|-----------|----|-----------------------------------------------------------------------------|------|---------------------|
| Lg        | LG | gate inductance                                                             | Н    | 0                   |
| Ls        | LS | source inductance                                                           | Н    | 0                   |
| Taumdl    |    | use 2nd order Bessel polynomial to model Tau effect in transient: yes or no | None | no                  |
| Imax      |    | explosion current                                                           | A    | 1.6                 |
| Imelt     |    | explosion current similar to Imax; defaults to Imax (refer to Note 12)      | A    | defaults to<br>Imax |
| Fnc       |    | flicker noise corner frequency                                              | Hz   | 0                   |
| R         |    | gate noise coefficient                                                      | None | 0.5                 |
| Р         |    | drain noise coefficient                                                     | None | 1.0                 |
| С         |    | gate-drain noise correlation coefficient                                    | None | 0.9                 |
| wVgfwd    |    | gate junction forward bias warning                                          | V    |                     |
| wBvgs     |    | gate-source reverse breakdown voltage warning                               | V    |                     |
| wBvgd     |    | gate-drain reverse breakdown voltage warning                                | V    |                     |
| wBvds     |    | drain-source breakdown voltage warning                                      | V    |                     |
| wIdsmax   |    | maximum drain-source current warning                                        | A    |                     |
| wPmax     |    | maximum power dissipation warning                                           | W    |                     |
| AllParams |    | Data Access Component (DAC) Based Parameters                                | None | None                |

<sup>+</sup> A value of 0.0 is interpreted as infinity.

### Notes/Equations

- 1. This model supplies values for a TriQuintMaterka device.
- 2. Implementation of the TriQuint-Materka model is based on [1-3].
- 3. The UCM/SDD column in the Parameters table shows the names of the parameters that were used either in the User Compiled Model implementation or in the SDD implementation of the TriQuint-modified Materka model. These names must be changed to the name given in the Name column. Note that the Name is case sensitive. Also, do not rely on the default values as, in general, they are different from those in the UCM or SDD.

Parameters listed in the Name column that do not have corresponding UCM/SDD parameters are used for extended features of this model with respect to the UCM/SDD implementations. Refer to Notes 4 through 9 for specific translation issues.

- 4. The breakdown voltage parameter Vbr is internally converted to its absolute value at parsing. Thus, the negative values used in UCM/SDD do not need to be changed to conform to the ADS convention.
- 5. When using other than UI means of entering model parameters, (e.g., file-based, do not use the parameter names Rgs and Rgd). The correct translation of the UCM/SDD parameters RGS and RGD is RLgs and RLgd.
- 6. In the UCM implementation, the parameters RGS and RGD are not scaled with area. The corresponding leakage resistances RLgs and RLgd, however, are dimensionally scaled (inversely proportional to area). Therefore, they should be accordingly adjusted if the device instance scaling parameters call for dimensional scaling.
- 7. In SDD implementation, the parameters CRF and RRF are not scaled with the area. The corresponding parameters in the built-in model (capacitance/resistance Crf/Rc), however, are dimensionally scaled (directly/inversely proportional to the area). Therefore, they should be accordingly adjusted if the device instance scaling parameters call for dimensional scaling.

- 8. The functionality of the UCM/SDD scaling parameters is replaced by the use of two device parameters (W, N) and two model parameters (Ugw, Ngf). Refer to the section <u>Dimensional Scaling Relations</u> for details and translation rules.
- 9. For UCM/SDD compatibility use Temp = Tnom, Gsfwd=2, Gdrev=2, Imax=230, follow Notes 3 through 8, and use defaults for other parameters that were not present in UCM/SDD.
- 10. The standard emission coefficient N is implicitly defined by the parameter Alfg as N = 1 / (Alfg ×  $V_{Tnom}$ ), where  $V_{Tnom}$  is the thermal voltage corresponding to the value

of the parameter Tnom. Refer to the section <u>Forward Gate Diode Models (Gsfwd=2</u> and/or Gdfwd=2) for details.

- 11. To prevent numerical problems, the simulator maintains the following minimum parameter values:
  - Rd = 1e-4 Rs = 1e-4
  - Rg = 1e-4

If the user wants any of the extrinsic resistances Rd, Rg, and Rs to be exactly zero, their values should not be entered. The default is a short circuit. If a value is entered, it must be different from zero.

12. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) then the junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

13. Several parameters are restricted to positive, non-zero, or non-negative values. If the user violates this restriction, an error message will be written in the status window, and the simulation will not proceed.

# **Drain-Source Current**

The TriQuintMaterka\_Model drain-source current is calculated using the same equation as the Modified\_Materka\_Model.

Let

$$VP = Vto + Beta2 \times V_{ds}$$

If

$$VP < 0$$
 and  $V_{gs} > VP$ 

then

$$I_{ds} = Idss \times \left(1 - \frac{V_{gs}}{VP}\right)^{(Ee + Ke \times V_{gs})} \times \tanh\left(\frac{Sl \times V_{ds}}{Idss \times (1 - Kg \times V_{gs})}\right) \times \left(1 + \frac{Ss \times V_{ds}}{Idss}\right)$$

otherwise

$$I_{ds} = 0$$

For time-varying drain-source current, the voltage  $V_{gs}$  is delayed by the transit time Tau. Idss, Vto, Beta2, Ee, Ke, SI, Kg and Ss are model parameters.

### **Gate Capacitances**

There are several options in modeling the junction capacitance of a device; these options are shared with other GaAs FET models. The first option is to model the junction as a linear component (a constant capacitance); the second option is to model the junction using a diode depletion capacitance model. If a non-zero value of Cgs is specified and Gscap=1 (linear), the gate-source junction capacitance will be modeled as a linear component. Similarly, specifying a non-zero value for Cgd and Gdcap=1 result in a linear gate-drain model. A non-zero value for either Cgs or Cgd together with Gscap=2 (junction) or Gdcap=2 will force the use of the diode depletion capacitance model for that particular junction. Refer to *Curtice2\_Model (Curtice-Quadratic GaAsFET Model)* (ccnld) for details and equations.

The other options Gscap=3 or Gdcap=3 (Statz Charge) and Gscap=5 or Gdcap=5 (Statz Cap) correspond to the Statz-based models [4, 5]. Refer to *Statz\_Model (Statz Raytheon GaAsFET Model)* (ccnld) for details and equations.

Note that each junction is modeled independent of the other; hence, it is possible to model one junction as a linear component while the other is treated nonlinearly.

### **Gate Conduction Currents**

The gate conduction currents are controlled by four flags: Gsfwd, Gsrev, Gdfwd, and Gdrev. Each of them can be set to 0, 1, or 2. Setting any of these flags to 0 results in a corresponding open circuit. For non-zero settings, the following sections describe the respective behaviors.

### Linear Gate Conduction Models (flag=1)

The simplest models assume an effective value of forward bias resistance Rf and an approximate breakdown resistance R1 (refer to *Curtice3\_Model (Curtice-Cubic GaAsFET Model)* (ccnld)). The linear model of the forward conduction current is used when Rf is specified (must be different from zero) and Gsfwd=1 and/or Gdfwd=1. For example, if Gsfwd=1 then the gate-source forward conduction current is given by:

If  $V_{as} > Vbi$ 

 $I_{gs}$  = (  $V_{gs}$  - Vbi )/ Rf

otherwise:

$$I_{gs} = 0$$

Vbi and Rf are model parameters. A similar expression defines  $I_{ad}$ .

The linear model of the reverse breakdown current is used when R1 is set and Gsrev=1 and/or Gdrev=1. For example, if Gdrev = 1 If  $V_{ad} < -Vb$ 

$$I_{gd} = (V_{gd} + Vb)/R 1$$

otherwise:

$$I_{gd} = 0$$

In the above equation, Vb is a modified breakdown voltage defined as:

$$Vb = Vbr + R 2 \times I_{ds}$$

Vbr, R1 and R2 are model parameters. Note that Vbr is assumed to be positive (the actual breakdown voltage in terms of Vgd would be negative for an n-channel device). A similar expression defines  $I_{as}$ .

#### Forward Gate Diode Models (Gsfwd=2 and/or Gdfwd=2)

This model is controlled by the model parameters Is and Alfg, and is similar for both Igs and Igd. For example, the Igs current is determined as

$$I_{gs} = Is \times [\exp(Alfg \times V_{gs}) - 1]$$

The parameter Alfg must be positive. It is converted to the standard emission coefficient N (see <u>note 10</u>) and the following equation is used instead.

$$I_{gs} = Is \times \left[ exp \left( \frac{V_{gs}}{N \times V_T} \right) - 1 \right]$$

where VT is the thermal voltage:

$$V_T = \frac{k \times Temp}{q}$$
  
k = 1.38 × 10<sup>-23</sup> (Boltzmann's constant)  
q = 1.602 × 10<sup>-19</sup> (electron charge)

This facilitates temperature dependence of the exponent on Temp, which is either equal to the device instance parameter Temp, or if Temp is not specified, to Temp =

ambient\_circuit\_temperature + Trise.

Large negative and large positive exponent values are handled similarly to other GaAs FET models. Refer to (for example) *Statz\_Model (Statz Raytheon GaAsFET Model)* (ccnld) information for details.

#### Reverse Breakdown Gate-Drain Diode Model (Gdrev=2)

The diode model of the reverse gate-drain breakdown has been modified by TriQuint to include its dependence on the gate-source voltage Vgs. Following [2]|TriQuintMaterka Model (TriQuint-Materka Nonlinear FET Model)#reference1], the Igd current is calculated as:

$$I_{gd} = -Ir \times \exp(Alf dA \times V_{gs} + Alf dB \times V_{gs} \times V_{gs} - Alpvb \times (Vb + V_{gd}))$$

In the above equation, Vb is a modified breakdown voltage defined as:

 $Vb = Vbr + R 2 \times I_{ds}$ 

Ir, AlfdA, AlfdB, Alpvb, R2, and Vbr are model parameters. Note that Vbr is assumed to be positive (the actual breakdown voltage in terms of Vgd would be negative for an n-channel device).

#### Reverse Breakdown Gate-Source Diode Model (Gsrev=2)

The gate-source breakdown diode model, if used, takes the standard exponential form:

$$I_{gs} = -Ir \times [\exp(-Alpvb \times (Vb + V_{gs})) - 1]$$

In the above equation, Vb is a modified breakdown voltage defined as:

$$Vb = Vbr + R 2 \times I_{ds}$$

#### **Time Delay**

Like other GaAs FET models, TriQuintMaterka\_Model uses an ideal time delay to model transit time effects under the gate. In the time domain, the drain source current for the ideal delay is given by:

$$I_{ds}(t) = I_{ds}(V_j(t-Tau), V_{ds}(t))$$

where Vj = Vgs or Vj = Vgd (depending on whether Vds is positive or negative). Tau is a model parameter. In the frequency domain, only the transconductance is impacted by this delay and the familiar expression for transadmittance is obtained:

$$y_m = g_m \times \exp(-j\omega Tau)$$

#### **High-Frequency Output Conductance**

A series-RC network comprised of the parameters Crf and Rc is included to provide a correction to the AC output conductance. At a frequency high enough such that Crf is an effective short, the output conductance of the device can be increased by the factor 1/Rc.

#### **Dimensional Scaling Relations**

For each device instance, area/finger scaling is performed only if the device parameter N is specified, and its value is positive. The width scaling factor is determined as:

width\_scale = W / Ugw

where W is the actual device gate width and Ugw is a model parameter whose meaning is the gate width to which all the model parameters have been normalized (or Ugw is the actual gate width of the measured device if the extracted model parameters have not been normalized).

Similarly, the finger scaling factor is determined as:

finger\_scale = N / Ngf

where N is the actual device number of fingers and Ngf is a model parameter whose meaning is the number of gate fingers to which all the model parameters have been normalized (or Ngf is the actual number of gate fingers of the measured device if the extracted model parameters have not been normalized).

It is strongly recommended that the model parameters Ugw and Ngf are always specified without relying on their default values.

The following model parameters are scaled with area = width\_scale \* finger\_scale:

Idss, SI, Ss, Is, Ir, Cgs, Cgd, Cds, Crf

The following model parameters are scaled inversely with area:

Rd, Rs, RLgs, RLgd, Rc, Rin

The following model parameters are scaled with width\_scale / finger\_scale:

Rg, Lg

The inductances Ld and Ls are not scaled.

For compatibility with the UCM or SDD implementation, the values of device/model scaling parameters W, N, Ugw and Ngf must be determined from the UCM/SDD scaling parameters (see Note 8). In terms of the parameters W, N, Ugw and Ngf, the UCM parameters AREA and SFING can be expressed as:

AREA = (W / Ugw) \* (N / Ngf) SFING = Ngf / N

If the actual values of Ugw and Ngf are not known, they can be set arbitrarily. Then, given the values of AREA, SFING, Ugw and Ngf, the device parameters W and N must be set as:

 $W = Ugw \times AREA \times SFING$ N = Ngf / SFING Similarly, in terms of W, N, Ugw and Ngf parameters, the SDD Size and Original Size parameters can be expressed as:

Size =  $W \times N$ OriginalSize = Ugw × Ngf

SDD Finger and OriginalFinger parameters mean the same as N and Ngf parameters, respectively. Therefore, the translation rules for SDD scaling parameters are:

Ugw = OriginalSize / OriginalFinger Ngf = OriginalFinger W = Size/Finger N = Finger

#### **Temperature Scaling Relations**

The TriQuintMaterka\_Model model uses several temperature scaling relations which modify the model behavior when the ambient temperature changes. The scaling relations assume the unscaled (nominal) parameters were extracted at Tnom. It is strongly recommended that the model parameter Tnom is always specified without relying on its default value.

The parameters are scaled to an arbitrary operating temperature through the temperature scaling relations. Note that the user specifies the temperatures in °C and the program converts them to units of Kelvin. The value of *Temp* is either the device instance parameter Temp, or if Temp is not specified then it is evaluated as Temp = ambient\_circuit\_temperature + Trise.

The emission coefficient N used in the equations is evaluated from the parameter Alfg (see Note 10), or it assumes the default value of 1 if Alfg=0. In addition to the thermal voltage in the forward diode equations, the following temperature scaling is used.

The saturation current Is scales as:

$$Is^{NEW} = Is \times \exp\left[\left(\frac{Temp}{Tnom} - 1\right)\frac{q \times Eg}{k \times N \times Temp} + \frac{Xti}{N} \times \ln\left(\frac{Temp}{Tnom}\right)\right]$$

The gate depletion capacitances Cgs and Cgd vary as:

$$Cgs^{NEW} = Cgs \left[ \frac{1 + 0.5[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + 0.5[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Tnom}]} \right]$$

$$Cgd^{NEW} = Cgd\left[\frac{1 + 0.5[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + 0.5[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Tnom}]}\right]$$

where  $\boldsymbol{\gamma}$  is a function of the junction potential and the energy gap variation with temperature.

The gate junction potential Vbi varies as:

Advanced Design System 2011.01 - Nonlinear Devices

$$Vbi^{NEW} = \frac{Temp}{Tnom} \times Vbi + \frac{2k \times Temp}{q} \times \ln\left(\frac{n_i^{Tnom}}{n_i^{Temp}}\right)$$

where  $n_i$  is the intrinsic carrier concentration for silicon, calculated at the appropriate temperature.

The threshold voltage Vto varies as:

$$Vto^{NEW} = Vto + Vtotc(Temp - Tnom)$$

The Ids current, after being evaluated, is scaled linearly using the model parameter Idstc, as:

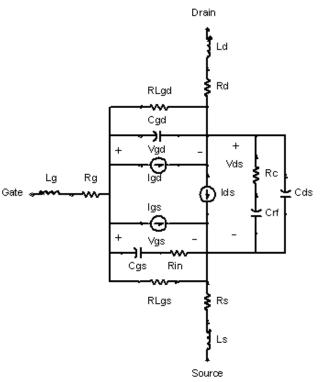
$$I_{ds}^{NEW} = I_{ds} \times (1 + Idstc \times (Temp - Tnom))$$

The extrinsic resistances are also scaled linearly as:

$$Rx^{NEW} = Rx \times (1 + Trx1 \times (Temp - Tnom))$$

where x stands for d, g, or s, and correspondingly, Rd, Rg, Rs, Trd1, Trg1 and Trs1 are model parameters.

#### **Noise Model**


The resistors Rg, Rs and Rd generate thermal noise, which is characterized by the following spectral density.

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

The P, R, and C parameters model drain and gate noise sources [6].

$$\frac{\langle i_d^2 \rangle}{\Delta f} = 4kTg_m P(1 + f_{NC}/f)$$
$$\frac{\langle i_g^2 \rangle}{\Delta f} = 4kT C_{gs}^2 \omega^2 R/g_m$$
$$\frac{\langle i_g, i_d^* \rangle}{\Delta f} = 4kTj C_{gs} \omega \sqrt{PR} C$$

**Equivalent Circuit** 



#### References

- A. Materka and T. Kacprzak "Computer Calculation of Large-Signal GaAs FET Amplifier Characteristics," IEEE Trans. Microwave Theory and Techniques, Vol. MTT-33, No. 2, February 1985.
- 2. An internal document describing model parameters and equations, Private communication from TriQuint.
- 3. Igd "Breakdown Equation" developed by D. R. Bridges and W. Anholt, Private communication from TriQuint.
- 4. H. Statz, P. Newman, I. Smith, R. Pucel and H. Haus. "GaAs FET device and circuit simulation in SPICE," IEEE Trans. Electron Devices, vol. ED-34, pp. 160-169, Feb. 1987.
- 5. D. Divekar, Comments on "GaAs FET device and circuit simulation in SPICE," IEEE Trans. Electron Devices, Vol. ED-34, pp. 2564-2565, Dec. 1987.
- 6. A. Cappy, "Noise Modeling and Measurement Techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 1, pp. 1-10, Jan. 1988.

# **Devices and Models, JFET**

- JFET Model (Junction FET Model) (ccnld)
- JFET NFET, JFET PFET (Nonlinear Junction FETs, P-Channel, N-Channel) (ccnld)
- r3 (Three-Terminal Nonlinear Diffused and Poly-Silicon Resistor and JFET Model and Instance) (ccnld)

### **Bin Model**

The BinModel in the JFET library allows you to sweep a parameter (usually a geometry, such as gate length), then enable the simulator to automatically select between different model cards. This alleviates the problem that one scalable model typically doesn't work for all sizes of a device.

For information on the use of the binning feature, refer to *BinModel* (ccsim).

### **Multiplicity Parameter \_M**

The multiplicity feature provides a way to scale components or entire sub-circuits containing many components and sub-circuits. Given a component with a multiplicity value M, the simulator treats this component as if there were M such components all connected in parallel. Sub-circuits within sub-circuits will be appropriately scaled.

The \_M parameter is available at the component level as shown here. (For components that do not explicitly have a Multiplicity parameter, the same functionality can be achieved by placing the component in a sub-circuit and using the sub-circuit's Multiplicity parameter, as described next.)

| Select Parameter       | I None 🗹                      |
|------------------------|-------------------------------|
| Model=BJTM1            | I None                        |
| Area=<br>Region=       | Equation Editor               |
| Temp=                  | Optimization/Statistics Setup |
| Mode=nonlinear         |                               |
| Noise=yes              |                               |
| _ <u>M=</u>            |                               |
| _M : Number of devices | in parallel, (default: 1)     |
|                        |                               |
| OK Apply               | Cancel Reset Help             |

For sub-circuits, the parameter is enabled by selecting **File** > **Design Parameters** from the Schematic window. In the dialog box, select the **Parameters** tab. To add the Multiplicity parameter, choose **Add Multiplicity Factor\_M**.

| General   | Param       | eters      |
|-----------|-------------|------------|
| Select Pa | arameter    |            |
|           |             |            |
| Add       | Cat         | Paste      |
| Add Mult  | iplicity Fa | actor (_M) |

### **Netlist Syntax**

Models for the ADS circuit simulator have the following syntax:

```
model modelname modeltype [param=value]*
```

where model is a keyword, modelname is the user-defined name for the model and modeltype is one of the predefined model types (e.g., Diode, BJT, MOSFET). After these three required fields comes zero or more param=value pairs.

param is a model keyword and value is its user-assigned value. There is no required order for the param=value pairs. Model keywords that are not specified take on their default values. Refer to documentation for each model type to see the list of model parameters, their meanings and default values.

The model statement must be on a single line. Use the backslash "\" as a line continuation character. Instance and model parameter names are case sensitive; most (not all) model parameters have their first character capitalized and the rest are lower case. Scale factors (e.g.,  $p=10^{-12}$ ,  $n=10^{-9}$ ,  $u=10^{-6}$ ,  $m=10^{-3}$ ,  $k=10^{+3}$ ,  $M=10^{+6}$ ) can be used with numbers for numeric values. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

A netlist translator is available for translating models and subcircuits from Pspice, Hspice, and Spectre syntax to the form used by the ADS Circuit Simulator. Refer to the *Netlist Translator for SPICE and Spectre* (netlist) for more information.

### **Parameter Aliases**

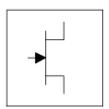
For compatibility with other simulators, some models accept two or more different keywords for the same parameter. For example, the Diode model accepts both model keywords Is and Js for the saturation current. In the documentation, the parameter Name column lists the aliases in parentheses after the main parameter name. The main parameter name is the one that appears in the ADS dialog box for the model.

### Tnom

All nonlinear device models have a parameter that specifies the temperature at which the model parameters were extracted. Normally called Tnom, some models may use Tref, Tr, or Tmeas. The default value for Tnom is specified on the Options item in the Tnom field. If Options.Tnom is not specified it defaults to 25°C. This is true for all nonlinear devices.

It is strongly suggested that the user explicitly set Tnom in each model and not depend on its default value. First, this provides a self-documenting model; other users of the device will not have to guess at what Tnom should be. Second, different users of the same model would get different results for the same circuit if they simulate with different values of Options.Tnom.

### **Temp and Trise**


The ADS circuit simulation allows the user to directly specify the temperature of each individual device instance. This is done with the device instance parameter Temp which is the device temperature in degrees Celsius. If it is not specified, it defaults to the ambient temperature set with *Options.Temp*, which defaults to 25° C.

For compatibility with other simulators, many of the nonlinear devices allow the user to specify Trise for each device instance, which specifies actual device temperature as an increase from ambient. It defaults to zero. The Trise instance value is used only if the Temp instance value is not specified. If the user does not specify Trise on the instance, a default value for Trise can also be specified in the model. It defaults to zero. The following shows the logic of how the instance temperature is calculated if it is not explicitly specified.

```
if Instance.Temp is not specified
if instance.Trise is not specified
Instance.Temp = Options.Temp \+ Model.Trise
else
Instance.Temp = Options.Temp \+ Instance.Trise
```

# JFET\_Model (Junction FET Model)

Symbol



#### **Parameters**

Model parameters must be specified in SI units.

#### Advanced Design System 2011.01 - Nonlinear Devices

| Name                              | Description                                                              | Units                | Default             |
|-----------------------------------|--------------------------------------------------------------------------|----------------------|---------------------|
| NFET                              | N-channel model: yes or no                                               | None                 | yes                 |
| PFET                              | P-channel model: yes or no                                               | None                 | no                  |
| Vto <sup>†</sup>                  | zero-bias threshold voltage                                              | V                    | -2.0                |
| Beta <sup>+</sup> , <sup>++</sup> | transconductance parameter                                               | A/(V×m) <sup>2</sup> | 1.0e-4              |
| Lambda                            | channel-length modulation                                                | 1/V                  | 0.0                 |
| Rd <sup>††</sup>                  | drain ohmic resistance                                                   | Ohm                  | fixed at 0          |
| Rs <sup>††</sup>                  | source ohmic resistance                                                  | Ohm                  | fixed at 0          |
| Is <sup>†</sup> , <sup>††</sup>   | gate-junction saturation current                                         | A                    | 1.0e-14             |
| Cgs <sup>†</sup>                  | zero-bias gate-source junction capacitance                               | F                    | 0.0                 |
| Cgd <sup>†</sup>                  | zero-bias gate-drain junction capacitance                                | F                    | 0.0                 |
| Pb <sup>+</sup>                   | gate-junction potential                                                  | V                    | 1.0                 |
| Fc                                | forward-bias junction capacitance coefficient                            | None                 | 0.5                 |
| Tnom                              | nominal ambient temperature at which these model parameters were derived | °C                   | 25                  |
| Trise                             | temperature rise above ambient                                           | °C                   | 0                   |
| Kf                                | flicker-noise coefficient                                                | None                 | 0.0                 |
| Af                                | flicker-noise exponent                                                   | None                 | 1.0                 |
| Imax                              | explosion current                                                        | A                    | 1.6                 |
| Imelt                             | explosion current similar to Imax; defaults to Imax (refer to Note 5)    |                      | defaults to<br>Imax |
| N                                 | gate P-N emission coefficient                                            | None                 | 1.0                 |
| Isr <sup>†</sup>                  | gate P-N recombination current parameter A                               |                      | 0.0                 |
| Nr                                | Isr emission coefficient                                                 |                      | 2.0                 |
| Alpha                             | ionization coefficient                                                   | 1/V                  | 0.0                 |
| Vk                                | ionization knee voltage                                                  | V                    | 0.0                 |
| М                                 | gate P-N grading coefficient                                             | None                 | 0.5                 |
| Vtotc                             | Vto temperature coefficient                                              | V/°C                 | 0.0                 |
| Betatce                           | Beta exponential temperature coefficient                                 | 1/°C                 | 0.0                 |
| Xti                               | temperature coefficient                                                  | None                 | 3.0                 |
| Ffe                               | flicker noise frequency exponent                                         | None                 | 1.0                 |
| Gdsnoise                          | generate noise from gds as well as gm: yes=1, no=0                       | None                 | no                  |
| wBvgs                             | gate-source reverse breakdown voltage (warning)                          | V                    | None                |
| wBvgd                             | gate-drain reverse breakdown voltage (warning)                           | V                    | None                |
| wBvds                             | drain-source breakdown voltage (warning)                                 | V                    | None                |
| wIdsmax                           | maximum drain-source current (warning)                                   | A                    | None                |
| wPmax                             | maximum power dissipation (warning)                                      | W                    | None                |
| AllParams                         | ms DataAccessComponent-based parameters None None                        |                      | None                |

scaled with Area specified with the JFET device.

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to the *Design Kit Development* (dkarch).

```
model modelname JFET [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by JFET components to refer to the model. The third parameter indicates the type of model; for this model it is *JFET*. Use either parameter NFET=yes or PFET=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

#### Example:

```
model U310 JFET \
  Vto=-3 Beta=3e-4 NFET=yes
```

#### Notes

- 1. This model supplies values for a JFET device.
- 2. JFET\_Model equations are based on the FET model of Shichman and Hodges. For more information on JFET\_Model, its parameters and equations, see [1].
- 3. The DC characteristics of a JFET\_Model are defined by:
  - Vto and Beta: determine variation in drain current with respect to gate voltage.
  - Lambda: determines the output conductances
  - Is: saturation current of the two gate junctions.
- 4. Charge storage is modeled by nonlinear depletion layer capacitance for both gate junctions. These capacitances vary as 1/Sqrt (Junction Voltage) and are defined by Cgs, Cgd and Pb.
- 5. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

6. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent (Data Access Component)* (ccsim)). Note that model parameters that are explicitly specified take precedence over those specified via AllParams.

#### **Equations/Discussions**

#### **Temperature Scaling**

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The saturation currents Is and Isr scale as:

$$Is^{NEW} = Is \times exp\left[\left(\frac{Temp}{Tnom} - 1\right)\frac{q \times Eg}{k \times N \times Temp} + \frac{Xti}{N} \times ln\left(\frac{Temp}{Tnom}\right)\right]$$
$$Isr^{NEW} = Isr \times exp\left[\left(\frac{Temp}{Tnom} - 1\right)\frac{q \times Eg}{k \times Nr \times Temp} + \frac{Xti}{Nr} \times ln\left(\frac{Temp}{Tnom}\right)\right]$$

The depletion capacitances Cgs and Cgd vary as:

$$Cgs^{NEW} = Cgs \left[ \frac{1 + M[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + M[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$
$$Cgd^{NEW} = Cgd \left[ \frac{1 + M[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + M[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

where  $\boldsymbol{\gamma}$  is a function of the junction potential and the energy gap variation with temperature.

The gate junction potential Pb varies as:

$$Pb^{NEW} = \frac{Temp}{Tnom} \times Pb + \frac{2k \times Temp}{q} \ln\left(\frac{n_i^{Tnom}}{n_i^{Temp}}\right)$$

where  ${\bf n}_{\rm i}$  is the intrinsic carrier concentration for silicon, calculated at the appropriate temperature.

The threshold voltage Vto varies as:

$$Vto^{NEW} = Vto + Vtotc(Temp - Tnom)$$

The transconductance Beta varies as:

Advanced Design System 2011.01 - Nonlinear Devices  

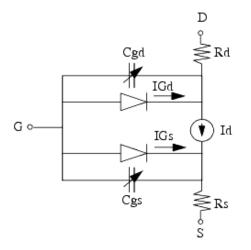
$$Beta^{NEW} = Beta \times 1.01^{Betatce(Temp - Tnom)}$$

#### **Noise Model**

Thermal noise generated by resistors Rs and Rd is characterized by the following spectral density:

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

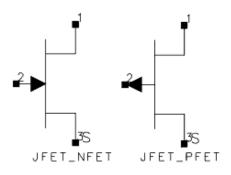
Channel noise and flicker noise (Kf, Af, Ffe) generated by the DC transconductance  $g_m$  and current flow from drain to source is characterized by the following spectral density:


$$\frac{\langle i_{DS}^2 \rangle}{\Delta f} = \frac{8kTg_m}{3} + Kf \frac{I_{DS}^{Af}}{f^{Ffe}}$$

If the model parameter *Gdsnoise=yes*, the channel noise is instead characterized by the following:

$$\frac{\langle i_{DS}^2 \rangle}{\Delta f} = \frac{8}{3} kT(g_m + g_{DS}) \left[\frac{3}{2} - \frac{min(Vds, Vdsat)}{2Vdsat}\right] + K_f \frac{I_{DS}^{Af}}{f_f^{Ffe}}$$

In the above expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge, Kf, Af, and Ffe are model parameters, f is the simulation frequency, and  $\Delta f$  is the noise bandwidth.


#### **Equivalent Circuit**



1. P. Antognetti and G. Massobrio. *Semiconductor device modeling with SPICE*, New York: McGraw-Hill, Second Edition 1993.

### JFET\_NFET, JFET\_PFET (Nonlinear Junction FETs, P-Channel, N-Channel)

#### **Symbol**



#### **Parameters**

| Name   | Description                                                           | Units | Default   |
|--------|-----------------------------------------------------------------------|-------|-----------|
| Model  | name of a JFET_Model                                                  | None  | JFETM1    |
| Area   | scaling factor that scales certain parameter values of the JFET_Model | None  | 1.0       |
| Region | DC operating region, 0=off, 1=on, 2=rev, 3=ohmic                      | None  | on        |
| Temp   | device operating temperature                                          | °C    | 25        |
| Trise  | temperature rise above ambient                                        | °C    | 0         |
| Mode   | simulation mode: Nonlinear, Linear, Standard (refer to note 2)        | None  | Nonlinear |
| Noise  | Noise generation option; yes=1, no=0                                  | None  | yes       |
| _M     | number of devices in parallel                                         | None  | 1         |

#### **Notes/Equations**

- The Temp parameter specifies the physical (operating) temperature of the device. If this is different than the temperature at which the model parameters are valid or extracted (specified by the Tnom parameter of the associated JFET\_Model) certain model parameters are scaled such that the device is simulated at its operating temperature. Refer to JFET\_Model (Junction FET Model) (ccnld) to see which parameter values are scaled.
- 2. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 3. The following table lists the DC operating point parameters that can be sent to the dataset.

**DC Operating Point Information** 

#### Advanced Design System 2011.01 - Nonlinear Devices

| Name  | Description                          | Units   |
|-------|--------------------------------------|---------|
| Id    | Drain current                        | amperes |
| Ig    | Gate current                         | amperes |
| Is    | Source current                       | amperes |
| Power | DC power dissipated                  | watts   |
| Gm    | Forward transconductance (dIds/dVgs) | siemens |
| Gds   | Output conductance (dIds/dVds)       | siemens |
| Cgs   | Gate-source capacitance              | farads  |
| Cgd   | Gate-drain capacitance               | farads  |
| Vgs   | Gate-source voltage                  | volts   |
| Vds   | Drain-source voltage                 | volts   |

4. This device has no default artwork associated with it.

#### References

- 1. SPICE2: A Computer Program to Simulate Semiconductor Circuits, University of California, Berkeley.
- 2. P. Antognetti and G. Massobrio. *Semiconductor Device Modeling with SPICE,* Second Edition, McGraw-Hill, Inc., 1993.

### r3 (Three-Terminal Nonlinear Diffused and Poly-Silicon Resistor and JFET Model and Instance)

#### **Model Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelName r3 [parm=value]\*

Example:

model Nch r3 rsh=100

#### **Model Parameters**

| Name (Alias) | Description                                                               | Units | Default    |
|--------------|---------------------------------------------------------------------------|-------|------------|
| Gender       | +1=N-type, -1=P-type                                                      |       | 1(n),-1(p) |
| Tnom         | Parameter measurement temperature                                         | deg C | 27         |
| Secured      | Secured model parameters                                                  |       | 0          |
| version      | model version                                                             |       | 1          |
| subversion   | model subversion                                                          |       | 0          |
| revision     | model revision                                                            |       | 0          |
| level        | model level                                                               |       | 1003       |
| type         | resistor type: -1=n-body and +1=p-body                                    |       | -1         |
| scale        | scale factor for instance geometries                                      |       | 1          |
| shrink       | shrink percentage for instance geometries                                 |       | 0          |
| tmin         | minimum ambient temperature                                               |       | -100       |
| tmax         | maximum ambient temperature                                               |       | 500        |
| rthresh      | threshold to switch end resistance to V=I*R form                          |       | 0.001      |
| gmin         | minimum conductance                                                       |       | 1e-12      |
| imax         | current at which to linearize diode currents                              |       | 1          |
| lmin         | minimum allowed drawn length                                              |       | 0          |
| lmax         | maximum allowed drawn length                                              |       | 9.9e+09    |
| wmin         | minimum allowed drawn width                                               |       | 0          |
| wmax         | maximum allowed drawn width                                               |       | 9.9e+09    |
| jmax         | maximum current density                                                   |       | 100        |
| vmax         | maximum voltage w.r.t. control node nc                                    |       | 9.9e+09    |
| tminclip     | clip minimum temperature                                                  |       | -100       |
| tmaxclip     | clip maximum temperature                                                  |       | 500        |
| rsh          | sheet resistance                                                          |       | 100        |
| xw           | width offset (total)                                                      |       | 0          |
| nwxw         | narrow width width offset correction coefficient                          |       | 0          |
| wexw         | webbing effect width offset correction coefficient (for dogboned devices) |       | 0          |
| fdrw         | finite doping width offset reference width                                |       | 1          |
| fdxwinf      | finite doping width offset width value for wide devices                   |       | 0          |
| xl           | length offset (total)                                                     |       | 0          |

#### Advanced Design System 2011.01 - Nonlinear Devices

| xlw      | Advanced Design System 2011.01 - Nonlinear Devices<br>width dependence of length offset | 0     |
|----------|-----------------------------------------------------------------------------------------|-------|
| dxlsat   | additional length offset for velocity saturation calculation                            | 0     |
| nst      | subthreshold slope parameter                                                            | 1     |
| ats      | saturation smoothing parameter                                                          | 0     |
| dfinf    | depletion factor for wide/long device                                                   | 0.01  |
| dfw      | depletion factor 1/w coefficient                                                        | 0     |
| dfl      | depletion factor 1/l coefficient                                                        | 0     |
| dfwl     | depletion factor 1/(w*l) coefficient                                                    | 0     |
| sw_dfgeo | switch for depletion factor geometry dependence: 0=drawn and 1=effective                | 1     |
| dp       | depletion potential                                                                     | 2     |
| ecrit    | velocity saturation critical field                                                      | 4     |
| ecorn    | velocity saturation corner field                                                        | 0.4   |
| du       | mobility reduction at ecorn                                                             | 0.02  |
| rc       | resistance per contact                                                                  | 0     |
| rcw      | width adjustment for contact resistance                                                 | 0     |
| fc       | depletion capacitance linearization factor                                              | 0.9   |
| isa      | diode saturation current per unit area                                                  | 0     |
| na       | ideality factor for isa                                                                 | 1     |
| са       | fixed capacitance per unit area                                                         | 0     |
| cja      | depletion capacitance per unit area                                                     | 0     |
| ра       | built-in potential for cja                                                              | 0.75  |
| ma       | grading coefficient for cja                                                             | 0.33  |
| aja      | smoothing parameter for cja                                                             | -0.5  |
| isp      | diode saturation current per unit perimeter                                             | 0     |
| np       | ideality factor for isp                                                                 | 1     |
| ср       | fixed capacitance per unit perimeter                                                    | 0     |
| сјр      | depletion capacitance per unit perimeter                                                | 0     |
| рр       | built-in potential for cjp                                                              | 0.75  |
| mp       | grading coefficient for cjp                                                             | 0.33  |
| ајр      | smoothing parameter for cjp                                                             | -0.5  |
| vbv      | breakdown voltage                                                                       | 0     |
| ibv      | current at breakdown                                                                    | 1e-06 |
| nbv      | ideality factor for breakdown current                                                   | 1     |
| kfn      | flicker noise coefficient (unit depends on afn)                                         | 0     |
| afn      | flicker noise current exponent                                                          | 2     |
| bfn      | flicker noise 1/f exponent                                                              | 1     |
| sw_fngeo | switch for flicker noise geometry calculation: 0=drawn and 1=effective                  | 0     |
| еа       | activation voltage for diode temperature dependence                                     | 1.12  |
| xis      | exponent for diode temperature dependence                                               | 3     |
| tc1      | resistance linear TC                                                                    | 0     |
| tc2      | resistance quadratic TC                                                                 | 0     |
| tc1l     | resistance linear TC length coefficient                                                 | 0     |
| tc2l     | resistance quadratic TC length coefficient                                              | 0     |
| tc1w     | resistance linear TC width coefficient                                                  | 0     |
| tc2w     | resistance quadratic TC width coefficient                                               | 0     |
| tc1rc    | contact resistance linear TC                                                            | 0     |
| tc2rc    | contact resistance quadratic TC                                                         | 0     |

| Advanced Design System 2 | 2011.01 - Nonlinear Devices |
|--------------------------|-----------------------------|
|--------------------------|-----------------------------|

| tc1kfn   | flicker noise coefficient linear TC                                    | 0     |
|----------|------------------------------------------------------------------------|-------|
| tc1vbv   | breakdown voltage linear TC                                            | 0     |
| tc2vbv   | breakdown voltage quadratic TC                                         | 0     |
| tc1nbv   | breakdown ideality factor linear TC                                    | 0     |
| gth0     | thermal conductance fixed component                                    | 1e+06 |
| gthp     | thermal conductance perimeter component                                | 0     |
| gtha     | thermal conductance area component                                     | 0     |
| gthc     | thermal conductance contact component                                  | 0     |
| cth0     | thermal capacitance fixed component                                    | 0     |
| cthp     | thermal capacitance perimeter component                                | 0     |
| ctha     | thermal capacitance area component                                     | 0     |
| cthc     | thermal capacitance contact component                                  | 0     |
| nsig_rsh | number of standard deviations of global variation for rsh              | 0     |
| nsig_w   | number of standard deviations of global variation for w                | 0     |
| nsig_l   | number of standard deviations of global variation for I                | 0     |
| sig_rsh  | global variation standard deviation for rsh (relative)                 | 0     |
| sig_w    | global variation standard deviation for w (absolute)                   | 0     |
| sig_l    | global variation standard deviation for I (absolute)                   | 0     |
| smm_rsh  | local variation standard deviation for rsh (relative)                  | 0     |
| smm_w    | local variation standard deviation for w (absolute)                    | 0     |
| smm_l    | local variation standard deviation for I (absolute)                    | 0     |
| sw_mmgeo | switch for flicker noise geometry calculation: 0=drawn and 1=effective | 0     |

**Instance Netlist Format** 

modelName [:Name] d g s b

Example

Nch:M1 2 1 0 w=10u l=0.9u

#### **Instance Parameters**

| Advanced Design System 2011.0 | 1 - Nonlinear Devices |
|-------------------------------|-----------------------|
|-------------------------------|-----------------------|

| Name (Alias)  | Description                                              | Units | Default |
|---------------|----------------------------------------------------------|-------|---------|
| Temp          | Device operating temperature                             | deg C | 25      |
| Trise (dtemp) | Temperature rise over ambient                            | deg C | 0       |
| Mode          | Nonlinear spectral model on/off                          |       | 1       |
| Noise         | Noise generation on/off                                  |       | 1       |
| М             | multiplicity factor                                      |       | 1       |
| w             | design width of resistor body                            |       | 1e-06   |
| I             | design length of resistor body                           |       | 1e-06   |
| wd            | dogbone width (total; not per side)                      |       | 0       |
| a1            | area of node n1 partition                                |       | 0       |
| p1            | perimeter of node n1 partition                           |       | 0       |
| c1            | # contacts at node n1 terminal                           |       | 0       |
| a2            | area of node n2 partition                                |       | 0       |
| p2            | perimeter of node n2 partition                           |       | 0       |
| c2            | # contacts at node n2 terminal                           |       | 0       |
| sw_noise      | switch for including noise: 0=no and 1=yes               |       | 1       |
| sw_et         | switch for self-heating: 0=no and 1=yes                  |       | 1       |
| sw_mman       | switch for mismatch analysis: 0=no and 1=yes             |       | 0       |
| nsmm_rsh      | number of standard deviations of local variation for rsh |       | 0       |
| nsmm_w        | number of standard deviations of local variation for w   |       | 0       |
| nsmm_l        | number of standard deviations of local variation for I   |       | 0       |

# **Devices and Models, MOS**

- ADS MOS (ADS Root MOS Transistor) (ccnld)
- ADS MOS Model (ADS Root MOS Transistor Model) (ccnld)
- BSIM1 Model (BSIM1 MOSFET Model) (ccnld)
- BSIM2 Model (BSIM2 MOSFET Model) (ccnld)
- BSIM3 Model (BSIM3 MOSFET Model) (ccnld)
- BSIM3SOI5 NMOS, BSIM3SOI5 PMOS (BSIM3 SOI Transistor with 5th Terminal, ExtBody Contact, NMOS, PMOS) (ccnld)
- BSIM3SOI Model (BSIM3 Silicon On Insulator MOSFET Model) (ccnld)
- BSIM3SOI NMOS, BSIM3SOI PMOS (BSIM3 SOI Transistor, Floating Body, NMOS, PMOS) (ccnld)
- BSIM4 Model (BSIM4 MOSFET Model) (ccnld)
- BSIM4 NMOS, BSIM4 PMOS (BSIM4 Transistor, NMOS, PMOS) (ccnld)
- bsimsoi (bsimsoi MOSFET Model and Instance) (ccnld)
- EE MOS1, EE MOS1P (EEsof Nonlinear MOSFETs, N-Channel, P-Channel) (ccnld)
- EE MOS1 (EEsof Nonlinear MOSFET, N-Channel) (ccnld)
- EE MOS1 Model (EEsof Nonlinear MOSFET Model) (ccnld)
- hisim2 (HiSIM 2 MOSFET Model and Instance) (ccnld)
- HiSIM\_HV (ccnld)
- *HiSIM\_HV\_1\_2* (ccnld)
- hisim (HiSIM MOSFET Model and Instance) (ccnld)
- LEVEL1 Model (MOSFET Level-1 Model) (ccnld)
- LEVEL2 Model (MOSFET Level-2 Model) (ccnld)
- LEVEL3 Model (MOSFET Level-3 Model) (ccnld)
- LEVEL3 MOD Model (Level-3 NMOD MOSFET Model) (ccnld)
- MM9 NMOS, MM9 PMOS (Philips MOS Model 9, NMOS, PMOS) (ccnld)
- MM11 NMOS, MM11 PMOS (Philips MOS Model 11 NMOS, PMOS) (ccnld)
- MM30 Model (Philips MOS Model 30) (ccnld)
- MM30 NMOS, MM30 PMOS (Philips MOS Model 30, NMOS, PMOS) (ccnld)
- MOSFET NMOS, MOSFET PMOS (Nonlinear MOSFETs, NMOS, PMOS) (ccnld)
- MOS Model9 Process (Philips MOS Model 9, Process Based) (ccnld)
- MOS Model9 Single (Philips MOS Model 9, Single Device) (ccnld)
- MOS Model11 Binned (Philips MOS Model 11, Binned) (ccnld)
- MOS Model11 Electrical (Philips MOS Model 11, Electrical) (ccnld)
- MOS Model11 Physical (Philips MOS Model 11, Physical) (ccnld)
- MOSVAR\_1\_1 (PSP-Based MOS Varactor Version 1.1 Model and Instance) (ccnld)
- MOSVAR (PSP-Based MOS Varactor Model) (ccnld)

### **Bin Model**

The BinModel in the MOS library allows you to sweep a parameter (usually a geometry, such as gate length), then enable the simulator to automatically select between different model cards. This alleviates the problem that one scalable model typically doesn't work for all sizes of a device.

For information on the use of the binning feature, refer to *BinModel* (ccsim) in *Introduction to Circuit Components*.

### **Multiplicity Parameter \_M**

The multiplicity feature provides a way to scale components or entire sub-circuits containing many components and sub-circuits. Given a component with a multiplicity value M, the simulator treats this component as if there were M such components all connected in parallel. Sub-circuits within sub-circuits will be appropriately scaled.

The \_M parameter is available at the component level as shown here. (For components that do not explicitly have a Multiplicity parameter, the same functionality can be achieved by placing the component in a sub-circuit and using the sub-circuit's Multiplicity parameter, as described next.)

| Select Parameter       | T. Nama V                     |
|------------------------|-------------------------------|
| Model=BJTM1            | I None 🗹                      |
| Area=                  | Equation Editor               |
| Region=                |                               |
| Temp=                  | Optimization/Statistics Setup |
| Mode=nonlinear         |                               |
| Noise=yes<br>M=        |                               |
|                        |                               |
| _M : Number of devices | in parallel, (default: 1)     |
|                        |                               |
| OK Apply               | Cancel Reset Help             |

For sub-circuits, the parameter is enabled by selecting **File** > **Design Parameters** from the Schematic window. In the dialog box, select the **Parameters** tab. To add the Multiplicity parameter, choose **Add Multiplicity Factor (\_M)**.

| General          | Parameters          |  |  |
|------------------|---------------------|--|--|
| Select Parameter |                     |  |  |
|                  |                     |  |  |
|                  |                     |  |  |
| Add              | Cut Paste           |  |  |
| Add Mult         | plicity Factor (_M) |  |  |

## **Netlist Syntax**

Models for the ADS circuit simulator have the following syntax:

```
model modelname modeltype [param=value]*
```

where model is a keyword, modelname is the user-defined name for the model and modeltype is one of the predefined model types (e.g., Diode, BJT, MOSFET). After these three required fields comes zero or more param=value pairs. param is a model keyword and value is its user-assigned value. There is no required order for the param=value pairs. Model keywords that are not specified take on their default values. Refer to documentation for each model type to see the list of model parameters, their meanings and default values.

The model statement must be on a single line. Use the backslash "\" as a line continuation character. The instance and model parameter names are case sensitive. Most, but not all, model parameters have their first character capitalized and the rest are lower case. Scale factors (e.g.,  $p=10^{-12}$ ,  $n=10^{-9}$ ,  $u=10^{-6}$ ,  $m=10^{-3}$ ,  $k=10^{+3}$ ,  $M=10^{+6}$ ) can be used with numbers for numeric values. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

A netlist translator is available for translating models and subcircuits from Pspice, Hspice, and Spectre syntax to the form used by the ADS Circuit Simulator. Refer to *Netlist Translator for SPICE and Spectre* (netlist) for more information.

### **Parameter Aliases**

For compatibility with other simulators, some models accept two or more different keywords for the same parameter. For example, the Diode model accepts both model keywords Is and Js for the saturation current. In the documentation, the parameter Name column lists the aliases in parentheses after the main parameter name. The main parameter name is the one that appears in the ADS dialog box for the model.

### Tnom

All nonlinear device models have a parameter that specifies the temperature at which the model parameters were extracted. Normally called Tnom, some models may use Tref, Tr, or Tmeas. The default value for Tnom is specified on the Options item in the Tnom field. If Options.Tnom is not specified it defaults to 25° C. This is true for all nonlinear devices.

It is strongly suggested that the user explicitly set Tnom in each model and not depend on its default value. First, this provides a self-documenting model; other users of the device will not have to guess at what Tnom should be. Second, different users of the same model would get different results for the same circuit if they simulate with different values of Options.Tnom.

### **Temp and Trise**

The ADS circuit simulation allows the user to directly specify the temperature of each individual device instance. This is done with the device instance parameter Temp which is the device temperature in degrees Celsius. If it is not specified, it defaults to the ambient temperature set with Options.Temp, which defaults to 25° C.

For compatibility with other simulators, many of the nonlinear devices allow the user to specify Trise for each device instance, which specifies actual device temperature as an increase from ambient. It defaults to zero. The Trise instance value is used only if the Temp instance value is not specified. If the user does not specify Trise on the instance, a default value for Trise can also be specified in the model. It defaults to zero. The following shows the logic of how the instance temperature is calculated if it is not explicitly specified.

```
if Instance.Temp is not specified
if instance.Trise is not specified
Instance.Temp = Options.Temp \+ Model.Trise
else
Instance.Temp = Options.Temp \+ Instance.Trise
```

### **MOSFET Parameter Nlev**


The MOSFET noise model is controlled by the model parameter Nlev. The following table shows which noise equations are used for each value of Nlev. These equations are always used for the BSIM1, BSIM2, LEVEL1, LEVEL2, LEVEL3 and LEVEL3\_MOD models. For a BSIM3, these equations can be used to override the standard BSIM3v3 noise equations only when Nlev  $\geq$  1.

#### **Equations Used for Nlev parameter**

| Nlev<br>Value | Channel Noise                                                                                                                                                                                                                 | Flicker Noise                                                         | Default                                  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|
| -1            | 8/3k T g <sub>m</sub>                                                                                                                                                                                                         | $\frac{K f \big  I_{DS} \big ^{Af}}{f^{Ffc}}$                         | ADS default (not usable with<br>BSIM3v3) |
| 0             | 8/3k T g <sub>m</sub>                                                                                                                                                                                                         | $\frac{Kf I_{DS} ^{Af}}{\overline{f^{Ffc}}C_{OX}L^2Eff}$              | Spice2G6                                 |
| 1             | 8/3k T g <sub>m</sub>                                                                                                                                                                                                         | $\frac{K f \left  I_{DS} \right ^{Af}}{f^{Ffc} C_{OX} W_{Eff  LEff}}$ | Hspice Nlev=1                            |
| 2             | 8/3k T g <sub>m</sub>                                                                                                                                                                                                         | $\frac{K f g_m^2}{f^{Ffc} C_{OX} W_{Eff L_{Eff}}}$                    | Hspice Nlev=2                            |
| 3             | $ \begin{array}{ c c c c c } \hline & \frac{8}{3}kTB \langle V_{GS} - V_T \rangle \frac{1 + a + a^2}{1 + a}Gdsnoi \\ 1 \text{ (pinchoff)} \\ a = 1 - V_{DS}/V_{DSAT} \text{ (linear)} \\ 0 \text{ (saturation)} \end{array} $ | $\frac{Kfg_m^2}{f^{Ffc}C_{OX}W_{EffL_{Eff}}}$                         | Hspice Nlev=3                            |

### ADS\_MOS (ADS\_Root MOS Transistor)

#### Symbol



#### **Parameters**

| Name  | Description                   | Units | Default  |
|-------|-------------------------------|-------|----------|
| Model | Model instance name           | None  | ADSMOSM1 |
| Wtot  | Total gate width              |       | 1.0e-4   |
| Ν     | number of gate fingers        | None  | 1        |
| _M    | number of devices in parallel | None  | 1        |

#### **Notes/Equations**

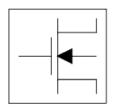
- 1. Wtot and N are optional scaling parameters that make it possible to scale the extracted model for different geometries.
- 2. Wtot is the *total* gate width-not the width per finger; N is the number of fingers. Therefore, the width per finger is Wtot / N. The scaling remains valid for ratios up to 5:1.
- 3. The parameters Ggs, Gds, Gmr, dQg\_dVgs, and the rest are the small-signal parameters of the device evaluated at the DC operating point. To be displayed, they must be listed among the OUTPUT\_VARS in the analysis component.

## ADS\_MOS\_Model (ADS\_Root MOS Transistor Model)

#### Symbol



#### **Parameters**


| Name     | Description                                    | Units | Default |
|----------|------------------------------------------------|-------|---------|
| File     | name of rawfile                                | None  | None    |
| Rs       | source resistance                              | None  | None    |
| Rg       | gate resistance                                | None  | None    |
| Rd       | drain resistance                               | None  | None    |
| Ls       | source inductance                              | None  | None    |
| Lg       | gate inductance                                | None  | None    |
| Ld       | drain inductance                               | None  | None    |
| AllParam | s Data Access Component (DAC) Based Parameters | None  | None    |

#### **Notes/Equations**

- 1. The values of Rs, Rg, Rd, Ls, Lg, and Ld are meant to override the extracted values stored in the data file named in the File parameter. Generally, these parameters should not be used.
- 2. Because this model is measurement-based, extrapolation warning messages may occur if the Newton iteration exceeds the measurement range. If these messages occur frequently, check that the measurement data is within the simulation range.
- 3. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via *AllParams*. Set *AllParams* to the DataAccessComponent instance name.
- 4. For a list of ADS Root Model references, refer to ADS\_Diode\_Model (ADS\_Root Diode Model) (ccnld).

# BSIM1\_Model (BSIM1 MOSFET Model)

#### Symbol



#### **Parameters**

| Name   | Description                                                             | Units                 | Default |
|--------|-------------------------------------------------------------------------|-----------------------|---------|
| NMOS   | Model type: yes or no                                                   | None                  | yes     |
| PMOS   | Model type: yes or no                                                   | None                  | no      |
| Idsmod | Ids model: 1=LEVEL1 2=LEVEL2 3=LEVEL3 4=BSIM1 5=BSIM2<br>6=NMOD 8=BSIM3 | None                  | 4       |
| Rsh    | drain and source diffusion sheet resistance                             | Ohm/sq                | 0.0     |
| Js     | Gate Saturation Current                                                 | A                     | 0.0     |
| Temp   | parameter measurement temperature                                       | °C                    | 25      |
| Trise  | Temperature rise over ambient                                           | °C                    | None    |
| Muz    | Surface Mobility at VDS=0 VGS=VTH                                       | cm²/(V×s)             | 600     |
| DI     | shortening of channel                                                   | um                    | 0.0     |
| Dw     | narrowing of channel                                                    | um                    | 0.0     |
| Vdd    | measurement drain bias range                                            | V                     | 5.0     |
| Vfb    | flat-band voltage                                                       | V                     | -0.3    |
| Lvfb   | Length Dependence of Vfb                                                | um×V                  | 0.0     |
| Wvfb   | Width Dependence of Vfb                                                 | um×V                  | 0.0     |
| Phi    | surface potential at strong inversion                                   | V                     | 0.6     |
| Lphi   | Length Dependence of Phi                                                | um×V                  | 0.0     |
| Wphi   | Width Dependence of Phi                                                 | um×V                  | 0.0     |
| K1     | body effect coefficient                                                 | V <sup>(1/2)</sup>    | 0.5     |
| Lk1    | Length Dependence of K1                                                 | um×V <sup>(1/2)</sup> | 0.0     |
| Wk1    | Width Dependence of K1                                                  | um×V <sup>(1/2)</sup> | 0.0     |
| К2     | drain-source depletion charge sharing coefficient                       | None                  | 0.0     |
| Lk2    | Length Dependence of K2                                                 | um                    | 0.0     |
| Wk2    | Width Dependence of K2                                                  | um                    | 0.0     |
| Eta    | Zero-Bias Drain-Induced Barrier Lowering Coefficient                    | None                  | 0.0     |
| Leta   | Length Dependence of Eta                                                | um                    | 0.0     |
| Weta   | Width Dependence of Eta                                                 | um                    | 0.0     |
| U0     | transverse field mobility degradation coefficient                       | 1/V                   | 670.0   |
| Lu0    | Length Dependence of U0                                                 | um/V                  | 0.0     |

Advanced Design System 2011.01 - Nonlinear Devices

| Wu0   | Width Dependence of U0                    | um/V                                 | 0.0   |
|-------|-------------------------------------------|--------------------------------------|-------|
| U1    | zero-bias velocity saturation coefficient | um/V                                 | 0.0   |
| Lu1   | Length Dependence of U1                   | um <sup>2</sup> /V                   | 0.0   |
| Wu1   | Width Dependence of U1                    | um²/V                                | 0.0   |
| X2mz  | sensitivity of mobility to substrate bias | cm <sup>2</sup> /(V <sup>2</sup> ×s) | 0.0   |
| Lx2mz | Length Dependence of X2mz                 | um×cm²/(V²<br>×s)                    | 0.0   |
| Wx2mz | Width Dependence of X2mz                  | um×cm²/(V²<br>×s)                    | 0.0   |
| X2e   | Sensitivity of of Eta to Substrate Bias   | 1/V                                  | -0.07 |
| Lx2e  | Length Dependence of X2e                  | um/V                                 | 0.0   |
| Wx2e  | Width Dependence of X2e                   | um/V                                 | 0.0   |
| X3e   | Sensitivity of of Eta to Drain Bias       | 1/V                                  | 0.0   |
| Lx3e  | Length Dependence of X3e                  | um/V                                 | 0.0   |
| Wx3e  | Width Dependence of X3e                   | um/V                                 | 0.0   |
| X2u0  | Sensitivity of U0 to Substrate Bias       | 1/V <sup>2</sup>                     | 0.0   |
| Lx2u0 | Length Dependence of X2u0                 | um/V <sup>2</sup>                    | 0.0   |
| Wx2u0 | Width Dependence of X2u0                  | um/V <sup>2</sup>                    | 0.0   |
| X2u1  | Sensitivity of U1 to Substrate Bias       | um/V <sup>2</sup>                    | 0.0   |
| Lx2u1 | Length Dependence of X2u1                 | um <sup>2</sup> /V <sup>2</sup>      | 0.0   |
| Wx2u1 | Width Dependence of X2u1                  | um <sup>2</sup> /V <sup>2</sup>      | 0.0   |
| X3u1  | Sensitivity of U1 to Drain Bias           | um/V <sup>2</sup>                    | 0.0   |
| Lx3u1 | Length Dependence of X3u1                 | um <sup>2</sup> /V <sup>2</sup>      | 0.0   |
| Wx3u1 | Width Dependence of X3u1                  | um <sup>2</sup> /V <sup>2</sup>      | 0.0   |
| Mus   | Mobility at VDS=VDD VGS=VTH               | cm <sup>2</sup> /(V×s)               | 600.0 |
| Lmus  | Length Dependence of Mus                  | um×cm <sup>2</sup><br>/(V×s)         | 0.0   |
| Wmus  | Width Dependence of Mus                   | um×cm <sup>2</sup><br>/(V×s)         | 0.0   |
| X2ms  | Sensitivity of Mus to Substrate Bias      | cm <sup>2</sup> /(V <sup>2</sup> ×s) | 0.0   |
| Lx2ms | Length Dependence of X2ms                 | um×cm²/(V²<br>×s)                    | 0.0   |
| Wx2ms | Width Dependence of X2ms                  | um×cm²/(V²<br>×s)                    | 0.0   |
| X3ms  | Sensitivity of Mus to Drain Bias          | cm <sup>2</sup> /(V <sup>2</sup> ×s) | 0.0   |
| Lx3ms | Length Dependence of X3ms                 | um×cm²/(V²<br>×s)                    | 0.0   |
| Wx3ms | Width Dependence of X3ms                  | um×cm²/(V²<br>×s)                    | 0.0   |
| N0    | Zero-Bias Subthreshold Slope Coefficient  | None                                 | None  |
| Ln0   | Length Dependence of N0                   | um                                   | 0.0   |
| Wn0   | Width Dependence of N0                    | um                                   | 0.0   |
| Nb    | Sens. of N0 to Substrate Bias             | 1/V                                  | 0.0   |
| Lnb   | Length Dependence of N0                   | um/V                                 | 0.0   |
| Wnb   | Width Dependence of N0                    | um/V                                 | 0.0   |
| Nd    | Sens. of N0 to Drain Bias                 | 1/V                                  | 0.0   |

| Lnd       | Length Dependence of N0                                               | um/V | 0.0                 |
|-----------|-----------------------------------------------------------------------|------|---------------------|
| Wnd       | Width Dependence of N0                                                | um/V | 0.0                 |
| Тох       | oxide thickness                                                       | um   | 0.02                |
| Cj        | Zero-bias Bulk Junction Capacitance                                   | F/m  | 0.0                 |
| Mj        | Junction grading coefficient                                          | None | 0.5                 |
| Cjsw      | Zero-bias Bulk Junction Sidewall Cap                                  | F/m  | 0.0                 |
| Mjsw      | Junction Sidewall grading coefficient                                 | None | 1/3                 |
| Pb        | Bulk Junction Potential                                               | V    | 0.8                 |
| Pbsw      | Bulk Side Junction Potential                                          | V    | 1.0                 |
| Cgso      | gate-source overlap capacitance, per channel width                    | F/m  | 0.0                 |
| Cgdo      | gate-drain overlap capacitance, per channel width                     | F/m  | 0.0                 |
| Cgbo      | gate-bulk overlap capacitance, per channel width                      | F/m  | 0.0                 |
| Xpart     | coefficient of channel charge share                                   | None | 1.0                 |
| Nlev      | Noise model level                                                     | None | -1                  |
| Gdwnoi    | Drain noise parameters for Nlev=3                                     | None | 1                   |
| Kf        | flicker noise coefficient                                             | None | 0.0                 |
| Af        | flicker noise exponent                                                | None | 1.0                 |
| Ffe       | flicker noise frequency exponent                                      | None | 1.0                 |
| Rg        | gate resistance                                                       | Ohm  | fixed at 0          |
| N         | bulk P-N emission coefficient                                         | None | 1.0                 |
| Imax      | explosion current                                                     | A    | 10.0                |
| Imelt     | explosion current similar to Imax; defaults to Imax (refer to Note 3) | A    | defaults to<br>Imax |
| wVsubfwd  | substrate junction forward bias (warning)                             | V    | None                |
| wBvsub    | substrate junction reverse breakdown voltage (warning)                | V    | None                |
| wBvg      | gate oxide breakdown voltage (warning)                                | V    | None                |
| wBvds     | drain-source breakdown voltage (warning)                              | V    | None                |
| wIdsmax   | maximum drain-source current (warning)                                | A    | None                |
| wPmax     | maximum power dissipation (warning)                                   | W    | None                |
| Acm       | Area Calculation Method                                               | None | 0                   |
| Hdif      | Length of heavily doped diffusion (ACM=2,3 only)                      | m    | 0.0                 |
| Ldif      | Length of lightly doped diffusion adjacent to gate (ACM=1,2 only)     | m    | 0.0                 |
| Wmlt      | Width diffusion layer shrink reduction factor                         | None | 1.0                 |
| Lmlt      | Gate length shrink factor                                             | None | 1.0                 |
| Xw        | Accounts for masking and etching effects                              | m    | 0.0                 |
| Rdc       | Additional drain resistance due to contact resistance                 | Ohm  | 0.0                 |
| Rsc       | Additional source resistance due to contact resistance                | Ohm  | 0.0                 |
| AllParams | DataAccessComponent-based parameters                                  | None | None                |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelname MOSFET Idsmod=4 [parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the

*modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOSFET*. Idsmod=4 is a required parameter that is used to tell the simulator to use the BSIM1 equations. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters tablethese names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

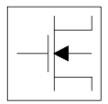
# Example:

model Nch4 MOSFET Idsmod=4 \
Vfb=-0.9 Muz=500 NMOS=yes

# **Notes/Equations**

- 1. This model supplies values for a MOSFET device.
- 2. BSIM1, BSIM2, and BSIM3 MOSFET models use the same parameters and parameter definitions as the BSIM models in SPICE3 (University of California-Berkeley).
- 3. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.


If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

4. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

# BSIM2\_Model (BSIM2 MOSFET Model)

# Symbol



#### **Parameters**

| Name   | Description                                                             | Units                  | Default |
|--------|-------------------------------------------------------------------------|------------------------|---------|
| NMOS   | Model type: yes or no                                                   | None                   | yes     |
| PMOS   | Model type: yes or no                                                   | None                   | no      |
| Idsmod | Ids model: 1=LEVEL1 2=LEVEL2 3=LEVEL3 4=BSIM1 5=BSIM2<br>6=NMOD 8=BSIM3 | None                   | 5       |
| Rsh    | drain and source diffusion sheet resistance                             | Ohm/sq                 | 0.0     |
| Js     | Gate Saturation Current                                                 | A/m <sup>2</sup>       | 0.0     |
| Mu0    | Surface Mobility at VDS=0 VGS=VTH                                       | cm <sup>2</sup> /(V×s) | 600     |
| DI     | shortening of channel                                                   | um                     | 0.0     |
| Dw     | narrowing of channel                                                    | um                     | 0.0     |
| Vdd    | Measurement Drain Bias Range                                            | V                      | 5.0     |
| Vgg    | Measurement Gate Bias Range                                             | V                      | 5.0     |
| Vbb    | Measurement Bulk Bias Range                                             | V                      | -5.0    |
| Temp   | parameter measurement temperature                                       | °C                     | 25      |
| Trise  | Temperature rise over ambient                                           | °C                     | None    |
| Тох    | oxide thickness                                                         | um                     | 0.02    |
| Cj     | Zero-bias Bulk Junction Capacitance                                     | F/m <sup>2</sup>       | 0.0     |
| Mj     | Junction grading coefficient                                            | None                   | 0.5     |
| Cjsw   | Zero-bias Bulk Junction Sidewall Cap                                    | F/m                    | 0.0     |
| Mjsw   | Junction Sidewall grading coefficient                                   | None                   | 1/3     |
| Pb     | Bulk Junction Potential                                                 | V                      | 0.8     |
| Pbsw   | Bulk Side Junction Potential                                            | V                      | 1.0     |
| Cgso   | gate-source overlap capacitance, per channel width                      | F/m                    | 0.0     |
| Cgdo   | gate-drain overlap capacitance, per channel width                       | F/m                    | 0.0     |
| Cgbo   | gate-bulk overlap capacitance, per channel width                        | F/m                    | 0.0     |
| Xpart  | coefficient of channel charge share                                     | None                   | 1.0     |
| Vfb    | flat-band voltage                                                       | V                      | -0.3    |
| Lvfb   | Length Dependence of Vfb                                                | um×V                   | 0.0     |
| Wvfb   | Width Dependence of Vfb                                                 | um×V                   | 0.0     |
| Phi    | surface potential at strong inversion                                   | V                      | 0.6     |

Advanced Design System 2011.01 - Nonlinear Devices

| Lphi  | Advanced Design System 2011.01 - Nonl<br>Length Dependence of Phi | um×V                                       | 0.0   |
|-------|-------------------------------------------------------------------|--------------------------------------------|-------|
| Wphi  | Width Dependence of Phi                                           | um×V                                       | 0.0   |
| K1    | body effect coefficient                                           | V <sup>(1/2)</sup>                         | 0.5   |
| Lk1   | Length Dependence of K1                                           | um×V <sup>(1/2)</sup>                      | 0.0   |
| Wk1   | Width Dependence of K1                                            | um×V <sup>(1/2)</sup>                      | 0.0   |
| К2    | drain-source depletion charge sharing coefficient                 | None                                       | 0.0   |
| Lk2   | Length Dependence of K2                                           | um                                         | 0.0   |
| Wk2   | Width Dependence of K2                                            | um                                         | 0.0   |
| Eta0  | Zero-Bias Drain-Induced Barrier Lowering Coefficient              | None                                       | 0.08  |
| Leta0 | Length Dependence of Eta                                          | um                                         | 0.0   |
| Weta0 | Width Dependence of Eta                                           | um                                         | 0.0   |
| Ua0   | transverse field mobility degradation coefficient                 | 1/V                                        | 670.0 |
| Lua0  | Length Dependence of Ua0                                          | um/V                                       | 0.0   |
| Wua0  | Width Dependence of Ua0                                           | um/V                                       | 0.0   |
| U10   | zero-bias velocity saturation coefficient                         | um/V                                       | 0.0   |
| Lu10  | Length Dependence of U10                                          | um²/V                                      | 0.0   |
| Wu10  | Width Dependence of U10                                           | um²/V                                      | 0.0   |
| Mu0b  | sensitivity of mobility to substrate bias                         | cm <sup>2</sup> /(V <sup>2</sup> ×s)       | 0.0   |
| Lmu0b | Length Dependence of X2mz                                         | um×cm²/(V²<br>×s)                          | 0.0   |
| Wmu0b | Width Dependence of X2mz                                          | um×cm²/(V²<br>×s)                          | 0.0   |
| Etab  | Sensitivity of of Eta to Substrate Bias                           | 1/V                                        | -0.07 |
| Letab | Length Dependence of X2e                                          | um/V                                       | 0.0   |
| Wetab | Width Dependence of X2e                                           | um/V                                       | 0.0   |
| Uab   | Sensitivity of Ua0 to Substrate Bias                              | 1/V <sup>2</sup>                           | 0.0   |
| Luab  | Length Dependence of Uab                                          | um/V <sup>2</sup>                          | 0.0   |
| Wuab  | Width Dependence of Uab                                           | um/V <sup>2</sup>                          | 0.0   |
| U1b   | Sensitivity of U1 to Substrate Bias                               | um/V <sup>2</sup>                          | 0.0   |
| Lu1b  | Length Dependence of U1b                                          | um <sup>2</sup> /V <sup>2</sup>            | 0.0   |
| Wu1b  | Width Dependence of U1b                                           | um <sup>2</sup> /V <sup>2</sup>            | 0.0   |
| U1d   | Sensitivity of U1 to Drain Bias                                   | um/V <sup>2</sup>                          | 0.0   |
| Lu1d  | Length Dependence of U1d                                          | um <sup>2</sup> /V <sup>2</sup>            | 0.0   |
| Wu1d  | Width Dependence of U1d                                           | um <sup>2</sup> /V <sup>2</sup>            | 0.0   |
| Mus0  | Mobility at VDS=VDD VGS=VTH                                       | cm <sup>2</sup> /(V×s)                     | 600.0 |
| Lmus0 | Length Dependence of Mus0                                         | um×cm <sup>2</sup><br>/(V×s)               | 0.0   |
| Wmus0 | Width Dependence of Mus0                                          | um×cm <sup>2</sup><br>/(V×s)               | 0.0   |
| Musb  | Sensitivity of Mus to Substrate Bias                              | cm <sup>2</sup> /(V <sup>2</sup> ×s)       | 0.0   |
| Lmusb | Length Dependence of Musb                                         | um×cm <sup>2</sup> /(V <sup>2</sup><br>×s) | 0.0   |
| Wmusb | Width Dependence of Musb                                          | um×cm²/(V²<br>×s)                          | 0.0   |
| N0    | Zero-Bias Subthreshold Slope Coefficient                          | None                                       | None  |

| Ln0   | Advanced Design System 2011.01 - Non<br>Length Dependence of N0 | um                                         | 0.0  |
|-------|-----------------------------------------------------------------|--------------------------------------------|------|
| Wn0   | Width Dependence of N0                                          | um                                         | 0.0  |
| Nb    | Sens. of N0 to Substrate Bias                                   | 1/V                                        | None |
| Lnb   | Length Dependence of N0                                         | um/V                                       | 0.0  |
| Wnb   | Width Dependence of N0                                          | um/V                                       | 0.0  |
| Nd    | Sens. of N0 to Drain Bias                                       | 1/V                                        | None |
| Lnd   | Length Dependence of N0                                         | um/V                                       | 0.0  |
| Wnd   | Width Dependence of N0                                          | um/V                                       | 0.0  |
| Mu20  | Empirical Parameter in Beta0 Expression                         | None                                       | None |
| Lmu20 | Length Dependence of Mu20                                       | um                                         | 0.0  |
| Wmu20 | Width Dependence of Mu20                                        | um                                         | 0.0  |
| Mu2b  | Sens. of Mu20 to Substrate Bias                                 | 1/V                                        | None |
| Lmu2b | Length Dependence of Mu2b                                       | um/V                                       | 0.0  |
| Wmu2b | Width Dependence of Mu2b                                        | um/V                                       | 0.0  |
| Mu2g  | Sens. of Mu20 to Gate Bias                                      | 1/V                                        | None |
| Lmu2g | Length Dependence of Mu2g                                       | um/V                                       | 0.0  |
| Wmu2g | Width Dependence of Mu2g                                        | um/V                                       | 0.0  |
| Mu30  | Linear Empirical Parameter in Beta0 Expression                  | cm <sup>2</sup> /(V <sup>2</sup> ×s)       | None |
| Lmu30 | Length Dependence of Mu30                                       | um×cm <sup>2</sup> /(V <sup>2</sup><br>×s) | 0.0  |
| Wmu30 | Width Dependence of Mu30                                        | um×cm <sup>2</sup> /(V <sup>2</sup><br>×s) | 0.0  |
| Mu3g  | Sens. of Mu3 to Gate Bias                                       | cm <sup>2</sup> /(V <sup>3</sup> ×s)       | 0.0  |
| Lmu3g | Length Dependence of Mu3g                                       | um×cm <sup>2</sup> /(V <sup>3</sup><br>×s) | 0.0  |
| Wmu3g | Width Dependence of Mu3g                                        | um×cm <sup>2</sup> /(V <sup>3</sup><br>×s) | 0.0  |
| Mu40  | Quadratic Empirical Parameter in Beta0 Expression               | cm <sup>2</sup> /(V <sup>3</sup> ×s)       | 0.0  |
| Lmu40 | Length Dependence of Mu40                                       | um×cm <sup>2</sup> /(V <sup>3</sup><br>×s) | 0.0  |
| Wmu40 | Width Dependence of Mu40                                        | um×cm <sup>2</sup> /(V <sup>3</sup><br>×s) | 0.0  |
| Mu4b  | Sens. of Mu4 to Substrate Bias                                  | cm <sup>2</sup> /(V <sup>4</sup> ×s)       | 0.0  |
| Lmu4b | Length Dependence of Mu4b                                       | um×cm <sup>2</sup> /(V <sup>4</sup><br>×s) | 0.0  |
| Wmu4b | Width Dependence of Mu4b                                        | um×cm <sup>2</sup> /(V <sup>4</sup><br>×s) | 0.0  |
| Mu4g  | Sens. of Mu4 to Gate Bias                                       | cm <sup>2</sup> /(V <sup>4</sup> ×s)       | 0.0  |
| Lmu4g | Length Dependence of Mu4g                                       | um×cm <sup>2</sup> /(V <sup>4</sup><br>×s) | 0.0  |
| Wmu4g | Width Dependence of Mu4g                                        | um×cm <sup>2</sup> /(V <sup>4</sup><br>×s) | 0.0  |
| Ub0   | Mobility Reduction to Vertical Field at Vbs=0                   | 1/V <sup>2</sup>                           | None |
| Lub0  | Length Dependence of Ub0                                        | um/V <sup>2</sup>                          | 0.0  |
| Wub0  | Width Dependence of Ub0                                         | um/V <sup>2</sup>                          | 0.0  |
| Ubb   | Sens. of Ub to Substrate Bias                                   |                                            |      |
|       |                                                                 | 1/V <sup>3</sup>                           | None |

| Wubb     | Advanced Design System 2011.01 - Nonlinear De<br>Width Dependence of Ubb | um/V <sup>3</sup> | 0.0                 |
|----------|--------------------------------------------------------------------------|-------------------|---------------------|
| Vof0     | Threshold Voltage Offset in the Subthreshold Region                      | V                 | 0.0                 |
| Lvof0    | Length Dependence of Vof0                                                | um×V              | 0.0                 |
| Wvof0    | Width Dependence ofVof0                                                  | um×V              | 0.0                 |
| Vob      | Sens. of Vof to Substrate Bias                                           | None              | 0.0                 |
| Lvob     | Length Dependence of Vob                                                 | um                | 0.0                 |
| Wvob     | Width Dependence of Vob                                                  | um                | 0.0                 |
| Vofd     | Sens. of Vof to Substrate Bias                                           | None              | 0.0                 |
| Lvofd    | Length Dependence of Vofd                                                | um                | 0.0                 |
| Wvofd    | Width Dependence of Vofd                                                 | um                | 0.0                 |
| Ai0      | Hot-Electron-Induced Rout Degradation Coeff.                             | None              | 0.0                 |
| Lai0     | Length Dependence of Ai0                                                 | um                | 0.0                 |
| Wai0     | Width Dependence of Ai0                                                  | um                | 0.0                 |
| Aib      | Sens. of Ai to Substrate Bias                                            | 1/V               | 0.0                 |
| Laib     | Length Dependence of Aib                                                 | um/V              | 0.0                 |
| Waib     | Width Dependence of Aib                                                  | um/V              | 0.0                 |
| Bi0      | Exponential Parameter of Rout Degradation                                | V                 | 0.0                 |
| Lbi0     | Length Dependence of Bi0                                                 | um×V              | 0.0                 |
| Wbi0     | Width Dependence of Bi0                                                  | um×V              | 0.0                 |
| Bib      | Sens. of Bi to Substrate Bias                                            | None              | 0.0                 |
| Lbib     | Length Dependence of Bib                                                 | um                | 0.0                 |
| Wbib     | Width Dependence of Bib                                                  | um                | 0.0                 |
| Vghigh   | Upper Bound for the Transition Region                                    | V                 | 0.15                |
| Lvghigh  | Length Dependence of Vghigh                                              | um×V              | 0.0                 |
| Wvghigh  | Width Dependence of Vghigh                                               | um×V              | 0.0                 |
| Vglow    | Upper Bound for the Transition Region                                    | V                 | -0.15               |
| Lvglow   | Length Dependence of Vglow                                               | um×V              | 0.0                 |
| Wvglow   | Width Dependence of Vglow                                                | um×V              | 0.0                 |
| Nlev     | Noise model level                                                        | None              | -1                  |
| Gdwnoi   | Drain noise parameters for Nlev=3                                        | None              | 1                   |
| Kf       | flicker noise coefficient                                                | None              | 0.0                 |
| Af       | flicker noise exponent                                                   | None              | 1.0                 |
| Ffe      | flicker noise frequency exponent                                         | None              | 1.0                 |
| Rg       | gate resistance                                                          | Ohm               | fixed at 0          |
| N        | bulk P-N emission coefficient                                            | None              | 1.0                 |
| Imax     | explosion current                                                        | A                 | 10.0                |
| Imelt    | explosion current similar to Imax; defaults to Imax (refer to Note 3)    | A                 | defaults to<br>Imax |
| wVsubfwd | substrate junction forward bias (warning)                                | V                 | None                |
| wBvsub   | substrate junction reverse breakdown voltage (warning)                   | V                 | None                |
| wBvg     | gate oxide breakdown voltage (warning)                                   | V                 | None                |
| wBvds    | drain-source breakdown voltage (warning)                                 | V                 | None                |
| wIdsmax  | maximum drain-source current (warning)                                   | A                 | None                |
| wPmax    | maximum power dissipation (warning)                                      | W                 | None                |
| Acm      | Area Calculation Method                                                  | None              | 0                   |
| Hdif     | Length of heavily doped diffusion (ACM=2,3 only)                         | m                 | 0.0                 |
| Ldif     | Length of lightly doped diffusion adjacent to gate (ACM=1,2 only)        | m                 | 0.0                 |

| Advanced Design System 2011.01 - Nonlinear Devices |                                                        |      |      |
|----------------------------------------------------|--------------------------------------------------------|------|------|
| Wmlt                                               | Width diffusion layer shrink reduction factor          | None | 1.0  |
| Lmlt                                               | Gate length shrink factor                              | None | 1.0  |
| Xw                                                 | Accounts for masking and etching effects               | m    | 0.0  |
| Rdc                                                | Additional drain resistance due to contact resistance  | Ohm  | 0.0  |
| Rsc                                                | Additional source resistance due to contact resistance | Ohm  | 0.0  |
| AllParam                                           | s DataAccessComponent-based parameters                 | None | None |

# **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelname MOSFET Idsmod=5 [parm=value]\*

The model statement starts with the required keyword *model* . It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOSFET* . Idsmod=5 is a required parameter that is used to tell the simulator to use the BSIM2 equations. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

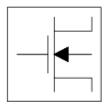
Example:

model Nch5 MOSFET Idsmod=5 \
Vfb=-0.9 Mu0=500 NMOS=yes

# **Notes/Equations**

- 1. This model supplies values for a MOSFET device.
- 2. BSIM1, BSIM2, and BSIM3 MOSFET models use the same parameters and parameter definitions as the BSIM models in SPICE3 (University of California-Berkeley).
- Imax and Imelt Parameters
   Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be
   specified in the device model or in the Options component; the device model value
   takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.


If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

4. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *ataAccessComponent (Data Access Component)* (ccsim)). Note that model

parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

# BSIM3\_Model (BSIM3 MOSFET Model)

#### Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name              | Description                                                             | Units            | Default             |
|-------------------|-------------------------------------------------------------------------|------------------|---------------------|
| NMOS              | Model type: yes or no                                                   | None             | yes                 |
| PMOS              | Model type: yes or no                                                   | None             | no                  |
| Idsmod            | Ids model: 1=LEVEL1 2=LEVEL2 3=LEVEL3 4=BSIM1<br>5=BSIM2 6=NMOD 8=BSIM3 | None             | 8                   |
| Version           | model version                                                           | None             | 3.30                |
| Mobmod            | mobility model selector                                                 | None             | 1                   |
| Capmod            | capacitance model selector                                              | None             | 3 (v3.2+), 2 (v3.1) |
| Noimod            | noise model selector                                                    | None             | 1                   |
| Paramchk          | model parameter checking selector                                       | None             | 0                   |
| Binunit           | bin unit selector                                                       | None             | 1                   |
| Rg                | gate resistance                                                         | Ohm              | fixed at 0          |
| Rsh               | drain and source diffusion sheet resistance                             | Ohm/sq           | 0.0                 |
| Nj                | bulk P-N emission coefficient                                           | None             | 1.0                 |
| Xti               | junction current temp. exponent                                         | None             | 3.0                 |
| Js                | gate saturation current                                                 | A/m <sup>2</sup> | 1.0e-4              |
| Jsw               | sidewall junction reverse saturation current; defaults to Js            | A/m <sup>2</sup> | defaults to Js      |
| Lintnoi           | Lint offset for noise calculation                                       | m                | 0.0                 |
| Lint <sup>†</sup> | length offset fitting parameter                                         | m                | 0.0                 |
| LI                | Length Reduction Parameter                                              | None             | 0.0                 |
| Lln               | Length Reduction Parameter                                              | None             | 1.0                 |
| Lw                | Length Reduction Parameter                                              | None             | 0.0                 |
| Lwn               | Length Reduction Parameter                                              | None             | 1.0                 |
| Lwl               | Length Reduction Parameter                                              | None             | 0.0                 |
| Wint              | Width Reduction Parameter                                               | None             | 0.0                 |
| WI                | Width Reduction Parameter                                               | None             | 0.0                 |

| Advanced Design S | System 2011.01 - | Nonlinear Devices |
|-------------------|------------------|-------------------|
|-------------------|------------------|-------------------|

|                  | Advanced Design System 2011.01                                            |                      |                  |
|------------------|---------------------------------------------------------------------------|----------------------|------------------|
| Wln              | Width Reduction Parameter                                                 | None                 | 1.0              |
| Ww               | Width Reduction Parameter                                                 | None                 | 0.0              |
| Wwn              | Width Reduction Parameter                                                 | None                 | 1.0              |
| Wwl              | Width Reduction Parameter                                                 | None                 | 0.0              |
| Tnom             | parameter measurement temp.                                               | °C                   | 25               |
| Trise            | temperature rise above ambient                                            | °C                   | None             |
| Тох              | oxide thickness                                                           | m                    | 1.5e-8           |
| Cj               | zero-bias bulk junction bottom capacitance                                | F/m <sup>2</sup>     | 5.0e-4           |
| Mj               | bulk junction bottom grading coefficient                                  | None                 | 0.5              |
| Cjsw             | zero-bias bulk junction sidewall capacitance                              | F/m                  | 5.0e-10          |
| Mjsw             | bulk junction sidewall grading coefficient                                | None                 | 1/3              |
| Pb               | bulk junction potential                                                   | V                    | 1.0              |
| Pbsw             | bulk sidewall junction potential                                          | V                    | 1.0              |
| Cjswg            | S/D (gate side) sidewall junction capacitance; defaults to Cjsw           | F/m                  | defaults to Cjsw |
| Mjswg            | S/D (gate side) sidewall junction grading coefficient; defaults to Mjsw   | None                 | defaults to Mjsw |
| Pbswg            | S/D (gate side) sidewall junction built-in potential;<br>defaults to Pbsw | V                    | defaults to Pbsw |
| Cgso             | gate-source overlap capacitance, per channel width                        | F/m                  | Calculated       |
| Cgdo             | gate-drain overlap capacitance, per channel width                         | F/m                  | Calculated       |
| Cgbo             | gate-bulk overlap capacitance, per channel length                         | F/m                  | Calculated       |
| Xpart            | Coefficient of Channel Charge Share                                       | None                 | 0.0              |
| Dwg <sup>†</sup> | coefficient of Weff's gate dependence                                     | m/V                  | 0.0              |
| Ldwg             | Length Dependence of Dwg                                                  | None                 | 0.0              |
| Wdwg             | Width Dependence of Dwg                                                   | None                 | 0.0              |
| Pdwg             | Cross Dependence of Dwg                                                   | None                 | 0.0              |
| Dwb <sup>†</sup> | coefficient of Weff's body dependence                                     | m/V <sup>(1/2)</sup> | 0.0              |
| Ldwb             | Length Dependence of Dwb                                                  | None                 | 0.0              |
| Wdwb             | Width Dependence of Dwb                                                   | None                 | 0.0              |
| Pdwb             | Cross Dependence of Dwb                                                   | None                 | 0.0              |
| Nch              | channel doping concentration                                              | 1/cm <sup>3</sup>    | 1.7e17           |
| Lnch             | Length Dependence of Nch                                                  | None                 | 0.0              |
| Wnch             | Width Dependence of Nch                                                   | None                 | 0.0              |
| Pnch             | Cross Dependence of Nch                                                   | None                 | 0.0              |
| Nsub             | substrate doping concentration                                            | 1/cm <sup>3</sup>    | 6.0e+16          |
| Lnsub            | Length Dependence of Nsub                                                 | None                 | 0.0              |
| Wnsub            | Width Dependence of Nsub                                                  | None                 | 0.0              |
| Pnsub            | Cross Dependence of Nsub                                                  | None                 | 0.0              |
| Ngate            | Gate Doping Concentration                                                 | 1/cm <sup>3</sup>    | Calculated       |
| Lngate           | Length Dependence of Ngate                                                | None                 | 0.0              |
| Wngate           | Width Dependence of Ngate                                                 | None                 | 0.0              |
| Pngate           | Cross Dependence of Ngate                                                 | None                 | 0.0              |
|                  | l .                                                                       |                      |                  |

Advanced Design System 2011.01 - Nonlinear Devices

| Lgamma1  <br>Wgamma1  <br>Pgamma1  <br>Gamma2  <br>Lgamma2   | body effect coefficient near interface<br>Length Dependence of Gamma1<br>Width Dependence of Gamma1<br>Cross Dependence of Gamma1<br>body effect coefficient in the bulk | V <sup>(1/2)</sup><br>None<br>None | Calculated<br>0.0<br>0.0  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|
| Wgamma1 M<br>Pgamma1 G<br>Gamma2 H<br>Lgamma2 H<br>Wgamma2 M | Width Dependence of Gamma1<br>Cross Dependence of Gamma1                                                                                                                 | None                               | 1                         |
| Pgamma1 (<br>Gamma2 t<br>Lgamma2 t<br>Wgamma2 t              | Cross Dependence of Gamma1                                                                                                                                               |                                    | 0 0                       |
| Gamma2 Lgamma2 L<br>Wgamma2 N                                | •                                                                                                                                                                        |                                    | 1                         |
| Lgamma2 L<br>Wgamma2 \                                       | body effect coefficient in the bulk                                                                                                                                      | None                               | 0.0                       |
| ل Wgamma2                                                    |                                                                                                                                                                          | V <sup>(1/2)</sup>                 | Calculated                |
|                                                              | Length Dependence of Gamma2                                                                                                                                              | None                               | 0.0                       |
| Pgamma2 (                                                    | Width Dependence of Gamma2                                                                                                                                               | None                               | 0.0                       |
|                                                              | Cross Dependence of Gamma2                                                                                                                                               | None                               | 0.0                       |
| Xt d                                                         | doping depth                                                                                                                                                             | m                                  | 1.55e-7                   |
| Lxt I                                                        | Length Dependence of Xt                                                                                                                                                  | None                               | 0.0                       |
| Wxt                                                          | Width Dependence of Xt                                                                                                                                                   | None                               | 0.0                       |
| Pxt (                                                        | Cross Dependence of Xt                                                                                                                                                   | None                               | 0.0                       |
| Vbm I                                                        | Maximum Body Voltage                                                                                                                                                     | V                                  | 3.0                       |
| Lbm l                                                        | Length Dependence of Vbm                                                                                                                                                 | None                               | 0.0                       |
| Wbm                                                          | Width Dependence of Vbm                                                                                                                                                  | None                               | 0.0                       |
| Pbm (                                                        | Cross Dependence of Vbm                                                                                                                                                  | None                               | 0.0                       |
| Vbx                                                          | Vth transition body voltage                                                                                                                                              | V                                  | calculated                |
| Lbx l                                                        | Length Dependence of Vbx                                                                                                                                                 | None                               | 0.0                       |
| Wbx                                                          | Width Dependence of Vbx                                                                                                                                                  | None                               | 0.0                       |
| Pbx (                                                        | Cross Dependence of Vbx                                                                                                                                                  | None                               | 0.0                       |
| Xj r                                                         | metallurgical junction depth                                                                                                                                             | m                                  | 0.15e-6                   |
| Lxj l                                                        | Length Dependence of Xj                                                                                                                                                  | None                               | 0.0                       |
| Wxj ۱                                                        | Width Dependence of Xj                                                                                                                                                   | None                               | 0.0                       |
| Pxj (                                                        | Cross Dependence of Xj                                                                                                                                                   | None                               | 0.0                       |
| U0 <sup>†</sup> I                                            | low-field mobility at T=Tnom                                                                                                                                             | cm <sup>2</sup> /V×s               | 670.0 (NMOS) 250.0 (PMOS) |
| L I                                                          | Length Dependence of U0                                                                                                                                                  | None                               | 0.0                       |
| w N                                                          | Width Dependence of U0                                                                                                                                                   | None                               | 0.0                       |
| P (                                                          | Cross Dependence of U0                                                                                                                                                   | None                               | 0.0                       |
| Vth0 <sup>†</sup> z                                          | zero-bias threshold voltage                                                                                                                                              | V                                  | 0.7 (NMOS) -0.7 (PMOS)    |
|                                                              | Length Dependence of Vth0                                                                                                                                                | None                               | 0.0                       |
|                                                              | Width Dependence of Vth0                                                                                                                                                 | None                               | 0.0                       |
|                                                              | Cross Dependence of Vth0                                                                                                                                                 | None                               | 0.0                       |
|                                                              | first order body effect coefficient <sup>†</sup>                                                                                                                         | V(1/2)                             | 0.5                       |
|                                                              | Length Dependence of K1                                                                                                                                                  | None                               | 0.0                       |
|                                                              | Width Dependence of K1                                                                                                                                                   | None                               | 0.0                       |
|                                                              | Cross Dependence of K1                                                                                                                                                   | None                               | 0.0                       |
|                                                              | second order body effect coefficient <sup>†</sup>                                                                                                                        | None                               | -0.0186                   |
|                                                              | Length Dependence of K2                                                                                                                                                  | None                               | 0.0                       |
|                                                              | Width Dependence of K2                                                                                                                                                   | None                               | 0.0                       |
|                                                              | Cross Dependence of K2                                                                                                                                                   | None                               | 0.0                       |
|                                                              | narrow width effect coefficient <sup>†</sup>                                                                                                                             | None                               | 80.0                      |
|                                                              | Length Dependence of K3                                                                                                                                                  | None                               | 0.0                       |

| Wk3                | Width Dependence of K3                          | None | 0.0     |
|--------------------|-------------------------------------------------|------|---------|
| Pk3                | Cross Dependence of K3                          | None | 0.0     |
| K3b                | Narrow Width Effect Coefficient <sup>+</sup>    | 1/V  | 0.0     |
| Lk3b               | Length Dependence of K3b                        | None | 0.0     |
| Wk3b               | Width Dependence of K3b                         | None | 0.0     |
| Pk3b               | Cross Dependence of K3b                         | None | 0.0     |
| W0 <sup>+</sup>    | narrow width effect W offset                    | m    | 2.5e-6  |
| Lw0                | Length Dependence of W0                         | None | 0.0     |
| Ww0                | Width Dependence of W0                          | None | 0.0     |
| Pw0                | Cross Dependence of W0                          | None | 0.0     |
| NIx                | Lateral Non-Uniform Doping Coeff.               | m    | 1.74e-7 |
| Lnlx               | Length Dependence of NIx                        | None | 0.0     |
| Wnlx               | Width Dependence of NIx                         | None | 0.0     |
| Pnlx               | Cross Dependence of NIx                         | None | 0.0     |
| Dvt0 <sup>†</sup>  | First Coeff. of Short-Channel Effect on Vth     | None | 2.2     |
| Ldvt0              | Length Dependence of Dvt0                       | None | 0.0     |
| Wdvt0              | Width Dependence of Dvt0                        | None | 0.0     |
| Pdvt0              | Cross Dependence of Dvt0                        | None | 0.0     |
| Dvt1 <sup>†</sup>  | Second Coeff. of Short-Channel Effect on Vth    | None | 0.53    |
| Ldvt1              | Length Dependence of Dvt1                       | None | 0.0     |
| Wdvt1              | Width Dependence of Dvt1                        | None | 0.0     |
| Pdvt1              | Cross Dependence of Dvt1                        | None | 0.0     |
| Dvt2 <sup>†</sup>  | Body-Bias Coeff. of Short-Channel Effect on Vth | 1/V  | -0.032  |
| Ldvt2              | Length Dependence of Dvt2                       | None | 0.0     |
| Wdvt2              | Width Dependence of Dvt2                        | None | 0.0     |
| Pdvt2              | Cross Dependence of Dvt2                        | None | 0.0     |
| Dvt0w <sup>†</sup> | First Coeff. of Narrow-Width Effect on Vth      | None | 0.0     |
| Ldvt0w             | Length Dependence of Dvt0w                      | None | 0.0     |
| Wdvt0w             | Width Dependence of Dvt0w                       | None | 0.0     |
| Pdvt0w             | Cross Dependence of Dvt0w                       | None | 0.0     |
| Dvt1w <sup>+</sup> | Second Coeff. of Narrow-Width Effect on Vth     | None | 5.3e6   |
| Ldvt1w             | Length Dependence of Dvt1w                      | None | 0.0     |
| Wdvt1w             | Width Dependence of Dvt1w                       | None | 0.0     |
| Pdvt1w             | Cross Dependence of Dvt1w                       | None | 0.0     |
| Dvt2w <sup>+</sup> | Body-Bias Coeff. of Narrow-Width Effect on Vth  | 1/V  | -0.032  |
| Ldvt2w             | Length Dependence of Dvt2w                      | None | 0.0     |
| Wdvt2w             | Width Dependence of Dvt2w                       | None | 0.0     |
| Pdvt2w             | Cross Dependence of Dvt2w                       | None | 0.0     |
| Ua <sup>†</sup>    | First Order Mobility Degradation Coeff.         | m/V  | 2.25e-9 |
| Lua                | Length Dependence of Ua                         | None | 0.0     |
| Wua                | Width Dependence of Ua                          | None | 0.0     |
| Pua                | Cross Dependence of Ua                          | None | 0.0     |

| Ub <sup>†</sup>    | Advanced Design System 20<br>Second Order Mobility Degradation Coeff. | $(m/V)^2$                 | 5.87e-19                                        |
|--------------------|-----------------------------------------------------------------------|---------------------------|-------------------------------------------------|
| Lub                | Length Dependence of Ub                                               | None                      | 0.0                                             |
| Wub                | Width Dependence of Ub                                                | None                      | 0.0                                             |
| Pub                | Cross Dependence of Ub                                                | None                      | 0.0                                             |
| Uc <sup>†</sup>    | Body-Bias Mobility Degradation Coeff.                                 | m/V <sup>2</sup><br>(1/V) | -0.0465 (Modmod=3), -<br>0.0465e-9 (Mobmod=1,2) |
| Luc                | Length Dependence of Uc                                               | None                      | 0.0                                             |
| Wuc                | Width Dependence of Uc                                                | None                      | 0.0                                             |
| Puc                | Cross Dependence of Uc                                                | None                      | 0.0                                             |
| Delta <sup>†</sup> | effective Vds parameter                                               | V                         | 0.01                                            |
| Ldelta             | Length Dependence of Delta                                            | None                      | 0.0                                             |
| Wdelta             | Width Dependence of Delta                                             | None                      | 0.0                                             |
| Pdelta             | Cross Dependence of Delta                                             | None                      | 0.0                                             |
| Rdsw <sup>†</sup>  | Parasitic Resistance per Unit Width                                   | Ohm×um                    | 0.0                                             |
| Lrdsw              | Length Dependence of Rdsw                                             | None                      | 0.0                                             |
| Wrdsw              | Width Dependence of Rdsw                                              | None                      | 0.0                                             |
| Prdsw              | Cross Dependence of Rdsw                                              | None                      | 0.0                                             |
| Prwg <sup>+</sup>  | Gate-Bias Effect on Parasitic Resistance                              | 1/V                       | 0.0                                             |
| Lprwg              | Length Dependence of Prwg                                             | None                      | 0.0                                             |
| Wprwg              | Width Dependence of Prwg                                              | None                      | 0.0                                             |
| Pprwg              | Cross Dependence of Prwg                                              | None                      | 0.0                                             |
| Prwb <sup>†</sup>  | Body Effect on Parasitic Resistance                                   | 1/V <sup>(1/2)</sup>      | 0.0                                             |
| Lprwb              | Length Dependence of Prwb                                             | None                      | 0.0                                             |
| Wprwb              | Width Dependence of Prwb                                              | None                      | 0.0                                             |
| Pprwb              | Cross Dependence of Prwb                                              | None                      | 0.0                                             |
| Wr <sup>†</sup>    | width dependence of Rds                                               | None                      | 1.0                                             |
| Lwr                | Length Dependence of Wr                                               | None                      | 0.0                                             |
| Wwr                | Width Dependence of Wr                                                | None                      | 0.0                                             |
| Pwr                | Cross Dependence of Wr                                                | None                      | 0.0                                             |
| Vsat <sup>†</sup>  | Saturation Velocity at Tnom                                           | m/s                       | 8.0e4                                           |
| Lvsat              | Length Dependence of Vsat                                             | None                      | 0.0                                             |
| Wvsat              | Width Dependence of Vsat                                              | None                      | 0.0                                             |
| Pvsat              | Cross Dependence of Vsat                                              | None                      | 0.0                                             |
| A0 <sup>+</sup>    | Bulk Charge Effect Coeff.                                             | None                      | 1.0                                             |
| La0                | Length Dependence of A0                                               | None                      | 0.0                                             |
| Wa0                | Width Dependence of A0                                                | None                      | 0.0                                             |
| Pa0                | Cross Dependence of A0                                                | None                      | 0.0                                             |
| Keta <sup>+</sup>  | Body-Bias Coeff. of the Bulk Charge Effect                            | 1/V                       | -0.047                                          |
| Lketa              | Length Dependence of Keta                                             | None                      | 0.0                                             |
| Wketa              | Width Dependence of Keta                                              | None                      | 0.0                                             |
| Pketa              | Cross Dependence of Keta                                              | None                      | 0.0                                             |
|                    | Gate Bias Coeff. of Abulk                                             | 1/V                       | 0.0                                             |

| Lags                 | Advanced Design System 2011.<br>Length Dependence of Ags | None                  | 0.0    |
|----------------------|----------------------------------------------------------|-----------------------|--------|
| Wags                 | Width Dependence of Ags                                  | None                  | 0.0    |
| Pags                 | Cross Dependence of Ags                                  | None                  | 0.0    |
| A1 <sup>+</sup>      | First Non-Saturation Factor                              | 1/V                   | 0.0    |
| La1                  | Length Dependence of A1                                  | None                  | 0.0    |
| Wa1                  | Width Dependence of A1                                   | None                  | 0.0    |
| Pa1                  | Cross Dependence of A1                                   | None                  | 0.0    |
| A2 <sup>†</sup>      | Second Non-Saturation Factor                             | None                  | 1.0    |
| La2                  | Length Dependence of A2                                  | None                  | 0.0    |
| Wa2                  | Width Dependence of A2                                   | None                  | 0.0    |
| Pa2                  | Cross Dependence of A2                                   | None                  | 0.0    |
| B0 <sup>+</sup>      | Bulk Charge Effect Coeff. for Channel Width              | m                     | 0.0    |
| Lb0                  | Length Dependence of B0                                  | None                  | 0.0    |
| Wb0                  | Width Dependence of B0                                   | None                  | 0.0    |
| Pb0                  | Cross Dependence of B0                                   | None                  | 0.0    |
| B1 <sup>†</sup>      | Bulk Charge Effect Width Offset                          | m                     | 0.0    |
| Lb1                  | Length Dependence of B1                                  | None                  | 0.0    |
| Wb1                  | Width Dependence of B1                                   | None                  | 0.0    |
| Pb1                  | Cross Dependence of B1                                   | None                  | 0.0    |
| Alpha0 <sup>+</sup>  | First Parameter of Impact Ionization Current             | m/V                   | 0.0    |
| Lalpha0              | Length Dependence of Alpha0                              | None                  | 0.0    |
| Walpha0              | Width Dependence of Alpha0                               | None                  | 0.0    |
| Palpha0              | Cross Dependence of Alpha0                               | None                  | 0.0    |
| Beta0 <sup>+</sup>   | First Parameter of Impact Ionization Current             | m/V                   | 30.0   |
| Lbeta0               | Length Dependence of Beta0                               | None                  | 0.0    |
| Wbeta0               | Width Dependence of Beta0                                | None                  | 0.0    |
| Pbeta0               | Cross Dependence of Beta0                                | None                  | 0.0    |
| Voff <sup>†</sup>    | Offset Voltage in Subthreshold Region                    | V                     | -0.08  |
| Lvoff                | Length Dependence of Voff                                | None                  | 0.0    |
| Wvoff                | Width Dependence of Voff                                 | None                  | 0.0    |
| Pvoff                | Cross Dependence of Voff                                 | None                  | 0.0    |
| Nfactor <sup>+</sup> | Subthreshold Swing Factor                                | None                  | 1.0    |
| Lnfactor             | Length Dependence of Nfactor                             | None                  | 0.0    |
| Wnfactor             | Width Dependence of Nfactor                              | None                  | 0.0    |
| Pnfactor             | Cross Dependence of Nfactor                              | None                  | 0.0    |
| Cdsc <sup>†</sup>    | Drain/Source and Channel Coupling Capacitance            | F/m <sup>2</sup>      | 2.4e-4 |
| Lcdsc                | Length Dependence of Cdsc                                | None                  | 0.0    |
| Wcdsc                | Width Dependence of Cdsc                                 | None                  | 0.0    |
| Pcdsc                | Cross Dependence of Cdsc                                 | None                  | 0.0    |
| Cdscb <sup>†</sup>   | Body-Bias Dependence of Cdsc                             | F/(V×m <sup>2</sup> ) | 0.0    |
| Lcdscb               | Length Dependence of Cdscb                               | None                  | 0.0    |

| Wcdscb             | Advanced Design System 2011.01<br>Width Dependence of Cdscb | - Nonlinear<br>None      | Devices<br>0.0    |
|--------------------|-------------------------------------------------------------|--------------------------|-------------------|
| Pcdscb             | Cross Dependence of Cdscb                                   | None                     | 0.0               |
| Cdscd <sup>†</sup> | Drain-Bias Dependence of Cdsc                               | F/(V×m <sup>2</sup><br>) | 0.0               |
| Lcdscd             | Length Dependence of Cdscd                                  | None                     | 0.0               |
| Wcdscd             | Width Dependence of Cdscd                                   | None                     | 0.0               |
| Pcdscd             | Cross Dependence of Cdscd                                   | None                     | 0.0               |
| Cit <sup>†</sup>   | Capacitance due to Interface Charge                         | F/m <sup>2</sup>         | 0.0               |
| Lcit               | Length Dependence of Cit                                    | None                     | 0.0               |
| Wcit               | Width Dependence of Cit                                     | None                     | 0.0               |
| Pcit               | Cross Dependence of Cit                                     | None                     | 0.0               |
| Eta0 <sup>+</sup>  | Subthreshold Region DIBL Coeff.                             | None                     | 0.08              |
| Leta0              | Length Dependence of Eta0                                   | None                     | 0.0               |
| Weta0              | Width Dependence of Eta0                                    | None                     | 0.0               |
| Peta0              | Cross Dependence of Eta0                                    | None                     | 0.0               |
| Etab <sup>†</sup>  | Subthreshold Region DIBL Coeff.                             | None                     | -0.07             |
| Letab              | Length Dependence of Peta0                                  | None                     | 0.0               |
| Wetab              | Width Dependence of Peta0                                   | None                     | 0.0               |
| Petab              | Cross Dependence of Peta0                                   | None                     | 0.0               |
| Dsub <sup>†</sup>  | DIBL Coeff. in Subthreshold Region; defaults to Drout       | None                     | defaults to Drout |
| Ldsub              | Length Dependence of Dsub                                   | None                     | 0.0               |
| Wdsub              | Width Dependence of Dsub                                    | None                     | 0.0               |
| Pdsub              | Cross Dependence of Dsub                                    | None                     | 0.0               |
| Drout <sup>†</sup> | DIBL Coeff. of Output Resistance                            | None                     | 0.56              |
| Ldrout             | Length Dependence of Drout                                  | None                     | 0.0               |
| Wdrout             | Width Dependence of Drout                                   | None                     | 0.0               |
| Pdrout             | Cross Dependence of Drout                                   | None                     | 0.0               |
| Pclm <sup>†</sup>  | Channel Length Modulation Coeff.                            | None                     | 1.3               |
| Lpclm              | Length Dependence of PcIm                                   | None                     | 0.0               |
| Wpclm              | Width Dependence of Pclm                                    | None                     | 0.0               |
| Ppclm              | Cross Dependence of Pclm                                    | None                     | 0.0               |
| Pdiblc1            | Drain Induced Barrier Lowering Effect Coeff. 1              | None                     | 0.39              |
| Lpdiblc1           | Length Dependence of Pdiblc1                                | None                     | 0.0               |
| Wpdiblc1           | Width Dependence of Pdiblc1                                 | None                     | 0.0               |
| Ppdiblc1           | Cross Dependence of Pdiblc1                                 | None                     | 0.0               |
| Pdiblc2            | Drain Induced Barrier Lowering Effect Coeff. 2              | None                     | 0.0086            |
| Lpdiblc2           | Length Dependence of Pdiblc2                                | None                     | 0.0               |
| Wpdiblc2           | Width Dependence of Pdiblc2                                 | None                     | 0.0               |
| Ppdiblc2           | Cross Dependence of Pdiblc2                                 | None                     | 0.0               |
| Pdiblcb            | Body-Effect on Drain Induced Barrier Lowering               | 1/V                      | 0.0               |
| Lpdiblcb           | Length Dependence of Pdiblcb                                | None                     | 0.0               |
| Wpdiblcb           | Width Dependence of Pdiblcb                                 | None                     | 0.0               |
| Ppdiblcb           | Cross Dependence of Pdiblcb                                 | None                     | 0.0               |

Advanced Design System 2011.01 - Nonlinear Devices

| Pscbe1  | Advanced Design System Substrate Current Body-Effect Coeff. 1 | V/m                | 4.24e8                                      |  |  |
|---------|---------------------------------------------------------------|--------------------|---------------------------------------------|--|--|
|         |                                                               |                    |                                             |  |  |
| Lpscbe1 | Length Dependence of Pscbe1                                   | None               | 0.0                                         |  |  |
| Wpscbe1 | Width Dependence of Pscbe1                                    | None               | 0.0                                         |  |  |
| Ppscbe1 | Cross Dependence of Pscbe1                                    | None               | 0.0                                         |  |  |
| Pscbe2  | Substrate Current Body-Effect Coeff. 2                        | m/V                | 1.0e-5                                      |  |  |
| Lpscbe2 | Length Dependence of Pscbe2                                   | None               | 0.0                                         |  |  |
| Wpscbe2 | Width Dependence of Pscbe2                                    | None               | 0.0                                         |  |  |
| Ppscbe2 | Cross Dependence of Pscbe2                                    | None               | 0.0                                         |  |  |
| Pvag    | Gate voltage dependence of Rout                               | None               | 0.0                                         |  |  |
| Lpvag   | Length Dependence of Pvag                                     | None               | 0.0                                         |  |  |
| Wpvag   | Width Dependence of Pvag                                      | None               | 0.0                                         |  |  |
| Ppvag   | Cross Dependence of Pvag                                      | None               | 0.0                                         |  |  |
| Ute     | Mobility Temperature Exponent                                 | None               | -1.5                                        |  |  |
| Lute    | Length Dependence of Ute                                      | None               | 0.0                                         |  |  |
| Wute    | Width Dependence of Ute                                       | None               | 0.0                                         |  |  |
| Pute    | Cross Dependence of Ute                                       | None               | 0.0                                         |  |  |
| At      | Temperature Coefficient of Vsat                               | m/s                | 3.3e4                                       |  |  |
| Lat     | Length Dependence of At                                       | None               | 0.0                                         |  |  |
| Wat     | Width Dependence of At                                        | None               | 0.0                                         |  |  |
| Pat     | Cross Dependence of At                                        | None               | 0.0                                         |  |  |
| Ua1     | Temperature Coefficient of Ua                                 | m/V                | 4.31e-9                                     |  |  |
| Lua1    | Length Dependence of Ua1                                      | None               | 0.0                                         |  |  |
| Wua1    | Width Dependence of Ua1                                       | None               | 0.0                                         |  |  |
| Pua1    | Cross Dependence of Ua1                                       | None               | 0.0                                         |  |  |
| Ub1     | Temperature Coefficient of Ub                                 | (m/V) <sup>2</sup> | -7.61e-18                                   |  |  |
| Lub1    | Length Dependence of Ub1                                      | None               | 0.0                                         |  |  |
| Wub1    | Width Dependence of Ub1                                       | None               | 0.0                                         |  |  |
| Pub1    | Cross Dependence of Ub1                                       | None               | 0.0                                         |  |  |
| Uc1     | Temperature Coefficient of Uc                                 | 1/V                | -0.056 (Mobmod=3), -0.056e-<br>(Mobmod=1,2) |  |  |
| Luc1    | Length Dependence of Uc1                                      | None               | 0.0                                         |  |  |
| Wuc1    | Width Dependence of Uc1                                       | None               | 0.0                                         |  |  |
| Puc1    | Cross Dependence of Uc1                                       | None               | 0.0                                         |  |  |
| Kt1     | Temperature Coefficient of Vth                                | V                  | -0.11                                       |  |  |
| Lkt1    | Length Dependence of Kt1                                      | None               | 0.0                                         |  |  |
| Wkt1    | Width Dependence of Kt1                                       | None               | 0.0                                         |  |  |
| Pkt1    | Cross Dependence of Kt1                                       | None               | 0.0                                         |  |  |
| Kt1l    | Channel Length Sensitivity of Kt1                             | V×m                | 0.0                                         |  |  |
| Lkt1l   | Length Dependence oKt1l 1                                     | None               | 0.0                                         |  |  |
| Wkt1l   | Width Dependence of Kt1l                                      | None               | 0.0                                         |  |  |
|         | · ·                                                           |                    | 0.0                                         |  |  |
| Pkt1l   | Cross Dependence of Kt1l                                      | None               |                                             |  |  |
| Kt2     | Body Coefficient of Kt1                                       | None               | 0.022                                       |  |  |
| Lkt2    | Length Dependence of Kt2                                      | None               | 0.0                                         |  |  |

| Wkt2    | Advanced Design System 2011.0<br>Width Dependence of Kt2                          | None        | 0.0              |
|---------|-----------------------------------------------------------------------------------|-------------|------------------|
| Pkt2    | Cross Dependence of Kt2                                                           | None        | 0.0              |
| Prt     | Temperature Coefficient of Rdsw                                                   | Ohm ×<br>um | 0.0              |
| Lprt    | Length Dependence of Prt                                                          | None        | 0.0              |
| Wprt    | Width Dependence of Prt                                                           | None        | 0.0              |
| Pprt    | Cross Dependence of Prt                                                           | None        | 0.0              |
| Cgsl    | Light Doped Source-Gate Overlap Capacitance                                       | F/m         | 0.0              |
| Lcgsl   | Length Dependence of Cgsl                                                         | None        | 0.0              |
| Wcgsl   | Width Dependence of Cgsl                                                          | None        | 0.0              |
| Pcgsl   | Cross Dependence of Cgsl                                                          | None        | 0.0              |
| Cgdl    | Light Doped Drain-Gate Overlap Capacitance                                        | F/m         | 0.0              |
| Lcgdl   | Length Dependence of Cgdl                                                         | None        | 0.0              |
| Wcgdl   | Width Dependence of Cgdl                                                          | None        | 0.0              |
| Pcgdl   | Cross Dependence of Cgdl                                                          | None        | 0.0              |
| Ckappa  | Coeff. for Light Doped Overlap Capacitance                                        | F/m         | 0.6              |
| Lckappa | Length Dependence of Ckappa                                                       | None        | 0.0              |
| Wckappa | Width Dependence of Ckappa                                                        | None        | 0.0              |
| Pckappa | Cross Dependence of Ckappa                                                        | None        | 0.0              |
| Cf      | Fringing Field Capacitance                                                        | F/m         | calculated       |
| Lcf     | Length Dependence of Cf                                                           | None        | 0.0              |
| Wcf     | Width Dependence of Cf                                                            | None        | 0.0              |
| Pcf     | Cross Dependence of Cf                                                            | None        | 0.0              |
| Clc     | Constant Term for the Short Channel C-V Model                                     | m           | 0.1e-6           |
| Lclc    | Length Dependence of Clc                                                          | None        | 0.0              |
| Wclc    | Width Dependence of Clc                                                           | None        | 0.0              |
| Pclc    | Cross Dependence of Clc                                                           | None        | 0.0              |
| Cle     | Exponential Term for the Short Channel C-V Model                                  | None        | 0.6              |
| Lcle    | Length Dependence of Cle                                                          | None        | 0.0              |
| Wcle    | Width Dependence of Cle                                                           | None        | 0.0              |
| Pcle    | Cross Dependence of Cle                                                           | None        | 0.0              |
| Dlc     | Length Offset Fitting Parameter from C-V Model;<br>defaults to Lint               | m           | defaults to Lint |
| Dwc     | Width Offset Fitting Parameter from C-V Model;<br>defaults to Wint                | m           | defaults to Wint |
| Vfbcv   | flat-band voltage parameter for capmod=0 only                                     | V           | -1.0             |
| Lvfbcv  | Length Dependence of Vfbcv                                                        | None        | 0.0              |
| Wvfbcv  | Width Dependence of Vfbcv                                                         | None        | 0.0              |
| Pvfbcv  | Cross Dependence of Vfbcv                                                         | None        | 0.0              |
| Toxm    | gate oxide thickness tox value at which parameters are extracted; defaults to tox | m           | defaults to tox  |
| Vfb     | DC flat-band voltage                                                              | V           | calculated       |
| Lvfb    | Length Dependence of Vfb                                                          | None        | 0.0              |
| Wvfb    | Width Dependence of Vfb                                                           | None        | 0.0              |

| Pvfb              | Cross Dependence of Vfb                                   | None               | 0.0             |  |  |
|-------------------|-----------------------------------------------------------|--------------------|-----------------|--|--|
| Noff              | CV Turn on/off                                            | None               | 1.0             |  |  |
| Lnoff             | Length Dependence of Noff                                 | None               | 0.0             |  |  |
| Wnoff             | Width Dependence of Noff                                  | None               | 0.0             |  |  |
| Pnoff             | Cross Dependence of Noff                                  | None               | 0.0             |  |  |
| Voffcv            | CV Lateral Shift Parameter                                | V                  | 0.0             |  |  |
| Lvoffcv           | Length Dependence of Voffcv                               | None               | 0.0             |  |  |
| Wvoffcv           | Width Dependence of Voffcv                                | None               | 0.0             |  |  |
| Pvoffcv           | Cross Dependence of Voffcv                                | None               | 0.0             |  |  |
| Ijth              | diode limiting current                                    | None               | 0.1             |  |  |
| Alpha1            | substrate current                                         | 1/V                | 0.0             |  |  |
| Lalpha1           | Length Dependence of Alpha1                               | None               | 0.0             |  |  |
| Walpha1           | Width Dependence of Alpha1                                | None               | 0.0             |  |  |
| Palpha1           | Cross Dependence of Alpha1                                | None               | 0.0             |  |  |
| Acde <sup>†</sup> | Exponential Coefficient for Finite Charge Thickness       | m/V                | 1.0             |  |  |
| Lacde             | Length Dependence of Acde                                 | None               | 0.0             |  |  |
| Wacde             | Width Dependence of Acde                                  | None               | 0.0             |  |  |
| Pacde             | Cross Dependence of Acde                                  | None               | 0.0             |  |  |
| Moin <sup>†</sup> | coefficient for the gate-bias dependent surface potential | V <sup>(1/2)</sup> | 15.0            |  |  |
| Lmoin             | Length Dependence of Moin                                 | None               | 0.0             |  |  |
| Wmoin             | Width Dependence of Moin                                  | None               | 0.0             |  |  |
| Pmoin             | Cross Dependence of Moin                                  | None               | 0.0             |  |  |
| Tpb               | Temperature Coefficient of Pb                             | V/K                | 0.0             |  |  |
| Tpbsw             | Temperature Coefficient of Pbsw                           | V/K                | 0.0             |  |  |
| Tpbswg            | Temperature Coefficient of Pbswg                          | V/K                | 0.0             |  |  |
| Тсј               | Temperature Coefficient of Cj                             | 1/K                | 0.0             |  |  |
| Tcjsw             | Temperature Coefficient of Cjsw                           | 1/K                | 0.0             |  |  |
| Tcjswg            | Temperature Coefficient of Cjswg                          | 1/K                | 0.0             |  |  |
| Llc               | Length Reduction Parameter for CV; defaults to LI         | None               | defaults to LI  |  |  |
| Lwc               | Length Reduction Parameter for CV; defaults to Lw         | None               | defaults to Lw  |  |  |
| Lwlc              | Length Reduction Parameter for CV; defaults to Lwl        | None               | defaults to Lwl |  |  |
| WIc               | Width Reduction Parameter for CVt; defaults to WI         | None               | defaults to WI  |  |  |
| Wwc               | Width Reduction Parameter for CV; defaults to Ww          | None               | defaults to Ww  |  |  |
| Wwlc              | Width Reduction Parameter for CV; defaults to Wwl         | None               | defaults to Wwl |  |  |
| Elm               | Non-Quasi Static Elmore Constant                          | None               | 5.0             |  |  |
| Lelm              | Length Dependence of Elm                                  | None               | 0.0             |  |  |
| Welm              | Width Dependence of Elm                                   | None               | 0.0             |  |  |
| Pelm              | Cross Dependence of Elm                                   | None               | 0.0             |  |  |
| Nlev              | Noise model level                                         | None               | -1              |  |  |
| Gdwnoi            | Drain noise parameters for Nlev=3                         | None               | 1               |  |  |
| Kf                | Flicker Noise Coefficient                                 | None               | 0.0             |  |  |
| Af                | Flicker Noise Coefficient                                 | None               | 1.0             |  |  |

| Ef        | Flicker Noise Frequency Exponent                             | Advanced Design System 2011.01 - Nonlinear Devices<br>quency Exponent  None   1.0 |                                    |  |  |
|-----------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------|--|--|
| Em        | Flicker Noise                                                | V/m                                                                               | 4.1e7                              |  |  |
| Noia      | noise parameter A                                            | None                                                                              | 1.0e20 (NMOS), 9.9e18<br>(PMOS)    |  |  |
| Noib      | noise parameter B                                            | None                                                                              | 5.0e4 (NMOS), 2.4e3 (PMOS)         |  |  |
| Noic      | noise parameter C                                            | None                                                                              | -1.4e-12 (NMOS), 1.4e-12<br>(PMOS) |  |  |
| Imax      | explosion current                                            | A                                                                                 | 10.0                               |  |  |
| Imelt     | explosion current similar to Imax; defaults to Imax          | A                                                                                 | defaults to Imax                   |  |  |
| wVsubfwd  | substrate junction forward bias (warning)                    | V                                                                                 | None                               |  |  |
| wBvsub    | substrate junction reverse breakdown voltage (warning)       | V                                                                                 | None                               |  |  |
| wBvg      | gate oxide breakdown voltage (warning)                       | V                                                                                 | None                               |  |  |
| wBvds     | drain-source breakdown voltage (warning)                     | V                                                                                 | None                               |  |  |
| wIdsmax   | maximum drain-source current (warning)                       | A                                                                                 | None                               |  |  |
| wPmax     | maximum power dissipation (warning)                          | W                                                                                 | None                               |  |  |
| Acm       | area calculation method                                      | None                                                                              | -1                                 |  |  |
| Hdif      | length of heavily doped diffusion (ACM=2,3 only)             | m                                                                                 | 0.0                                |  |  |
| Ldif      | length of lightly doped diffusion adjacent to gate (ACM=1,2) | m                                                                                 | 0.0                                |  |  |
| Wmlt      | width diffusion layer shrink reduction factor                | None                                                                              | 1.0                                |  |  |
| Lmlt      | Gate length shrink factor                                    | None                                                                              | 1.0                                |  |  |
| Xw        | accounts for masking and etching effects                     | m                                                                                 | 0.0                                |  |  |
| Rdc       | additional drain resistance due to contact resistance        | Ohm                                                                               | 0.0                                |  |  |
| Rsc       | additional source resistance due to contact resistance       | Ohm                                                                               | 0.0                                |  |  |
| AllParams | DataAccessComponent-based parameters                         | None                                                                              | None                               |  |  |
| B3qmod    | BSIM3 charge model (0 for Berkeley, 1 for Hspice Capmod=0)   | None                                                                              | 0                                  |  |  |
| Calcacm   | flag to use Acm when Acm=12                                  | None                                                                              | 0                                  |  |  |
| XI        | accounts for masking and etching effects                     | m                                                                                 | 0.0                                |  |  |
| Is        | bulk junction saturation current                             | A                                                                                 | 1.0e-14                            |  |  |
| Rd        | drain resistance                                             | Ohm                                                                               | 0.0                                |  |  |
| Rs        | source resistance                                            | Ohm                                                                               | 0.0                                |  |  |
| Flkmod    | flicker noise model selector                                 | None                                                                              | 0                                  |  |  |
| Tlev      | temperature equation selector (0/1/2/3)                      | None                                                                              | 0                                  |  |  |
| Tlevc     | temperature equation selector for capacitance $(0/1/2/3)$    | None                                                                              | 0                                  |  |  |
| Eg        | band gap                                                     | eV                                                                                | 1.16                               |  |  |
| Gap1      | energy gap temperature coefficient alpha                     | V/°C                                                                              | 7.04e-4                            |  |  |
| Gap2      | energy gap temperature coefficient beta                      | К                                                                                 | 1108                               |  |  |
| Cta       | Cj linear temperature coefficient                            | 1/°C                                                                              | 0                                  |  |  |
| Ctp       | Cjsw linear temperature coefficient                          | 1/°C                                                                              | 0                                  |  |  |
| Pta       | Vj linear temperature coefficnet                             | 1/°C                                                                              | 0                                  |  |  |
| Ptp       | Vjsw linear temperature coefficient                          | 1/°C                                                                              | 0                                  |  |  |
| Trd       | Rd linear temperature coefficient                            | 1/°C                                                                              | 0                                  |  |  |

| Trs     | Advanced Design System 2011.0<br>Rs linear temperature coefficient | l - Nonlinear<br> 1/°C | Devices<br>0 |
|---------|--------------------------------------------------------------------|------------------------|--------------|
| Wmin    | binning minimum width (not used for binning; use BinModel)         | m                      | 0.0          |
| Wmax    | binning maximum width (not used for binning; use BinModel)         | m                      | 1.0          |
| Lmin    | binning minimum length (not used for binning; use BinModel)        | m                      | 0.0          |
| Lmax    | binning maximum length (not used for binning; use BinModel)        | m                      | 1.0          |
| Lgcd    | Gate-to-contact length of drain side                               | m                      | 0.0          |
| Lgcs    | Gate-to-contact length of source side                              | m                      | 0.0          |
| Rdd     | Scalable drain resistance,                                         | Ohm × m                | 0.0          |
| Rss     | Scalable source resistance                                         | Ohm × m                | 0.0          |
| Sc      | Spacing between contacts                                           | m                      | infinity     |
| W       | Channel width                                                      | m                      | None         |
| L       | Channel length                                                     | m                      | None         |
| Ad      | Drain Area                                                         | m <sup>2</sup>         | None         |
| As      | Source Area                                                        | m <sup>2</sup>         | None         |
| Pd      | Drain Perimeter                                                    | m                      | None         |
| Ps      | Source Perimeter                                                   | m                      | None         |
| Nrd     | Drain Squares                                                      | None                   | None         |
| Nrs     | Source Squares                                                     | None                   | None         |
| Dtoxcv  | Delta oxide thickness                                              | m                      | 0.0          |
| Vfbflag | Select Vfb for Capmod=0                                            | None                   | 0            |
| Stimod  | LOD stress effect model selector                                   | None                   | 0            |
| Sa0     | Reference distance between OD edge to poly of one side             | m                      | 1.0e-6       |
| Sb0     | Reference distance between OD edge to poly of the other side       | m                      | 1.0e-6       |
| Wlod    | Length parameter for stress effect                                 | None                   | 0.0          |
| Ku0     | Mobility degradation/enhancement coefficient for LOD               | None                   | 0.0          |
| Kvsat   | Saturation velocity degradation/enhancement coefficient for LOD    | None                   | 0.0          |
| Kvth0   | Threshold degradation/enhancement parameter for LOD                | None                   | 0.0          |
| Tku0    | Temperature coefficient of Ku0                                     | None                   | 0.0          |
| Llodku0 | Length parameter for U0 LOD effect                                 | None                   | 0.0          |
| Wlodku0 | Width parameter for U0 LOD effect                                  | None                   | 0.0          |
| Llodvth | Length parameter for Vth LOD effect                                | None                   | 0.0          |
| Wlod∨th | Width parameter for Vth LOD effect                                 | None                   | 0.0          |
| Lku0    | Length dependence of Ku0                                           | None                   | 0.0          |
| Wku0    | Width dependence of Ku0                                            | None                   | 0.0          |
| Pku0    | Cross-term dependence of Ku0                                       | None                   | 0.0          |
| Lkvth0  | Length dependence of Kvth0                                         | None                   | 0.0          |
| Wkvth0  | Width dependence of Kvth0                                          | None                   | 0.0          |
|         |                                                                    |                        |              |

| Pkvth0                 | Cross-term dependence of Kvth0                    | None | 0.0 |  |
|------------------------|---------------------------------------------------|------|-----|--|
| Stk2                   | K2 shift factor related to stress effect on Vth   | None | 0.0 |  |
| Lodk2                  | K2 shift modification factor for stress effect    | None | 1.0 |  |
| Steta0                 | Eta0 shift factor related to stress effect on Vth | None | 0.0 |  |
| Lodeta0                | Eta0 shift modification factor for stress effect  | None | 1.0 |  |
| Nqsmod                 | non-quasi-static model selector                   | None | 0   |  |
| Acnqsmod               | AC non-quasi static model option: 1=on or 0=off   | None | 0   |  |
| <sup>+</sup> binning p | <sup>†</sup> binning parameter; see Note 5        |      |     |  |

## **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname MOSFET Idsmod=8 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOSFET*. Idsmod=8 is a required parameter that tells the simulator to use the BSIM3v3 equations. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

# Example:

```
model Nch6 MOSFET Idsmod=8 \
Vtho=0.7 Cj=3e-4 NMOS=yes
```

# **Notes/Equations**

- 1. This model supplies values for a MOSFET device. The default Version is 3.24; previous versions can be used by setting the Version parameter to 3.0, 3.1, 3.2, 3.21, 3.22, or 3.23.
- 2. More information about this model is available at: <a href="http://www-device.eecs.berkeley.edu/bsim3">http://www-device.eecs.berkeley.edu/bsim3</a>
- 3. BSIM1, BSIM2, and BSIM3 MOSFET models use the same parameters and parameter definitions as the BSIM models in SPICE3 (University of California-Berkeley).
- 4. The K1 parameter's default value is calculated except when K2 is present. When K2 is present, 0.5 is used as the default value of K1.
- 5. Several DC, AC, and capacitance parameters can be binned; these parameters follow this implementation:

$$P = P_0 + \frac{P_L}{L_{eff}} + \frac{P_w}{W_{eff}} + \frac{P_p}{L_{eff} \times W_{eff}}$$

For example, for the K1 parameter, the following relationships exist:  $P_0=k1$ ,  $P_L=lk1$ ,  $P_W=wk1$ ,  $P_P=pk1$ . The Binunit parameter is a binning unit selector. If Binunit=1, the units of  $L_{eff}$  and  $W_{eff}$  used in the preceding binning equation have the units of microns, otherwise in meters. For example, for a device with  $L_{eff}=0.5$ mm and  $W_{eff}=10$ mm, if Binunit=1, parameter values are le5, le4, 2e4, and 3e4 for Vsat, Lvsat, Wvsat, and Pvsat, respectively, Therefore, the effective value of Vsat for this device is:

 $Vsat = 1e5 + 1e4/0.5 + 2e4/10 + 3e4/(0.5 \times 10) = 1.28e5$ 

To get the same effective value of Vsat for Binunit=0, values of Vsat, Lvsat, Wvsat, and Pvsat would be 1e5, le2, 2e2, 3e8, respectively. Thus:

Vsat =  $1e5 + 1e-2/0.5e6 + 2e2/10e6 + 3e 8/(0.5e-6 \times 10e6) = 1.28e5$ 

- 6. The nonquasi-static (NQS) charge model is supported in versions 3.2 and later.
- 7. Model parameter U0 can be entered in meters or centimeters. U0 is converted to m2/V sec as follows: if U0 > 1, it is multiplied by  $10^{-4}$ .
- 8. Nqsmod is also supported as an instance parameter. For simulation, only the Nqsmod instance parameter is used (the Nqsmod model parameter is not used). This is the way Berkeley defined Nqsmod in BSIM3v3.2. Hspice supports Nqsmod only as a model parameter.
- 9. Imelt and Ijth Parameters

Imelt and Ijth specify the diode limiting current (also known as P-N junction explosion current). Imelt and Ijth can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Ijth value, the Imelt value is increased to the Ijth value.

If Imelt is specified (in the model or in Options) diode limiting current = Imelt; otherwise, if Ijth is specified (in the model or in Options) diode limiting current = Ijth; otherwise, diode limiting current = model Imelt default value (which is the same as the model Ijth default value).

- 10. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.
- 11. DC operating point data is generated for this model. If a DC simulation is performed, device operating point data can be viewed for a component. The procedure for viewing device operating point data for a component is in *Using Circuit Simulators* (cktsim). The device operating point information displayed for the BSIM3 model is:

Gmb: small-signal Vbs to Ids transconductance, in Siemens Gds: small-signal drain source conductance, in Siemens Vdsat: saturation voltage, in volts Capbd: small-signal bulk drain capacitance, in farads Capbs: small-signal bulk source capacitance, in farads CgdM: small-signal gate drain Meyer capacitance, in farads CgbM: small-signal gate bulk Meyer capacitance, in farads CgsM: small-signal gate source Meyer capacitance, in farads DqgDvgb: small-signal transcapacitance dQg/dVg, in farads DqgDvdb: small-signal transcapacitance dQg/dVd, in farads DqgDvsb: small-signal transcapacitance dQg/dVs, in farads DqbDvgb: small-signal transcapacitance dQb/dVg, in farads DqbDvdb: small-signal transcapacitance dQb/dVd, in farads DqbDvsb: small-signal transcapacitance dQb/dVd, in farads DqbDvsb: small-signal transcapacitance dQb/dVs, in farads DqbDvsb: small-signal transcapacitance dQb/dVs, in farads DqdDvgb: small-signal transcapacitance dQd/dVg, in farads DqdDvdb: small-signal transcapacitance dQd/dVd, in farads DqdDvdb: small-signal transcapacitance dQd/dVd, in farads

12. The model parameter Dtoxcv has been added to the BSIM3 model for Version ≥ 3.2. The implementation is taken from a recent enhancement to the B3soiPD made by U. C. Berkeley. This parameter allows a different effective gate oxide thickness to be used in the I-V and C-V calculations. The value Tox-Dtoxcv is used in the calculation of Vfbzb instead of Tox. In the Capmod=3 code, the effective oxide thickness is now Tox-Dtoxcv instead of Tox.

## **Temperature Scaling**

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device Temp parameter. (Temperatures in the following equations are in Kelvin.)

The energy bandgap  $E_G$  varies as:

$$E_G(T) = 1.16 - \frac{7.02 \times 10^{-4} T^2}{T + 1108}$$
  

$$E_G(T) = E_g - \frac{Gap 1 T^2}{T + Gap 2}$$
  

$$T/e_V = 0, 1, 3$$

The intrinsic carrier concentration  $n_i$  for silicon varies as:

$$n_i(T) = 1.45 \times 10^{10} \left(\frac{T}{300.15}\right)^{3/2} \exp\left(\frac{E_G(300.15)}{2k300.15/q} - \frac{E_G(T)}{2kT/q}\right)$$

The saturation currents Js and Jsw scale as:

$$Js^{NEW} = Js \exp\left[\frac{E_G(Tnom)}{NkTnom/q} - \frac{E_G(Temp)}{NkTemp/q} + \frac{Xti}{N}\ln\left(\frac{Temp}{Tnom}\right)\right]$$
$$Jsw^{NEW} = Jsw \exp\left[\frac{E_G(Tnom)}{NkTnom/q} - \frac{E_G(Temp)}{NkTemp/q} + \frac{Xti}{N}\ln\left(\frac{Temp}{Tnom}\right)\right]$$

The series resistances Rs and Rd scale as:

$$Rs^{NEW} = Rs[1 + Trs(Temp - Tnom)]$$
  
 $Rd^{NEW} = Rd[1 + Trd(Temp - Tnom)]$ 

The junction potentials Pb, Pbsw, and Pbswg and the junction capacitances Cj, Cjsw, and Cjswg scale as:

if Version  $\geq$  3.2 and ACM  $\geq$  10

$$Pb^{NEW} = Pb - Tpb(Temp - Tnom)$$

$$Pbsw^{NEW} = Pbsw - Tpbsw(Temp - Tnom)$$

$$Pbswg^{NEW} = Pbswg - Tpbswg(Temp - Tnom)$$

$$Cj^{NEW} = Cj(1 + Tcj(Temp - Tnom))$$

$$Cjsw^{NEW} = Cjsw(1 + Tcjsw(Temp - Tnom))$$

$$Cjswg^{NEW} = Cjswg(1 + Tcjswg(Temp - Tnom))$$

else if ACM <10

if Tlevc = 0

$$Pb^{NEW} = Pb\frac{Temp}{Tnom} + \frac{2kTemp}{q}\ln\left(\frac{n_i(Tnom)}{n_i(Temp)}\right)$$

$$Pbsw^{NEW} = Pbsw\frac{Temp}{Tnom} + \frac{2kTemp}{q}\ln\left(\frac{n_i(Tnom)}{n_i(Temp)}\right)$$

$$Pbswg^{NEW} = Pbswg\frac{Temp}{Tnom} + \frac{2kTemp}{q}\ln\left(\frac{n_i(Tnom)}{n_i(Temp)}\right)$$

$$C_J^{NEW} = C_j \left(1 + M_j \left[1 + 4 \times 10^{-4} (Temp - Tnom) - \frac{Pb^{NEW}}{Pb}\right]\right)$$

$$Cjsw^{NEW} = Cjsw \left(1 + Mjsw \left[1 + 4 \times 10^{-4} (Temp - Tnom) - \frac{Pbsw^{NEW}}{Pbsw}\right]\right)$$

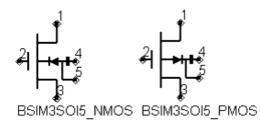
$$Cjswg^{NEW} = Cjswg \left(1 + Mjswg \left[1 + 4 \times 10^{-4} (Temp - Tnom) - \frac{Pbswg^{NEW}}{Pbswg}\right]\right)$$

if Tlevc = 1  

$$Pb^{NEW} = Pb - Pta(Temp - Tnom)$$
  
 $Pbsw^{NEW} = Pbsw - Ptp(Temp - Tnom)$   
 $Pbswg^{NEW} = Pbswg - Ptp(Temp - Tnom)$   
 $Cj^{NEW} = Cj[1 + Cta(Temp - Tnom)]$   
 $Cjsw^{NEW} = Cjsw[1 + Ctp(Temp - Tnom)]$   
 $Cjswg^{NEW} = Cjswg[1 + Ctp(Temp - Tnom)]$   
if Tlevc = 2  
 $Pb^{NEW} = Pb - Pta(Temp - Tnom)$   
 $Pbswg^{NEW} = Pbsw - Ptp(Temp - Tnom)$   
 $Pbswg^{NEW} = Pbswg - Ptp(Temp - Tnom)$   
 $Cj^{NEW} = Cj(\frac{Pb}{Pb^{NEW}})^{Mj}$   
 $Cjsw^{NEW} = Cjswg(\frac{Pbsw}{Pbsw^{NEW}})^{Mjsw}$   
 $Cjswg^{NEW} = Cjswg(\frac{Pbswg}{Pbswg^{NEW}})^{Mjswg}$ 

if Tlevc = 3

$$\begin{split} &\text{if Tlev} = 0, \, 1, \, 3 \\ & dPbdT = - \Big( E_G(Tnom) + \frac{3kTnom}{q} + (1.16 - E_G(Tnom)) \frac{Tnom + 2 \times 1108}{Tnom + 1108} - Pb \Big) \frac{1}{Tnom} \\ & dPbswdT = - \Big( E_G(Tnom) + \frac{3kTnom}{q} + (1.16 - E_G(Tnom)) \frac{Tnom + 2 \times 1108}{Tnom + 1108} - Pbsw \Big) \frac{1}{Tnom} \\ \end{split}$$


$$dPbswdgdT = -\left(E_G(Tnom) + \frac{3kTnom}{q} + (1.16 - E_G(Tnom))\frac{Tnom + 2 \times 1108}{Tnom + 1108} - Pbswg\right)\frac{1}{Tnom}$$

if Tlev = 2

$$\begin{split} dPbdT &= - \Big( E_G(Tnom) + \frac{3kTnom}{q} + (E_G - E_G(Tnom)) \frac{Tnom + 2Gap2}{Tnom + Gap2} - Pb \Big) \frac{1}{Tnom} \\ dPbswdT &= - \Big( E_G(Tnom) + \frac{3kTnom}{q} + (E_G - E_G(Tnom)) \frac{Tnom + 2Gap2}{Tnom + Gap2} - Pbsw \Big) \frac{1}{Tnom} \\ dPbswdgT &= - \Big( E_G(Tnom) + \frac{3kTnom}{q} + (E_G - E_G(Tnom)) \frac{Tnom + 2Gap2}{Tnom + Gap2} - Pbswg \Big) \frac{1}{Tnom} \\ Pb^{NEW} &= Pb + dPbdT(Temp - Tnom) \\ Pbswg^{NEW} &= Pbsw + dPbswdT(Temp - Tnom) \\ Pbswg^{NEW} &= Pbswg + dPbswgT(Temp - Tnom) \\ Cj^{NEW} &= Ce\Big(1 - \frac{dPbdT(Temp - Tnom)}{2Pb} \Big) \\ Cjswg^{NEW} &= Cjsw\Big(1 - \frac{dPbswdT(Temp - Tnom)}{2Pbswg} \Big) \end{split}$$

# BSIM3SOI5\_NMOS, BSIM3SOI5\_PMOS (BSIM3 SOI Transistor with 5th Terminal, Ext. Body Contact, NMOS, PMOS)

#### Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name                | Description                                                    | Units          | Default          |
|---------------------|----------------------------------------------------------------|----------------|------------------|
| Model               | model instance name                                            | None           | BSIM3SOIM1       |
| Length <sup>†</sup> | channel length                                                 | m              | 5.0e-6           |
| Width <sup>†</sup>  | channel width                                                  | m              | 5.0e-6           |
| Ad <sup>†</sup>     | area of drain diffusion                                        | m <sup>2</sup> | 0.0              |
| As <sup>†</sup>     | area of source diffusion                                       | m <sup>2</sup> | 0.0              |
| Pd <sup>†</sup>     | perimeter of the drain junction                                | m              | 0.0              |
| Ps <sup>†</sup>     | perimeter of the drain junction                                | m              | 0.0              |
| Nrd                 | number of squares of the drain diffusion                       | None           | 1.0              |
| Nrs                 | number of squares of the source diffusion                      | None           | 1.0              |
| Nrb                 | number of squares in body                                      | None           | 1.0              |
| Bjtoff              | BJT on/off flag: yes=1, no=0                                   | None           | no               |
| Rth0                | instance thermal resistance; defaults to Rth0                  | (Ohm)          | defaults to Rth0 |
| Cth0                | instance thermal capacitance; defaults to Cth0                 | (F)            | defaults to Cth0 |
| Nbc                 | number of body contact insulation edge                         | None           | 0.0              |
| Nseg                | number segments for width partitioning                         | None           | 1.0              |
| Pdbcp <sup>†</sup>  | perimter length for bc parasitics at drain side                | m              | 0.0              |
| Psbcp <sup>†</sup>  | perimter length for bc parasitics at source side               | m              | 0.0              |
| Agbc <sup>†</sup>   | gate to body overlap area for bc parasitics                    | m <sup>2</sup> | 0.0              |
| Aebcp <sup>†</sup>  | substrate to body overlap area for bc parasitics               | m <sup>2</sup> | 0.0              |
| Vbsusr              | Vbs specified by the user; defaults to Vbs                     | V              | defaults to Vbs  |
| Temp                | device operating temperature                                   | °C             | 25               |
| Trise               | temperature rise above ambient                                 | °C             | 0                |
| Mode                | simulation mode: Nonlinear, Linear, Standard (refer to note 1) | None           | Nonlinear        |
| Noise               | noise generation option: yes=1, no=0                           | None           | yes              |
| _M                  | number of devices in parallel                                  | None           | 1                |

<sup>+</sup> Each instance parameter whose dimension contains a power of meter will be multiplied by the Scale to the same power. For example, a parameter with a dimension of *m* will be multiplied by *scale*<sup>1</sup> and a parameter with a dimension of  $m^2$  will be multiplied by *scale*<sup>2</sup>. Note that only parameters whose dimensions contain meter are scaled. For example, a parameter whose dimension contains *cm* instead of meter is not scaled.

#### Notes/Equations

- The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.

#### **DC Operating Point Information**

| Name    | Description                           | Units   |
|---------|---------------------------------------|---------|
| Id      | Drain current                         | amperes |
| Ig      | Gate current                          | amperes |
| Is      | Source current                        | amperes |
| Ib      | Bulk current                          | amperes |
| Power   | DC power dissipated                   | watts   |
| Gm      | Forward transconductance (dIds/dVgs)  | siemens |
| Gmb     | Backgate transconductance (dIds/dVbs) | siemens |
| Gds     | Output conductance (dIds/dVds)        | siemens |
| Vth     | Threshold voltage                     | volts   |
| Vdsat   | Drain-source saturation voltage       | volts   |
| DqgDvgb | (dQg/dVgb)                            | farads  |
| DqgDvdb | (dQg/dVdb)                            | farads  |
| DqgDvsb | (dQg/dVsb)                            | farads  |
| DqgDveb | (dQg/dVeb)                            | farads  |
| DqbDvgb | (dQb/dVgb)                            | farads  |
| DqbDvdb | (dQb/dVdb)                            | farads  |
| DqbDvsb | (dQb/dVsb)                            | farads  |
| DqbDveb | (dQb/dVeb)                            | farads  |
| DqdDvgb | (dQd/dVgb)                            | farads  |
| DqdDvdb | (dQd/dVdb)                            | farads  |
| DqdDvsb | (dQd/dVsb)                            | farads  |
| DqdDveb | (dQd/dVeb)                            | farads  |
| DqeDvgb | (dQe/dVgb)                            | farads  |
| DqeDvdb | (dQe/dVdb)                            | farads  |
| DqeDvsb | (dQe/dVsb)                            | farads  |
| DqeDveb | (dQe/dVeb)                            | farads  |
| Vgs     | Gate-source voltage                   | volts   |
| Vds     | Drain-source voltage                  | volts   |
| Vbs     | Bulk-source voltage                   | volts   |
| Ves     | Substrate-source voltage              | volts   |
| Vps     | Body-source voltage                   | volts   |

# BSIM3SOI\_Model (BSIM3 Silicon On Insulator MOSFET Model)

#### Symbol



#### **Parameters**

Model parameters must be specified in SI units. In some cases, parameters that are simply geometric variations of a listed parameter, such as L, W, or P, are not listed.

| Parameter            | Description                                                        | Units                 | Default |
|----------------------|--------------------------------------------------------------------|-----------------------|---------|
| NMOS                 | Model type: yes or no                                              | None                  | yes     |
| PMOS                 | Model type: yes or no                                              | None                  | no      |
| Capmod               | short-channel capacitance model selector                           | None                  | 2       |
| Mobmod               | mobility model selector                                            | None                  | 1       |
| Noimod               | noise model selector                                               | None                  | 1       |
| Shmod                | self-heating mode selector; $0=no$ self-heating, $1=$ self-heating | None                  | 0       |
| Ddmod                | dynamic depletion mode selector                                    | None                  | 0       |
| Igmod                | gate current model selector                                        | None                  | 0       |
| Paramchk             | model parameter checking selector                                  | None                  | 0       |
| Binunit              | Bin unit selector                                                  | None                  | 1       |
| Version              | model version                                                      | None                  | 2.0     |
| Тох                  | gate oxide thickness                                               | m                     | 1.0e-8  |
| Cdsc                 | Drain/Source and channel coupling capacitance                      | F/m <sup>2</sup>      | 2.4e-4  |
| Cdscb                | body effect coefficient of Cdsc                                    | F/(V×m <sup>2</sup> ) | 0.0     |
| Cdscd                | drain bias dependence of Cdsc                                      | F/(V×m <sup>2</sup>   | 0.0     |
| Cit                  | capacitance due to interface change                                | F/m <sup>2</sup>      | 1.0     |
| Nfactor <sup>+</sup> | subthreshold swing factor                                          | None                  | 0.0     |
| Vsat <sup>†</sup>    | saturation velocity at Temp                                        | m/s                   | 8.0e4   |
| At <sup>†</sup>      | temperature coefficient for saturation velocity                    | m/s                   | 3.3e4   |
| A0 <sup>+</sup>      | bulk charge effect coefficient                                     | None                  | 1.0     |
| Ags <sup>†</sup>     | gate bulk coefficient of Abulk                                     | V <sup>-1</sup>       | 0.0     |
| A1                   | first saturation factor                                            | V <sup>-1</sup>       | 0.0     |

Advanced Design System 2011.01 - Nonlinear Devices

|                    | Advanced Design System 2011.01                              | - Nommear De       |                       |
|--------------------|-------------------------------------------------------------|--------------------|-----------------------|
| A2 <sup>†</sup>    | second non-saturation factor                                | None               | 1.0                   |
| Keta <sup>†</sup>  | body-bias coefficient of the bulk charge effect             | V <sup>-1</sup>    | -0.6                  |
| Nsub               | substrate doping concentration with polarity                | cm <sup>-3</sup>   | 6.0e16                |
| Nch                | Channel doping concentration                                | cm <sup>-3</sup>   | 1.7e17                |
| Ngate              | poly-gate doping concentration                              | cm <sup>-3</sup>   | 0.0                   |
| Gamma1             | body-effect coefficient near the interface                  | V <sup>(1/2)</sup> | calculated            |
| Gamma2             | body-effect coefficient in the bulk                         | V <sup>(1/2)</sup> | calculated            |
| Vbx                | Vth transition body voltage                                 | V                  | calculated            |
| Vbm                | maximum body voltage                                        | V                  | -3.0                  |
| Xt                 | doping depth                                                | m                  | 1.55e-7               |
| K1 <sup>†</sup>    | body-effect coefficient                                     | V <sup>(1/2)</sup> | 0.5                   |
| Kt1                | temperature coefficient for threshold voltage               | V                  | -0.11                 |
| Kt1l               | channel length sensitivity of kt1                           | V×m                | 0.0                   |
| Kt2                | body-bias coefficient                                       | None               | 0.022                 |
| K2 <sup>†</sup>    | bulk effect coefficient 2                                   | None               | 0.0                   |
| K3 <sup>†</sup>    | narrow width coefficient                                    | None               | 0.0                   |
| K3b <sup>†</sup>   | body effect coefficient of K3                               | V <sup>-1</sup>    | 0.0                   |
| W0 <sup>+</sup>    | narrow width                                                | m                  | 2.5e6                 |
| NIx <sup>†</sup>   | lateral non-uniform doping coefficient                      | m                  | 1.74e-7               |
| Dvt0 <sup>+</sup>  | first coefficient of short-channel effect on Vth            | None               | 2.2                   |
| Dvt1 <sup>†</sup>  | first coefficient of short-channel effect on Vth            | None               | 0.53                  |
| Dvt2 <sup>†</sup>  | body-bias coefficient of short-channel effect on Vth        | V <sup>-1</sup>    | -0.032                |
| Dvt0w <sup>†</sup> | first coefficient of narrow-width effect on Vth             | None               | 0.0                   |
| Dvt1w <sup>†</sup> | Second Coefficient of narrow-width effect on Vth            | m <sup>-1</sup>    | 5.3e6                 |
| Dvt2w <sup>†</sup> | Body-bias Coefficient of narrow-width effect on Vth         | V <sup>-1</sup>    | 0.032                 |
| Drout <sup>†</sup> | L depend                                                    | None               | 0.56                  |
| Dsub <sup>†</sup>  | DIBL coefficient in sub-threshold region; defaults to Drout | None               | defaults to Drout     |
| Vth0 <sup>†</sup>  | zero-bias threshold voltage                                 | V                  | 0.7 (NMOS)-0.7 (PMOS) |
| Ua <sup>†</sup>    | first-order mobility degradation coefficient                | m/V                | 2.25e-9               |
| Ua1                | temperature coefficient of Ua                               | m/V                | 4.31e-9               |
| Ub <sup>†</sup>    | second-order mobility degradation coefficient               | (m/V) <sup>2</sup> | 5.87e-19              |
| Ub1                | temperature coefficient of Ub                               | (m/V) <sup>2</sup> | -7.61e-18             |
| Uc <sup>†</sup>    | body-bias mobility degradation coefficient                  | V <sup>-1</sup>    | -0.0465               |
| Uc1                | temperature coefficient of Uc                               | V <sup>-1</sup>    | -0.056                |
| U0 <sup>†</sup>    | low-field mobility at T=Tnom                                | m²/(V×s)           | 0.067 NMOS0.025 PMOS  |
| Ute                | Mobility temperature exponent                               | None               | -1.5                  |
| Voff <sup>†</sup>  | Offset voltage in sub-threshold region                      | V                  | -0.08                 |
| Tnom               | measurement temperature                                     | °C                 | 25                    |

| Trise               | Advanced Design System 2011.01 -<br> temperature rise above ambient | Nonlinear Dev     | vices<br>None   |
|---------------------|---------------------------------------------------------------------|-------------------|-----------------|
| Cgso                | G-S overlap capacitance per meter channel width                     | F/m               | calculated      |
| Cgdo                | G-D overlap capacitance per meter channel width                     | F/m               | calculated      |
| Xpart               | coefficient of channel charge share                                 | None              | 0.0             |
| Delta <sup>†</sup>  | effective Vds                                                       | V                 | 0.01            |
| Rsh                 | drain and source diffusion sheet resistance                         | Ohm/sq            | 0.0             |
| Rdsw <sup>†</sup>   | parasitic resistance per unit width                                 | Ohm × um          | 0.0             |
| KUSW                |                                                                     | Wr                |                 |
| Prwg <sup>+</sup>   | gate bias effect on parasitic resistance                            | V <sup>-1</sup>   | 0.0             |
| Prwb <sup>†</sup>   | body effect on parasitic resistance                                 | V <sup>-1/2</sup> | 0.0             |
| Prt                 | temperature coefficient of parasitic resistance                     | Ohm × um          | 0.0             |
| Eta0                | Sub-threshold region DIBL coefficient                               | None              | 0.08            |
| Etab                | Sub-threshold region DIBL coefficient                               | V <sup>-1</sup>   | -0.07           |
| Pclm                | channel-length modulation effect coefficient                        | None              | 1.3             |
| Pdiblc1             | drain induced barrier lowering effect coefficient 1                 | None              | 0.39            |
| Pdiblc2             | drain induced barrier lowering effect coefficient 2                 | None              | 0.086           |
| Pdiblcb             | body effect on drain induced barrier lowering                       | V <sup>-1</sup>   | 0.0             |
| Pvag <sup>†</sup>   | gate voltage dependence of Rout coefficient                         | None              | 0.0             |
| Tbox                | back gate oxide thickness                                           | m                 | 3.0e-7          |
| Tsi                 | silicon-on-insulator thickness                                      | m                 | 1.0e-7          |
| Xj                  | metallurgical junction depth; defaults to Tsi                       | m                 | defaults to Tsi |
| Rth0                | self-heating thermal resistance                                     | Ohm               | 0.0             |
| Cth0                | self-heating thermal capacitance                                    | F                 | 0.0             |
| Ngidi               | GIDL first parameter                                                | V                 | 1.2             |
| Agidl               | GIDL second parameter                                               | Ohm <sup>-1</sup> | 0.0             |
| Bgidl               | GIDL third parameter                                                | V/m               | 0.0             |
| Ndiode <sup>†</sup> | diode non-ideality factor                                           | None              | 1.0             |
| Xbjt                | temperature coefficient for Isbjt                                   | None              | 1.0             |
| Xdif                | temperature coefficient for Isdif                                   | None              | 1.0             |
| Xrec                | temperature coefficient for Isrec                                   | None              | 1.0             |
| Xtun                | temperature coefficient for Istun                                   | None              | 0.0             |
| Pbswg               | S/D (gate side) sidewall junction built-in potential                | V                 | 0.7             |
| Mjswg               | S/D (gate side) sidewall junction grading coefficient               | None              | 0.5             |
| Cjswg               | S/D (gate side) sidewall junction capacitance                       | F/m               | 1.0e-10         |
| Lint <sup>+</sup>   | length reduction parameter                                          | m                 | 0.0             |
| LI                  | coefficient of length dependence for length offset                  | m                 | 0.0             |
| Lln                 | power of length dependence of length offset                         | None              | 1.0             |
| Lw                  | coefficient of width dependence for length offset                   | m                 | 0.0             |
| Lwn                 | power of width dependence for length offset                         | None              | 1.0             |
| Lwl                 | coefficient of lenth and width cross term length offset             | m                 | 0.0             |
| Wr <sup>+</sup>     | width dependence of Rds                                             | None              | 1.0             |
| Wint <sup>+</sup>   | width reduction parameter                                           | m                 | 0.0             |
|                     | 129                                                                 | İ                 | i               |

| Dwg <sup>†</sup>    | Advanced Design System 2011.01 -<br>coefficient of Weff's gate dependence   | Nonlinear De         | evices 0.0                       |
|---------------------|-----------------------------------------------------------------------------|----------------------|----------------------------------|
| Dwb <sup>†</sup>    | coefficient of Weff's substrate body bias dependence                        | m/V <sup>(1/2)</sup> | 0.0                              |
| WI                  | coefficient of length dependence for width offset                           | m                    | 0.0                              |
| WIn                 | power of length dependence for width offset                                 | None                 | 1.0                              |
| Ww                  | coefficient of width dependence for width offset                            | m                    | 0.0                              |
| Wwn                 | power of width dependence for width offset                                  | None                 | 1.0                              |
| Wwl                 | coefficient of length and width cross term width of offset                  | m                    | 0.0                              |
| B0 <sup>+</sup>     | Bulk charge effect coefficient for channel width                            | m                    | 0.0                              |
| B1 <sup>†</sup>     | Bulk charge effect width offset                                             | m                    | 0.0                              |
| Cgsl                | light doped source-gate region overlap capacitance                          | F/m                  | 0.0                              |
| Cgdl                | Light doped drain-gate region overlap capacitance                           | F/m                  | 0.0                              |
| Ckappa              | coefficient for light doped source-gate region overlap capacitance          | F/m                  | 0.6                              |
| Cf                  | fringing field capacitance                                                  | F/m                  | calculated                       |
| Clc                 | constant term for the short channel model                                   | m                    | 0.1e-7                           |
| Cle                 | exponential term for the short channel model                                | None                 | 0.0                              |
| Dwc                 | width offset fitting parameter from C-V; defaults to Wint                   | m                    | defaults to Wint                 |
| Dlc                 | length offset fitting parameter from C-V; defaults to Lint                  | m                    | defaults to Lint                 |
| Alpha0 <sup>+</sup> | first parameter of impact ionization current                                | m/V                  | 0.0                              |
| Noia                | noise parameter A                                                           | None                 | 1.0e20 (NMOS)9.9e18<br>(PMOS)    |
| Noib                | noise parameter B                                                           | None                 | 5.0e4(NMOS),2.4e3 (PMOS)         |
| Noic                | noise parameter C                                                           | None                 | -1,4e-12 (NMOS)1.4e-12<br>(PMOS) |
| Em                  | flicker (1/f) noise parameter                                               | V/m                  | 4.1e-7                           |
| Ef                  | flicker (1/f) noise frequency exponent                                      | None                 | 1.0                              |
| Af                  | flicker (1/f) noise exponent                                                | None                 | 1.0                              |
| Kf                  | flicker (1/f) noise coefficient                                             | None                 | 0.0                              |
| Noif                | floating body noise ideality factor                                         | None                 | 1.0                              |
| K1w1 <sup>+</sup>   | first body effect width dependent parameter                                 | m                    | 0.0                              |
| K1w2 <sup>†</sup>   | second body effect width dependent parameter                                | m                    | 0.0                              |
| Ketas <sup>†</sup>  | surface potential adjustment for bulk charge effect                         | V                    | 0.0                              |
| Dwbc                | width offset for body contact isolation edge                                | m                    | 0.0                              |
| Beta0 <sup>†</sup>  | first Vds parameter of impact isolation current                             | V <sup>-1</sup>      | 0.0                              |
| Beta1 <sup>†</sup>  | second Vds parameter of impact isolation current                            | None                 | 0.0                              |
| Beta2 <sup>†</sup>  | third Vds parameter of impact isolation current                             | V                    | 0.1                              |
| Vdsatii0            | nominal drain saturation voltage at threshold for impact ionization current | V                    | 0.9                              |
| Tii <sup>†</sup>    | temperature dependent parameter for impact ionization                       | None                 | 0.0                              |
| Lii <sup>+</sup>    | channel length dependent parameter threshold for impact ionization          | None                 | 0.0                              |

|                     | Advanced Design System 2011.01                                           | - Nonlinear De     | evices     |
|---------------------|--------------------------------------------------------------------------|--------------------|------------|
| Sii0 <sup>†</sup>   | first Vgs dependent parameter for impact ionization current              | V <sup>-1</sup>    | 0.5        |
| Sii1 <sup>†</sup>   | second Vgs dependent parameter for impact ionization current             | V <sup>-1</sup>    | 0.1        |
| Sii2 <sup>†</sup>   | third Vgs dependent parameter for impact ionization current              | V <sup>-1</sup>    | 0.1        |
| Siid <sup>†</sup>   | Vgs dependent parameter for impact ionization current                    | V <sup>-1</sup>    | 0.1        |
| Fbjtii              | fraction of bipolar current affecting the impact ionization              | None               | 0.0        |
| Esatii <sup>†</sup> | saturation electric field for impact ionization                          | V /m               | 1.0e7      |
| Ntun <sup>†</sup>   | reverse tunneling new-ideality factor                                    | None               | 10.0       |
| Nrecf0 <sup>+</sup> | recombination non-ideality factor at forward bias                        | None               | 2.0        |
| Nrecr0 <sup>+</sup> | recombination non-ideality factor at reversed bias                       | None               | 10.0       |
| lsbjt <sup>†</sup>  | BJT injection saturation current                                         | A/m <sup>2</sup>   | 1.0e-6     |
| Isdif <sup>†</sup>  | Body to source/drain injection saturation current                        | A/m <sup>2</sup>   | 0.0        |
| Isrec <sup>†</sup>  | recombination in depletion saturation current                            | A/m <sup>2</sup>   | 1.0e-5     |
| Istun <sup>†</sup>  | reverse tunneling saturation current                                     | A/m <sup>2</sup>   | 0.0        |
| Ln                  | electron/hole diffusion length                                           | m                  | 2.0e-6     |
| Vrec0 <sup>†</sup>  | voltage dependent parameter for recombination current                    | V                  | 0.0        |
| Vtun0 <sup>+</sup>  | voltage dependent parameter for tunneling current                        | V                  | 0.0        |
| Nbjt <sup>†</sup>   | power coefficient of channel length dependency for bipolar current       | None               | 1.0        |
| Lbjt0 <sup>+</sup>  | Reference channel length for bipolar current                             | m                  | 0.2e-6     |
| Ldif0               | channel length dependency coefficient of diffusion capacitance           | None               | 1.0        |
| Vabjt <sup>†</sup>  | early voltage for bipolar current                                        | V                  | 10.0       |
| Aely <sup>†</sup>   | channel length dependency of early voltage for bipolar current           | V/m                | 0.0        |
| Ahli <sup>†</sup>   | high level injection parameter for bipolar current                       | None               | 0.0        |
| Rbody               | intrinsic body sheet resistance                                          | Ohm/m <sup>2</sup> | 0.0        |
| Rbsh                | extrinsic body sheet resistance                                          | Ohm/m <sup>2</sup> | 0.0        |
| Cgeo                | Gate substrate overlap capacitance per unit channel length               | F/m                | 0.0        |
| Tt                  | diffusion capacitance transit time coefficient                           | sec                | 1.0e-12    |
| Ndif                | power coefficient of channel length dependency for diffusion capacitance | None               | -1.0       |
| Vsdfb <sup>+</sup>  | Source/drain bottom diffusion capacitance flatband voltage               | V                  | calculated |
| Vsdth <sup>†</sup>  | Source/drain bottom diffusion capacitance threshold voltage              | V                  | calculated |
| Csdmin              | Source/drain bottom diffusion minimum capacitance                        | F                  | calculated |
| Asd                 | source/drain bottom diffusion smoothing parameter                        | None               | 0.3        |
| Csdesw              | source/drain sidewall fringing capacitance per unit channel length       | F/m                | 0/0        |
|                     |                                                                          |                    |            |

Advanced Design System 2011.01 - Nonlinear Devices

| Ntrecf             | Advanced Design System 2011.01 -<br>temperature coefficient for Ncref   | Nonlinear De          | 0.0              |
|--------------------|-------------------------------------------------------------------------|-----------------------|------------------|
| Ntrecr             | temperature coefficient for Ncrer                                       | None                  | 0.0              |
| Dicb               | length offset fitting parameter for body charge;<br>defaults to Lint    | m                     | defaults to Lint |
| Fbody              | scaling factor for body charge                                          | None                  | 1.0              |
| Tcjswg             | temperature coefficient of Cjswg                                        | К <sup>-1</sup>       | 0.0              |
| Tpbswg             | temperature coefficient of Pbswg                                        | V/K                   | 0.0              |
| Acde <sup>†</sup>  | exponential coefficient for finite charge thickness                     | m/V                   | 1.0              |
| Moin <sup>+</sup>  | coefficient for gate-bias dependent surface potential                   | V(1/2)                | 15.0             |
| Delvt <sup>†</sup> | threshold voltage adjust for CV                                         | V                     | 0.0              |
|                    | coefficient of Vbs0 dependency on Ves                                   | None                  | 1.0              |
| Kb1 <sup>†</sup>   |                                                                         |                       |                  |
| Dlbg               | length offset fitting parameter for backgate charge                     | m                     | 0.0              |
| Toxqm              | effective oxide thickness considering quantum effect;<br>defaults toTox | m                     | defaults toTox   |
| Wth0               | minimum width for thermal resistance calculation                        | m                     | 0.0              |
| Rhalo              | Body halo sheet resistance                                              | Ohm                   | 1.0e15           |
| Ntox               | power term of gate current                                              | None                  | 1.0              |
| Toxref             | target oxide thickness                                                  | m                     | 2.5e-9           |
| Ebg                | effective bandgap in gate current calculation                           | V                     | 1.2              |
| Nevb               | valence-band electron non-ideality factor                               | V                     | 3.0              |
| Alphagb1           | first Vox dependent parameter for gate current in inversion             | None                  | 0.35             |
| Betagb1            | second Vox dependent parameter for gate current in inversion            | None                  | 0.03             |
| Vgb1               | third Vox dependent parameter for gate current in inversion             | None                  | 300.0            |
| Necb               | condition-band electron non-ideality factor                             | None                  | 1.0              |
| Alphagb2           | first Vox dependent parameter for gate current in accumulation          | None                  | 0.43             |
| Betagb2            | second Vox dependent parameter for gate current in accumulation         | None                  | 0.05             |
| Vgb2               | third Vox dependent parameter for gate current in accumulation          | None                  | 17.0             |
| Voxh               | limit of Vox in gate current calculation                                | V                     | 5.0              |
| Deltavox           | Smoothing parameter in the Vox smoothing function                       | V                     | 0.005            |
| Lnch               | Length dependence of nch                                                | None                  | 0.0              |
| Lnsub              | Length dependence of nsub                                               | None                  | 0.0              |
| Lngate             | Length dependence of ngate                                              | None                  | 0.0              |
| Lvth0              | Length dependence of vth0                                               | None                  | 0.0              |
| Lk1                | Length dependence of body effect coefficient                            | um×V <sup>(1/2)</sup> | 0.0              |
| Lk1w1              | Length dependence of K1w1                                               | None                  | 0.0              |
| Lk1w2              | Length dependence of K1w2                                               | None                  | 0.0              |
| Lk2                | Length dependence of charge sharing coefficient                         | um                    | 0.0              |
| Lk3                | Length dependence of k3                                                 | None                  | 0.0              |
| Lk3b               | Length dependence of k3b                                                | None                  | 0.0              |

| Advanced Design | System 20 | 011.01 - Non | linear Devices |
|-----------------|-----------|--------------|----------------|
|                 |           |              |                |

|          | Advanced Design System 2011.01                     | l - Nonlinear De | vices |
|----------|----------------------------------------------------|------------------|-------|
| Lkb1     | Length dependence of kb1                           | None             | 0.0   |
| Lw0      | Length dependence of w0                            | None             | 0.0   |
| Lnlx     | Length dependence of nlx                           | None             | 0.0   |
| Ldvt0    | Length dependence of dvt0                          | None             | 0.0   |
| Ldvt1    | Length dependence of dvt1                          | None             | 0.0   |
| Ldvt2    | Length dependence of dvt2                          | None             | 0.0   |
| Ldvt0w   | Length dependence of dvt0w                         | None             | 0.0   |
| Ldvt1w   | Length dependence of dvt1w                         | None             | 0.0   |
| Ldvt2w   | Length dependence of dvt2w                         | None             | 0.0   |
| Lu0      | Length dependence of u0                            | None             | 0.0   |
| Lua      | Length dependence of ua                            | None             | 0.0   |
| Lub      | Length dependence of ub                            | None             | 0.0   |
| Luc      | Length dependence of uc                            | None             | 0.0   |
| Lvsat    | Length dependence of vsat                          | None             | 0.0   |
| La0      | Length dependence of a0                            | None             | 0.0   |
| Lags     | Length dependence of ags                           | None             | 0.0   |
| Lb0      | Length dependence of b0                            | None             | 0.0   |
| Lb1      | Length dependence of b1                            | None             | 0.0   |
| Lketa    | Length dependence of keta                          | None             | 0.0   |
| Lketas   | Length dependence of ketas                         | None             | 0.0   |
| La1      | Length dependence of a1                            | None             | 0.0   |
| La2      | Length dependence of a2                            | None             | 0.0   |
| Lrdsw    | Length dependence of rdsw                          | None             | 0.0   |
| Lprwb    | Length dependence of prwb                          | None             | 0.0   |
| Lprwg    | Length dependence of prwg                          | None             | 0.0   |
| Lwr      | Length dependence of wr                            | None             | 0.0   |
| Lnfactor | Length dependence of nfactor                       | None             | 0.0   |
| Ldwg     | Length dependence of dwg                           | None             | 0.0   |
| Ldwb     | Length dependence of dwb                           | None             | 0.0   |
| Lvoff    | Length dependence of voff                          | None             | 0.0   |
| Leta0    | Length dependence of barrier lowering coefficient, | um               | 0.0   |
| Letab    | Length dependence of sens                          | um/V             | 0.0   |
| Ldsub    | Length dependence of dsub                          | None             | 0.0   |
| Lcit     | Length dependence of cit                           | None             | 0.0   |
| Lcdsc    | Length dependence of cdsc                          | None             | 0.0   |
| Lcdscb   | Length dependence of cdscb                         | None             | 0.0   |
| Lcdscd   | Length dependence of cdscd                         | None             | 0.0   |
| Lpclm    | Length dependence of pclm                          | None             | 0.0   |
| Lpdiblc1 | Length dependence of pdiblc1                       | None             | 0.0   |
| Lpdiblc2 | Length dependence of pdiblc2                       | None             | 0.0   |
| Lpdiblcb | Length dependence of pdiblcb                       | None             | 0.0   |
| Ldrout   | Length dependence of drout                         | None             | 0.0   |
| Lpvag    | Length dependence of pvag                          | None             | 0.0   |
| -6.48    |                                                    |                  |       |

| Ldelta    | Advanced Design System 2011.0<br>Length dependence of delta | 01 - Nonlinear Dev<br>None | vices |
|-----------|-------------------------------------------------------------|----------------------------|-------|
| Lalpha0   | Length dependence of alpha0                                 | None                       | 0.0   |
| Lfbjtii   | Length dependence of fbjtii                                 | None                       | 0.0   |
| Lbeta0    | Length dependence of beta0                                  | None                       | 0.0   |
| Lbeta1    | Length dependence of beta1                                  | None                       | 0.0   |
| Lbeta2    | Length dependence of beta2                                  | None                       | 0.0   |
| Lvdsatii0 | Length dependence of vdsatii0                               | None                       | 0.0   |
| Llii      | Length dependence of lii                                    | None                       | 0.0   |
| Lesatii   | Length dependence of esatii                                 | None                       | 0.0   |
| Lsii0     | Length dependence of sii0                                   | None                       | 0.0   |
| Lsii1     | Length dependence of sii1                                   | None                       | 0.0   |
| Lsii2     | Length dependence of sii2                                   | None                       | 0.0   |
| Lsiid     | Length dependence of siid                                   | None                       | 0.0   |
| Lagidl    | Length dependence of agidl                                  | None                       | 0.0   |
| Lbgidl    | Length dependence of bgidl                                  | None                       | 0.0   |
| Lngidl    | Length dependence of ngidl                                  | None                       | 0.0   |
| Lntun     | Length dependence of ntun                                   | None                       | 0.0   |
| Lndiode   | Length dependence of ndiode                                 | None                       | 0.0   |
| Lnrecf0   | Length dependence of nrecf0                                 | None                       | 0.0   |
| Lnrecr0   | Length dependence of nrecr0                                 | None                       | 0.0   |
| Lisbjt    | Length dependence of isbjt                                  | None                       | 0.0   |
| Lisdif    | Length dependence of isdif                                  | None                       | 0.0   |
| Listun    | Length dependence of istun                                  | None                       | 0.0   |
| Lvrec0    | Length dependence of vrec0                                  | None                       | 0.0   |
| Lvtun0    | Length dependence of vtun0                                  | None                       | 0.0   |
| Lnbjt     | Length dependence of nbjt                                   | None                       | 0.0   |
| Lnbjt0    | Length dependence of lbjt0                                  | None                       | 0.0   |
| Lvabjt    | Length dependence of vabjt                                  | None                       | 0.0   |
| Laely     | Length dependence of aely                                   | None                       | 0.0   |
| Lahli     | Length dependence of ahli                                   | None                       | 0.0   |
| Lvsdfb    | Length dependence of vsdfb                                  | None                       | 0.0   |
| Lvsdth    | Length dependence of vsdth                                  | None                       | 0.0   |
| Ldelvt    | Length dependence of delvt                                  | None                       | 0.0   |
| Lacde     | Length dependence of Acde                                   | None                       | 0.0   |
| Lmoin     | Length dependence of Moin                                   | $um \times V^{(1/2)}$      | 0.0   |
| Wnch      | Width dependence of nch                                     | None                       | 0.0   |
| Wnsub     | Width dependence of nsub                                    | None                       | 0.0   |
| Wngate    | Width dependence of ngate                                   | None                       | 0.0   |
| Wvth0     | Width dependence of vth0                                    | None                       | 0.0   |
| Wk1       | Width dependence of body effect coefficient                 | um×V <sup>(1/2)</sup>      | 0.0   |
| Wk1w1     | Width dependence of K1w1                                    | None                       | 0.0   |
| Wk1w2     | Width dependence of K1w2                                    | None                       | 0.0   |
| Wk2       | Width dependence of charge sharing coefficient              | um                         | 0.0   |

| Advanced | Design  | System | 2011.01 | - Nonlinear | Devices |
|----------|---------|--------|---------|-------------|---------|
| 110,0000 | 2 001Bu | ~ )    |         | 1.01111000  | 2011000 |

|          | Advanced Design System 2011.01 -                     | 1    |     |
|----------|------------------------------------------------------|------|-----|
| Wk3      | Width dependence of k3                               | None | 0.0 |
| Wk3b     | Width dependence of k3b                              | None | 0.0 |
| Wkb1     | Width dependence of kb1                              | None | 0.0 |
| Ww0      | Width dependence of w0                               | None | 0.0 |
| Wnlx     | Width dependence of nlx                              | None | 0.0 |
| Wdvt0    | Width dependence of dvt0                             | None | 0.0 |
| Wdvt1    | Width dependence of dvt1                             | None | 0.0 |
| Wdvt2    | Width dependence of dvt2                             | None | 0.0 |
| Wdvt0w   | Width dependence of dvt0w                            | None | 0.0 |
| Wdvt1w   | Width dependence of dvt1w                            | None | 0.0 |
| Wdvt2w   | Width dependence of dvt2w                            | None | 0.0 |
| Wu0      | Width dependence of mobility degradation coefficient | None | 0.0 |
| Wua      | Width dependence of ua                               | None | 0.0 |
| Wub      | Width dependence of ub                               | None | 0.0 |
| Wuc      | Width dependence of uc                               | None | 0.0 |
| Wvsat    | Width dependence of vsat                             | None | 0.0 |
| Wa0      | Width dependence of a0                               | None | 0.0 |
| Wags     | Width dependence of ags                              | None | 0.0 |
| Wb0      | Width dependence of b0                               | None | 0.0 |
| Wb1      | Width dependence of b1                               | None | 0.0 |
| Wketa    | Width dependence of keta                             | None | 0.0 |
| Wketas   | Width dependence of ketas                            | None | 0.0 |
| Wa1      | Width dependence of a1                               | None | 0.0 |
| Wa2      | Width dependence of a2                               | None | 0.0 |
| Wrdsw    | Width dependence of rdsw                             | None | 0.0 |
| Wprwb    | Width dependence of prwb                             | None | 0.0 |
| Wprwg    | Width dependence of prwg                             | None | 0.0 |
| Wwr      | Width dependence of wr                               | None | 0.0 |
| Wnfactor | Width dependence of nfactor                          | None | 0.0 |
| Wdwg     | Width dependence of dwg                              | None | 0.0 |
| Wdwb     | Width dependence of dwb                              | None | 0.0 |
| Wvoff    | Width dependence of voff                             | None | 0.0 |
| Weta0    | Width dependence of barrier lowering coefficient     | um   | 0.0 |
| Wetab    | Width dependence of sens                             | um/V | 0.0 |
| Wdsub    | Width dependence of dsub                             | None | 0.0 |
| Wcit     | Width dependence of cit                              | None | 0.0 |
| Wcdsc    | Width dependence of cdsc                             | None | 0.0 |
| Wcdscb   | Width dependence of cdscb                            | None | 0.0 |
| Wcdscd   | Width dependence of cdscd                            | None | 0.0 |
| Wpclm    | Width dependence of pclm                             | None | 0.0 |
| Wpdiblc1 | Width dependence of pdiblc1                          | None | 0.0 |
| Wpdiblc2 | Width dependence of pdiblc2                          | None | 0.0 |
| Wpdiblcb | Width dependence of pdiblcb                          | None | 0.0 |

| Wdrout    | Width dependence of drout      | n 2011.01 - Nonlinear De<br>None | 0.0 |
|-----------|--------------------------------|----------------------------------|-----|
| Wpvag     | Width dependence of pvag       | None                             | 0.0 |
| Wdelta    | Width dependence of delta      | None                             | 0.0 |
| Walpha0   | Width dependence of alpha0     | None                             | 0.0 |
| Wfbjtii   | Width dependence of fbjtii     | None                             | 0.0 |
| Wbeta0    | Width dependence of beta       | None                             | 0.0 |
| Wbeta1    | Width dependence of beta1      | None                             | 0.0 |
| Wbeta2    | Width dependence of beta2      | None                             | 0.0 |
| Wvdsatii0 | Width dependence of vdsatii0   | None                             | 0.0 |
| Wlii      | Width dependence of lii        | None                             | 0.0 |
| Wesatii   | Width dependence of esatii     | None                             | 0.0 |
| Wsii0     | Width dependence of sii0       | None                             | 0.0 |
| Wsii1     | Width dependence of sii1       | None                             | 0.0 |
| Wsii2     | Width dependence of sii2       | None                             | 0.0 |
| Wsiid     | Width dependence of siid       | None                             | 0.0 |
| Wagidl    | Width dependence of agidl      | None                             | 0.0 |
| Wbgidl    | Width dependence of bgidl      | None                             | 0.0 |
| Wngidl    | Width dependence of ngidl      | None                             | 0.0 |
| Wntun     | Width dependence of ntun       | None                             | 0.0 |
| Wndiode   | Width dependence of ndiode     | None                             | 0.0 |
| Wnrecf0   | Width dependence of nrecf0     | None                             | 0.0 |
| Wnrecr0   | Width dependence of nrecr0     | None                             | 0.0 |
| Wisbjt    | Width dependence of isbjt      | None                             | 0.0 |
| Wisdif    | Width dependence of isdif      | None                             | 0.0 |
| Wistun    | Width dependence of istun      | None                             | 0.0 |
| Wvrec0    | Width dependence of vrec0      | None                             | 0.0 |
| Wvtun0    | Width dependence of vtun0      | None                             | 0.0 |
| Wnbjt     | Width dependence of nbjt       | None                             | 0.0 |
| Wlbjt0    | Width dependence of lbjt0      | None                             | 0.0 |
| Wvabjt    | Width dependence of vabjt      | None                             | 0.0 |
| Waely     | Width dependence of aely       | None                             | 0.0 |
| Wahli     | Width dependence of ahli       | None                             | 0.0 |
| Wvsdfb    | Width dependence of vsdfb      | None                             | 0.0 |
| Wvsdth    | Width dependence of vsdth      | None                             | 0.0 |
| Wdelvt    | Width dependence of delvt      | None                             | 0.0 |
| Wacde     | Width dependence of Acde       | None                             | 0.0 |
| Wmoin     | Width dependence of Moin       | um×V <sup>(1/2)</sup>            | 0.0 |
| Pnch      | Cross-term dependence of nch   | None                             | 0.0 |
| Pnsub     | Cross-term dependence of nsub  | None                             | 0.0 |
| Pngate    | Cross-term dependence of ngate | None                             | 0.0 |
| Pvth0     | Cross-term dependence of vth0  | None                             | 0.0 |
| Pk1       | Cross-term dependence of k1    | None                             | 0.0 |
| Pk1w1     | Cross-term dependence of K1w1  | None                             | 0.0 |

| Pk1w2    | Advanced Design System<br>Cross-term dependence of K1w2 | None | 0.0 |
|----------|---------------------------------------------------------|------|-----|
| Pk2      | Cross-term dependence of k2                             | None | 0.0 |
| Pk3      | Cross-term dependence of k3                             | None | 0.0 |
| Pk3b     | Cross-term dependence of k3b                            | None | 0.0 |
| Pkb1     | Cross-term dependence of kb1                            | None | 0.0 |
| Pw0      | Cross-term dependence of w                              | None | 0.0 |
| Pnlx     | Cross-term dependence of nlx                            | None | 0.0 |
| Pdvt0    | Cross-term dependence of dvt0                           | None | 0.0 |
| Pdvt1    | Cross-term dependence of dvt1                           | None | 0.0 |
| Pdvt2    | Cross-term dependence of dvt2                           | None | 0.0 |
| Pdvt0w   | Cross-term dependence of dvt0w                          | None | 0.0 |
| Pdvt1w   | Cross-term dependence of dvt1w                          | None | 0.0 |
| Pdvt2w   | Cross-term dependence of dvt2w                          | None | 0.0 |
| Pu0      | Cross-term dependence of u0                             | None | 0.0 |
| Pua      | Cross-term dependence of ua                             | None | 0.0 |
| Pub      | Cross-term dependence of ub                             | None | 0.0 |
| Puc      | Cross-term dependence of uc                             | None | 0.0 |
| Pvsat    | Cross-term dependence of vsat                           | None | 0.0 |
| Pa0      | Cross-term dependence of a0                             | None | 0.0 |
| Pags     | Cross-term dependence of ags                            | None | 0.0 |
| Pb0      | Cross-term dependence of b0                             | None | 0.0 |
| Pb1      | Cross-term dependence of b1                             | None | 0.0 |
| Pketa    | Cross-term dependence of keta                           | None | 0.0 |
| Pketas   | Cross-term dependence of ketas                          | None | 0.0 |
| Pa1      | Cross-term dependence of a1                             | None | 0.0 |
| Pa2      | Cross-term dependence of a2                             | None | 0.0 |
| Prdsw    | Cross-term dependence of rdsw                           | None | 0.0 |
| Pprwb    | Cross-term dependence of prwb                           | None | 0.0 |
| Pprwg    | Cross-term dependence of prwg                           | None | 0.0 |
| Pwr      | Cross-term dependence of wr                             | None | 0.0 |
| Pnfactor | Cross-term dependence of nfactor                        | None | 0.0 |
| Pdwg     | Cross-term dependence of dwg                            | None | 0.0 |
| Pdwb     | Cross-term dependence of dwb                            | None | 0.0 |
| Pvoff    | Cross-term dependence of voff                           | None | 0.0 |
| Peta0    | Cross-term dependence of eta0                           | None | 0.0 |
| Petab    | Cross-term dependence of etab                           | None | 0.0 |
| Pdsub    | Cross-term dependence of dsub                           | None | 0.0 |
| Pcit     | Cross-term dependence of cit                            | None | 0.0 |
| Pcdsc    | Cross-term dependence of cdsc                           | None | 0.0 |
| Pcdscb   | Cross-term dependence of cdscb                          | None | 0.0 |
| Pcdscd   | Cross-term dependence of cdscd                          | None | 0.0 |
| Ppclm    | Cross-term dependence of pclm                           | None | 0.0 |
| Ppdiblc1 | Cross-term dependence of pdiblc1                        | None | 0.0 |

| Ppdiblc2  | Advanced Design System 2011.<br>Cross-term dependence of pdiblc2 | 01 - Nonlinear l | Devices |
|-----------|------------------------------------------------------------------|------------------|---------|
| Ppdiblcb  | Cross-term dependence of pdiblcb                                 | None             | 0.0     |
| Pdrout    | Cross-term dependence of drout                                   | None             | 0.0     |
| Ppvag     | Cross-term dependence of pvag                                    | None             | 0.0     |
| Pdelta    | Cross-term dependence of delta                                   | None             | 0.0     |
| Palpha0   | Cross-term dependence of alpha0                                  | None             | 0.0     |
| Pfbjtii   | Cross-term dependence of fbjtii                                  | None             | 0.0     |
| Pbeta0    | Cross-term dependence of beta0                                   | None             | 0.0     |
| Pbeta1    | Cross-term dependence of beta1                                   | None             | 0.0     |
| Pbeta2    | Cross-term dependence of beta2                                   | None             | 0.0     |
| Pvdsatii0 | Cross-term dependence of vdsatii0                                | None             | 0.0     |
| Plii      | Cross-term dependence of lii                                     | None             | 0.0     |
| Pesatii   | Cross-term dependence of esatii                                  | None             | 0.0     |
| Psii0     | Cross-term dependence of sii0                                    | None             | 0.0     |
| Psii1     | Cross-term dependence of sii1                                    | None             | 0.0     |
| Psii2     | Cross-term dependence of sii2                                    | None             | 0.0     |
| Psiid     | Cross-term dependence of siid                                    | None             | 0.0     |
| Pagidl    | Cross-term dependence of agidl                                   | None             | 0.0     |
| Pbgidl    | Cross-term dependence of bgidl                                   | None             | 0.0     |
| Pngidl    | Cross-term dependence of ngidl                                   | None             | 0.0     |
| Pntun     | Cross-term dependence of ntun                                    | None             | 0.0     |
| Pndiode   | Cross-term dependence of ndiode                                  | None             | 0.0     |
| Pnrecf0   | Cross-term dependence of nrecf0                                  | None             | 0.0     |
| Pnrecr0   | Cross-term dependence of nrecr0                                  | None             | 0.0     |
| Pisbjt    | Cross-term dependence of isbjt                                   | None             | 0.0     |
| Pisdif    | Cross-term dependence of isdif                                   | None             | 0.0     |
| Pistun    | Cross-term dependence of istun                                   | None             | 0.0     |
| Pvrec0    | Cross-term dependence of vrec0                                   | None             | 0.0     |
| Pvtun0    | Cross-term dependence of vtun0                                   | None             | 0.0     |
| Pnbjt0    | Cross-term dependence of nbjt                                    | None             | 0.0     |
| Plbjt0    | Cross-term dependence of Ibjt0                                   | None             | 0.0     |
| Pvabjt    | Cross-term dependence of vabjt                                   | None             | 0.0     |
| Paely     | Cross-term dependence of aely                                    | None             | 0.0     |
| Pahli     | Cross-term dependence of ahli                                    | None             | 0.0     |
| Pvsdfb    | Cross-term dependence of vsdfb                                   | None             | 0.0     |
| Pvsdth    | Cross-term dependence of vsdth                                   | None             | 0.0     |
| Pdelvt    | Cross-term dependence of delvt                                   | None             | 0.0     |
| Pacde     | Cross-term dependence of Acde                                    | None             | 0.0     |
| Gmin      | P-N junction parallel conductance                                | None             | 1e-20   |
| wVsubfwd  | substrate junction forward bias (warning)                        | V                | None    |
| wBvsub    | substrate junction reverse breakdown voltage (warning)           | V                | None    |
| wBvg      | gate oxide breakdown voltage (warning)                           | V                | None    |
| wBvds     | drain-source breakdown voltage (warning) 438                     | V                | None    |

Advanced Design System 2011.01 - Nonlinear Devices

| wIdsmax                                  | maximum drain-source current (warning)       | A    | None |  |
|------------------------------------------|----------------------------------------------|------|------|--|
| wPmax                                    | maximum power dissipation (warning)          | W    | None |  |
| AllParams                                | Data Access Component (DAC) Based Parameters | None | None |  |
| <sup>†</sup> binning factor (see Note 3) |                                              |      |      |  |

### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelname B3SOI [parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *B3SOI*. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

# Example:

```
model Nch8 B3SOI \
Vtho=0.7 Cj=3e-4 NMOS=yes
```

# **Notes/Equations**

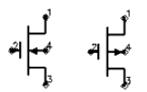
- 1. In ADS, this BSIM3SOI model is equivalent to the Berkeley model named BSIMSOI, a deep submicron, silicon-on-insulator MOSFET device model for SPICE engines; it was developed by the BSIM Group under the direction of Professor Chenming Hu in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. BSIMSOI is closely related to the industry standard bulk MOSFET model, BSIM.
- BSIMPD2.2, used for this ADS release, is the new version of the Partial Depletion SOI MOSFET model, BSIMPD SOI. The gate-body tunneling (substrate current) is added in this release to enhance the model accuracy. BSIMPD2.2 information can be found on the BSIMSOI website

"http://www-device.eecs.berkeley.edu/~bsimsoi" .

3. Several DC, AC, and capacitance parameters can be binned; these parameters follow this implementation:

$$P = P_0 + \frac{P_L}{L_{eff}} + \frac{P_w}{W_{eff}} + \frac{P_p}{L_{eff} \times W_{eff}}$$

For example, for the parameter K1, the following relationships exist:  $P_0 = k1$ ,  $P_L = lk1$ ,  $P_W = wk1$ ,  $P_P = pk1$ . The Binunit parameter is a binning unit selector. If Binunit=1, the units of L<sub>eff</sub> and W<sub>eff</sub> used in the preceding binning equation have the units of microns, otherwise in meters. For example, for a device with L<sub>eff</sub>=0.5mm and W<sub>eff</sub>=10mm, if Binunit=1, parameter values are le5, le4, 2e4, and 3e4 for Vsat, Lvsat, Wvsat, and Pvsat, respectively, Therefore, the effective value of Vsat for this device is:


 $Vsat = 1e5 + 1e4/0.5 + 2e4/10 + 3e4/(0.5 \times 10) = 1.28e5$ 

To get the same effective value of Vsat for Binunit=0, values of Vsat, Lvsat, Wvsat, and Pvsat would be 1e5, le-2, 2e-2, 3e-8, respectively. Thus:

Vsat =  $1e5 + 1e-2/0.5e6 + 2e-2/10e-6 + 3e - 8/(0.5e-6 \times 10e-6) = 1.28e5$ 

# BSIM3SOI\_NMOS, BSIM3SOI\_PMOS (BSIM3 SOI Transistor, Floating Body, NMOS, PMOS)

#### **Symbol**



#### **Parameters**

Model parameters must be specified in SI units.

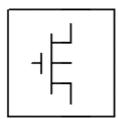
| Name                | Description                                                                         | Units          | Default  |
|---------------------|-------------------------------------------------------------------------------------|----------------|----------|
| Model               | model instance name                                                                 | None           | None     |
| Length <sup>†</sup> | channel length                                                                      | m              | 5.0e-6   |
| Width <sup>†</sup>  | channel width                                                                       | m              | 5.0e-6   |
| $Ad^{\dagger}$      | area of drain diffusion                                                             | m <sup>2</sup> | 0.0      |
| $As^{\dagger}$      | area of source diffusion                                                            | m <sup>2</sup> | 0.0      |
| $Pd^{\dagger}$      | perimeter of drain junction                                                         | m              | 0.0      |
| $Ps^{\dagger}$      | perimeter of source junction                                                        | m              | 0.0      |
| Nrd                 | number of squares of drain diffusion                                                | None           | 1.0      |
| Nrs                 | number of squares of source diffusion                                               | None           | 1.0      |
| Nrb                 | number of squares in body                                                           | None           | 1.0      |
| Bjtoff              | BJT on/off flag: yes=1, no=0                                                        | None           | no       |
| Rth0                | instance thermal resistance; defaults to Rth0                                       | Ohm            |          |
| Cth0                | instance thermal capacitance; defaults to Cth0                                      | F              |          |
| Nbc                 | number of body contact insulation edge                                              | None           | 0.0      |
| Nseg                | number of segments for width partitioning                                           | None           | 1.0      |
| Pdbcp <sup>†</sup>  | perimter length for bc parasitics at drain side                                     | None           | 0.0      |
| Psbcp <sup>†</sup>  | perimter length for bc parasitics at source side                                    | None           | 0.0      |
| $Agbcp^{\dagger}$   | gate to body overlap area for bc parasitics                                         | m <sup>2</sup> | 0.0      |
| Aebcp <sup>†</sup>  | substrate to body overlap area for bc parasitics                                    | m <sup>2</sup> |          |
| Vbsusr              | Vbs specified by the user; defaults to Vbs                                          | V              | None     |
| Temp                | device operating temperature                                                        | °C             | 25       |
| Trise               | temperature rise above ambient                                                      | °C             | 0        |
| Mode                | simulation mode: Nonlinear, Linear, Standard (refer to note for the Mode parameter) | None           | Nonlinea |
| Noise               | noise generation option: yes=1, no=0                                                | None           | yes      |
| M                   | number of devices in parallel                                                       | None           | 1        |

<sup>†</sup> Each instance parameter whose dimension contains a power of meter will be multiplied

by the Scale to the same power. For example, a parameter with a dimension of m will be multiplied by  $scale^1$  and a parameter with a dimension of  $m^2$  will be multiplied by  $scale^2$ . Note that only parameters whose dimensions contain meter are scaled. For example, a parameter whose dimension contains cm instead of meter is not scaled.

#### **DC Operating Point Information**

The following table lists the DC operating point parameters that can be sent to the dataset.


| Name    | Description                           | Units   |
|---------|---------------------------------------|---------|
| Id      | Drain current                         | amperes |
| Ig      | Gate current                          | amperes |
| Is      | Source current                        | amperes |
| Ib      | Bulk current                          | amperes |
| Power   | DC power dissipated                   | watts   |
| Gm      | Forward transconductance (dIds/dVgs)  | siemens |
| Gmb     | Backgate transconductance (dIds/dVbs) | siemens |
| Gds     | Output conductance (dIds/dVds)        | siemens |
| Vth     | Threshold voltage                     | volts   |
| Vdsat   | Drain-source saturation voltage       | volts   |
| DqgDvgb | (dQg/dVgb)                            | farads  |
| DqgDvdb | (dQg/dVdb)                            | farads  |
| DqgDvsb | (dQg/dVsb)                            | farads  |
| DqgDveb | (dQg/dVeb)                            | farads  |
| DqbDvgb | (dQb/dVgb)                            | farads  |
| DqbDvdb | (dQb/dVdb)                            | farads  |
| DqbDvsb | (dQb/dVsb)                            | farads  |
| DqbDveb | (dQb/dVeb)                            | farads  |
| DqdDvgb | (dQd/dVgb)                            | farads  |
| DqdDvdb | (dQd/dVdb)                            | farads  |
| DqdDvsb | (dQd/dVsb)                            | farads  |
| DqdDveb | (dQd/dVeb)                            | farads  |
| DqeDvgb | (dQe/dVgb)                            | farads  |
| DqeDvdb | (dQe/dVdb)                            | farads  |
| DqeDvsb | (dQe/dVsb)                            | farads  |
| DqeDveb | (dQe/dVeb)                            | farads  |
| Vgs     | Gate-source voltage                   | volts   |
| Vds     | Drain-source voltage                  | volts   |
| Vbs     | Bulk-source voltage                   | volts   |
| Ves     | Substrate-source voltage              | volts   |
| Vps     | Body-source voltage                   | volts   |

#### **Notes/Equations**

 The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.

# BSIM4\_Model (BSIM4 MOSFET Model)

#### Symbol



#### **Parameters**

| Name     | Description                                                              | Units | Default          |
|----------|--------------------------------------------------------------------------|-------|------------------|
| NMOS     | Model type: yes or no                                                    | None  | yes              |
| PMOS     | Model type: yes or no                                                    | None  | no               |
| Capmod   | Capacitance model selector                                               | None  | 2                |
| Diomod   | Diode IV model selector                                                  | None  | 1                |
| Rdsmod   | Bias-dependent S/D resistance model selector                             | None  | 0                |
| Trnqsmod | Transient NQS model selector                                             | None  | 0                |
| Acnqsmod | AC NQS model selector                                                    | None  | 0                |
| Mobmod   | Mobility model selector                                                  | None  | 0                |
| Rbodymod | Distributed body R model selector                                        | None  | 0                |
| Rgatemod | Gate R model selector                                                    | None  | 0                |
| Permod   | Pd and Ps model selector                                                 | None  | 1                |
| Geomod   | Geometry dependent parasitics model selector                             | None  | 0                |
| Rgeomod  | S/D resistance and contact model selector                                | None  | 0                |
| Fnoimod  | Flicker noise model selector                                             | None  | 1                |
| Tnoimod  | Thermal noise model selector                                             | None  | 0                |
| Igcmod   | Gate-to-channel Ig model selector                                        | None  | 0                |
| Igbmod   | Gate-to-body Ig model selector                                           | None  | 0                |
| Tempmod  | Temperature model selector                                               | None  | 0                |
| Paramchk | Model parameter checking selector                                        | None  | 1                |
| Nf       | Number of fingers                                                        | None  | 1.0              |
| Binunit  | Bin unit selector                                                        | None  | 1                |
| Version  | Parameter for model version                                              | None  | 4.65             |
| Toxe     | Electrical gate oxide thickness in meters                                | None  | 30.0e-10         |
| Тохр     | Physical gate oxide thickness in meters; defaults to Toxe                | None  | defaults to Toxe |
| Toxm     | Gate oxide thickness at which parameters are extracted; defaults to Toxe | None  | defaults to Toxe |
| Toxref   | Target Tox value                                                         | None  | 30.0e-10         |
| Dtox     | Defined as (Toxe - Toxp)                                                 | None  | 0.0              |

| Epsrox  | Dielectric constant of the gate oxide relative to                                | None                     | 3.9        |
|---------|----------------------------------------------------------------------------------|--------------------------|------------|
| Cdsc    | Vacuum<br>Drain/Source and channel coupling capacitance                          | F/(V×m <sup>2</sup>      | 2 40-4     |
| Cusc    | brainy source and channel coupling capacitance                                   | F/(V×m²<br>)             |            |
| Cdscb   | Body-bias dependence of Cdsc                                                     | F/(V×m <sup>2</sup> )    | 0.0        |
| Cdscd   | Drain-bias dependence of Cdsc                                                    | F/(V×m <sup>2</sup><br>) | 0.0        |
| Cit     | Interface state capacitance                                                      | F/(V×m <sup>2</sup><br>) | 0.0        |
| Nfactor | Subthreshold swing coefficient                                                   | None                     | 1.0        |
| Xj      | Junction depth in meters                                                         | m                        | 1.5e-7     |
| Vsat    | Saturation velocity at Tnom                                                      | m/s                      | 8.0e4      |
| At      | Temperature coefficient of Vsat                                                  | m/s                      | 3.3e4      |
| A0      | Non-uniform depletion width effect coefficient                                   | None                     | 1.0        |
| Ags     | Gate bias coefficient of Abulk                                                   | V <sup>-1</sup>          | 0.0        |
| A1      | First non-saturation effect coefficient                                          | V <sup>-1</sup>          | 0.0        |
| A2      | Second non-saturation effect coefficient                                         | None                     | 1.0        |
| Keta    | Body-bias coefficient of non-uniform depletion width effect                      | V <sup>-1</sup>          | -0.047     |
| Nsub    | Substrate doping concentration                                                   | cm <sup>-3</sup>         | 6.0e16     |
| Ndep    | Channel doping concentration at the depletion edge                               | cm <sup>-3</sup>         | 1.7e17     |
| Nsd     | S/D doping concentration                                                         | cm <sup>-3</sup>         | 1.0e20     |
| Phin    | Adjusting parameter for surface potential due to non-<br>uniform vertical doping | V                        | 0.0        |
| Ngate   | Poly-gate doping concentration                                                   | cm <sup>-3</sup>         | 0.0        |
| Gamma1  | Vth body coefficient                                                             | V <sup>(1/2)</sup>       | calculated |
| Gamma2  | Vth body coefficient                                                             | V <sup>(1/2)</sup>       | calculated |
| Vbx     | Vth transition body voltage                                                      | V                        | calculated |
| Vbm     | Maximum body voltage                                                             | V                        | -3.0       |
| Xt      | Doping depth                                                                     | m                        | 1.55e-7    |
| K1      | Bulk effect coefficient 1                                                        | V <sup>(1/2)</sup>       | 0.53       |
| Kt1     | Temperature coefficient of Vth                                                   | V                        | -0.11      |
| Kt1l    | Temperature coefficient of Vth                                                   | V×m                      | 0.0        |
| Kt2     | Body coefficient of Kt1                                                          | None                     | 0.022      |
| K2      | Bulk effect coefficient 2                                                        | None                     | -0.0186    |
| К3      | Narrow width effect coefficient                                                  | None                     | 80.0       |
| K3b     | Body effect coefficient of K3                                                    | V <sup>-1</sup>          | 0.0        |
| W0      | Narrow width effect parameter                                                    | m                        | 2.5e-6     |
| Dvtp0   | First parameter for Vth shift due to pocket                                      | m                        | 0.0        |
| Dvtp1   | Second parameter for Vth shift due to pocket                                     | V <sup>-1</sup>          | 0.0        |
| Lpe0    | Equivalent length of pocket region at zero bias                                  | m                        | 1.74e-7    |
| Lpeb    | Equivalent length of pocket region accounting for body bias                      | m                        | 0.0        |
| Dvt0    | Short channel effect coefficient 0                                               | None                     | 2.2        |
| Dvt1    | Short channel effect coefficient 1                                               | None                     | 0.53       |
| Dvt2    | Short channel effect coefficient 2                                               | V <sup>-1</sup>          | -0.032     |

Advanced Design System 2011.01 - Nonlinear Devices

|         | Advanced Design System 2011.01 -                    | Nonlinear De             | evices                                          |
|---------|-----------------------------------------------------|--------------------------|-------------------------------------------------|
| Dvt0w   | Narrow Width coefficient 0                          | None                     | 0.0                                             |
| Dvt1w   | Narrow Width effect coefficient 1                   | m <sup>-1</sup>          | 5.3e6                                           |
| Dvt2w   | Narrow Width effect coefficient 2                   | V <sup>-1</sup>          | -0.032                                          |
| Drout   | DIBL coefficient of output resistance               | None                     | 0.56                                            |
| Dsub    | DIBL coefficient in the subthreshold region         | None                     | fixed by Drout                                  |
| Vth0    | Threshold voltage                                   | V                        | 0.7 (NMOS)                                      |
| Ua      | Linear gate dependence of mobility                  | None                     | 1.0e-15 (Mobmod=2),                             |
| Ua1     | Temperature coefficient of Ua                       | m/V                      | 1.0e-9                                          |
| Ub      | Quadratic gate dependence of mobility               | (m/V <sup>2</sup> )      | 1.0e-19                                         |
| Ub1     | Temperature coefficient of Ub                       | (m/V <sup>2</sup> )      | -1.0e-18                                        |
| Uc      | Body-bias dependence of mobility                    | V <sup>-1</sup>          | -0.0465 (Mobmod=1), -<br>0.0465e-9 (Mobmod=0,2) |
| Uc1     | Temperature coefficient of Uc                       | V <sup>-1</sup>          | -0.056 (Mobmod=1), -<br>0.056e-9 (Mobmod=0,2)   |
| U0      | Low-field mobility at Tnom                          | m <sup>2</sup><br>/(V×s) | 0.067 (NMOS),                                   |
| Eu      | Mobility exponent                                   | None                     | 1.67 (NMOS)                                     |
| Ute     | Temperature coefficient of mobility                 | None                     | -1.5                                            |
| Voff    | Threshold voltage offset                            | V                        | -0.08                                           |
| Minv    | Fitting parameter for moderate inversion in Vgsteff | None                     | 0.0                                             |
| Voffl   | Length dependence parameter for Vth offset          | V×m                      | 0.0                                             |
| Tnom    | Parameter measurement temperature                   | °C                       | 25                                              |
| Trise   | temperature rise above ambient                      | °C                       | 0                                               |
| Cgso    | Gate-source overlap capacitance per width           | F/m                      | calculated                                      |
| Cgdo    | Gate-drain overlap capacitance per width            | F/m                      | calculated                                      |
| Cgbo    | Gate-bulk overlap capacitance per length            | F/m                      | 0.0                                             |
| Xpart   | Channel charge partitioning                         | None                     | 0.0                                             |
| Delta   | Effective Vds parameter                             | V                        | 0.01                                            |
| Rsh     | Source-drain sheet resistance                       | Ohm/sq                   | 0.0                                             |
| Rdsw    | Source-drain resistance per width                   | Ohm×um                   | 200.0                                           |
| Rdswmin | Source-drain resistance per width at high Vg        | Ohm×um                   | 0.0                                             |
| Rsw     | Source resistance per width                         | Ohm×um                   | 100.0                                           |
| Rdw     | Drain resistance per width                          | Ohm×um                   | 100.0                                           |
| Rdwmin  | Drain resistance per width at high Vg               | Ohm×um                   | 0.0                                             |
| Rswmin  | Source resistance per width at high Vg              | Ohm×um                   | 0.0                                             |
| Prwg    | Gate-bias effect on parasitic resistance            | V <sup>-1</sup>          | 1.0                                             |
| Prwb    | Body-effect on parasitic resistance                 | V <sup>(-1/2)</sup>      | 0.0                                             |
| Prt     | Temperature coefficient of parasitic resistance     | Ohm×um                   | 0.0                                             |
| Eta0    | Subthreshold region DIBL coefficient                | None                     | 0.08                                            |
| Etab    | Subthreshold region DIBL coefficient                | V <sup>-1</sup>          | -0.07                                           |
| Pclm    | Channel length modulation coefficient               | None                     | 1.3                                             |
| Pdiblc1 | Drain-induced barrier lowering coefficient          | None                     | 0.39                                            |
| Pdiblc2 | Drain-induced barrier lowering coefficient          | None                     | 0.0086                                          |
| Pdiblcb | Body-effect on drain-induced barrier lowering       | V <sup>-1</sup>          | 0.0                                             |
| Fprout  | Rout degradation coefficient for pocket devices     | V/m <sup>(1/2)</sup>     | 0.0                                             |
|         | Coefficient for drain-induced Vth shifts            | V <sup>-1</sup>          | 0.0                                             |

Advanced Design System 2011.01 - Nonlinear Devices

| Pditsl | Advanced Design System 2011.01 - N<br>Length dependence of drain-induced Vth shifts         | m <sup>-1</sup>  | 0.0               |
|--------|---------------------------------------------------------------------------------------------|------------------|-------------------|
| Pditsd | Vds dependence of drain-induced Vth shifts                                                  | V <sup>-1</sup>  | 0.0               |
| Pscbe1 | Substrate current body-effect coefficient                                                   | V/m              | 4.24e8            |
| Pscbe2 | Substrate current body-effect coefficient                                                   | m/V              | 1.0e-5            |
| Pvag   | Gate dependence of output resistance parameter                                              | None             | 0.0               |
| Jss    | Bottom source junction reverse saturation current density                                   | A/m <sup>2</sup> | 1.0e-4            |
| Jsws   | Isolation edge sidewall source junction reverse saturation current density                  | A/m              | 0.0               |
| Jswgs  | Gate edge source junction reverse saturation current density                                | A/m              | 0.0               |
| Pbs    | Source junction built-in potential                                                          | V                | 1.0               |
| Njs    | Source junction emission coefficient                                                        | None             | 1.0               |
| Xtis   | Source junction current temperature exponent                                                | None             | 3.0               |
| Mjs    | Source bottom junction capacitance grading coefficient                                      | None             | 0.5               |
| Pbsws  | Source sidewall junction capacitance built-in potential                                     | V                | 1.0               |
| Mjsws  | Source sidewall junction capacitance grading coefficient                                    | None             | 0.33              |
| Pbswgs | Source gate side sidewall junction capacitance built-in potential; defaults to Pbsws        | V                | defaults to Pbsws |
| Mjswgs | Source gate side sidewall junction capacitance grading coefficient; defaults to Mjsws       | None             | defaults to Mjsws |
| Cjs    | Source bottom junction capacitance per unit area                                            | F/m <sup>2</sup> | 5.0e-4            |
| Cjsws  | Source sidewall junction capacitance per unit periphery                                     | F/m              | 5.0e-10           |
| Cjswgs | Source gate side sidewall junction capacitance per unit width; defaults to Cjsws            | F/m              | defaults to Cjsws |
| Jsd    | Bottom drain junction reverse saturation current density; defaults to Jss                   | A/m <sup>2</sup> | defaults to Jss   |
| Jswd   | Isolation edge sidewall drain junction reverse saturation current density; defaults to Jsws | A/m              | defaults to Jsws  |
| Jswgd  | Gate edge drain junction reverse saturation current density; defaults to Jswgs              | None             | defaults to Jswgs |
| Pbd    | Drain junction built-in potential; defaults to Pbs                                          | V                | None              |
| Njd    | Drain junction emission coefficient; defaults to Njs                                        | None             | defaults to Njs   |
| Xtid   | Drain junction current temperature exponent;<br>defaults to Xtis                            | None             | defaults to Xtis  |
| Mjd    | Drain bottom junction capacitance grading coefficient; defaults to Mjs                      | None             | defaults to Mjs   |
| Pbswd  | Drain sidewall junction capacitance built-in potential;<br>defaults to Pbsws                | V                | defaults to Pbsws |
| Mjswd  | Drain sidewall junction capacitance grading coefficient; defaults to Mjsws                  | None             | None              |
| Pbswgd | Drain gate side sidewall junction capacitance built-in potential; defaults to Pbswgs        | V                | None              |
| Mjswgd | Drain gate side sidewall junction capacitance grading coefficient; defaults to Mjswgs       | None             | None              |
| Cjd    | Drain bottom junction capacitance per unit area;<br>defaults to Cjs                         | F/m <sup>2</sup> | None              |
| Cjswd  | Drain sidewall junction capacitance per unit periphery; defaults to Cjsws                   | F/m              | None              |

| Cjswgd   | Advanced Design System 2011.01 -<br>Drain gate side sidewall junction capacitance per unit<br>width; defaults to Cjswg |                          | None             |
|----------|------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|
| Vfbcv    | Flat Band Voltage parameter for capmod                                                                                 | V                        | -1.0             |
| Vfb      | Flat Band Voltage                                                                                                      | V                        | -1.0             |
| Трb      | Temperature coefficient of pb                                                                                          | V/K                      | 0.0              |
| Тсј      | Temperature coefficient of cj                                                                                          | K <sup>-1</sup>          | 0.0              |
| Tpbsw    | Temperature coefficient of pbsw                                                                                        | V/K                      | 0.0              |
| Tcjsw    | Temperature coefficient of cjsw                                                                                        | K <sup>-1</sup>          | 0.0              |
| Tpbswg   | Temperature coefficient of pbswg                                                                                       | V/K                      | 0.0              |
| Tcjswg   | Temperature coefficient of cjswg                                                                                       | K <sup>-1</sup>          | 0.0              |
| Acde     | Exponential coefficient for finite charge thickness                                                                    | m/V                      | 1.0              |
| Moin     | Coefficient for gate-bias dependent surface potential                                                                  | None                     | 15.0             |
| Noff     | C-V turn-on/off parameter                                                                                              | None                     | 1.0              |
| Voffcv   | C-V lateral-shift parameter                                                                                            | V                        | 0.0              |
| Dmcg     | Distance of Mid-Contact to Gate edge                                                                                   | m                        | 0.0              |
| Dmci     | Distance of Mid-Contact to Isolation; defaults to<br>Dmcg                                                              | m                        | defaults to Dmcg |
| Dmdg     | Distance of Mid-Diffusion to Gate edge                                                                                 | m                        | 0.0              |
| Dmcgt    | Distance of Mid-Contact to Gate edge in Test structures                                                                | m                        | 0.0              |
| Xgw      | Distance from gate contact center to device edge                                                                       | m                        | 0.0              |
| Xgl      | Variation in Ldrawn                                                                                                    | m                        | 0.0              |
| Rshg     | Gate sheet resistance                                                                                                  | Ohm/sq                   | 0.1              |
| Ngcon    | Number of gate contacts                                                                                                | None                     | 1.0              |
| Xrcrg1   | First fitting parameter the bias-dependent Rg                                                                          | None                     | 12.0             |
| Xrcrg2   | Second fitting parameter the bias-dependent Rg                                                                         | None                     | 1.0              |
| Xw       | W offset for channel width due to mask/etch effect                                                                     | m                        | None             |
| XI       | L offset for channel width due to mask/etch effect                                                                     | m                        | None             |
| Lambda   | Velocity overshoot parameter                                                                                           | m <sup>3</sup><br>/(V×s) | 0.0              |
| Vtl      | Thermal velocity                                                                                                       | m/s                      | 2.0e5            |
| Lc       | Velocity back scattering parameter                                                                                     | m                        | 5.0e-9           |
| Xn       | Velocity back scattering coefficient                                                                                   | None                     | 3.0              |
| Vfbsdoff | S/D flatband voltage offset                                                                                            | V                        | 0.0              |
| Lintnoi  | Lint offset for noise calculation                                                                                      | m                        | 0.0              |
| Lint     | Length reduction parameter                                                                                             | m                        | 0.0              |
| LI       | Length reduction parameter                                                                                             | m                        | 0.0              |
| Llc      | Length reduction parameter for CV                                                                                      | m                        | 0.0              |
| Lln      | Length reduction parameter                                                                                             | None                     | 1.0              |
| Lw       | Length reduction parameter                                                                                             | m                        | 0.0              |
| Lwc      | Length reduction parameter for CV; defaults to Lw                                                                      | m                        | defaults to Lw   |
| Lwn      | Length reduction parameter                                                                                             | None                     | 1.0              |
| Lwl      | Length reduction parameter                                                                                             | m                        | 0.0              |
| Lwlc     | Length reduction parameter for CV; defaults to Lwl                                                                     | m                        | defaults to Lwl  |
| Lmin     | Minimum length for the model                                                                                           | m                        | 0.0              |
| Lmax     | Maximum length for the model                                                                                           | m                        | 1.0              |
| Wr       | Width dependence of rds                                                                                                | None                     | 1.0              |
| Wint     | Width reduction parameter 448                                                                                          | m                        | 0.0              |

Advanced Design System 2011.01 - Nonlinear Devices

| Dwg     | Advanced Design System 2011.01 - Width reduction parameter | m/V                  | 0.0                                                     |
|---------|------------------------------------------------------------|----------------------|---------------------------------------------------------|
| Dwb     | Width reduction parameter                                  | m/V <sup>(1/2)</sup> | 0.0                                                     |
| WI      |                                                            |                      |                                                         |
|         | Width reduction parameter                                  | m                    | 0.0                                                     |
| WIC     | Width reduction parameter for CV; defaults to WI           | Mana                 | defaults to WI                                          |
| WIn     | Width reduction parameter                                  | None                 | 1.0                                                     |
| Ww      | Width reduction parameter                                  | m                    |                                                         |
| Wwc     | Width reduction parameter for CV; defaults to Ww           | Mana                 | defaults to Ww                                          |
| Wwn     | Width reduction parameter                                  | None                 | 1.0                                                     |
| Wwl     | Width reduction parameter                                  | m                    |                                                         |
| Wwlc    | Width reduction parameter for CV; defaults to Wwl          | m                    | defaults to Wwl                                         |
| Wmin    | Minimum width for the model                                | m                    | 0.0                                                     |
| Wmax    | Maximum width for the model                                | m                    | 1.0                                                     |
| B0      | A bulk narrow width parameter                              | m                    | 0.0                                                     |
| B1      | A bulk narrow width parameter                              | m                    | 0.0                                                     |
| Cgsl    | New C-V model parameter                                    | F/m                  | 0.0                                                     |
| Cgdl    | New C-V model parameter                                    | F/m                  | 0.0                                                     |
| Ckappas | S/G overlap C-V parameter                                  | V                    | 0.6                                                     |
| Ckappad | D/G overlap C-V parameter; defaults to Ckappas             | V                    | defaults to Ckappas                                     |
| Cf      | Fringe capacitance parameter                               | F/m                  | calculated                                              |
| Clc     | Vdsat parameter for C-V model                              | m                    | 1.0e-7                                                  |
| Cle     | Vdsat parameter for C-V model                              | None                 | 0.6                                                     |
| Dwc     | Delta W for C-V model; defaults to Wint                    | m                    | defaults to Win                                         |
| Dlc     | Delta L for C-V model; defaults to Lint                    | m                    | defaults to Lint                                        |
| Dlcig   | Delta L for Ig model; defaults to Lint                     | m                    | defaults to Lint                                        |
| Dwj     | Delta W for S/D junctions; defaults to Dwc                 | None                 | defaults to Dwc                                         |
| Alpha0  | substrate current model parameter                          | A×m/V                | 0.0                                                     |
| Alpha1  | substrate current model parameter                          | A/V                  | 0.0                                                     |
| Beta0   | substrate current model parameter                          | V                    | 0.0 (for version $\geq$ 4.50), 30. (otherwise)          |
| Agidl   | Pre-exponential constant for GIDL                          | Ohm <sup>−1</sup>    | 0.0                                                     |
| Bgidl   | Exponential constant for GIDL                              | V/m                  | 2.3e9                                                   |
| Cgidl   | Parameter for body-bias dependence of GIDL                 | V <sup>3</sup>       | 0.5                                                     |
| Egidl   | Fitting parameter for bandbending                          | V                    | 0.8                                                     |
| Aigc    | Parameter for Igc                                          | None                 | 0.43 (NMOS)                                             |
| Bigc    | Parameter for Igc                                          | None                 | 0.054 (NMOS)                                            |
| Cigc    | Parameter for Igc                                          | V <sup>-1</sup>      | 0.075 (NMOS)                                            |
| Aigsd   | Parameter for Igs,d                                        | None                 | 0.043 (NMOS)                                            |
| Bigsd   | Parameter for Igs,d                                        | None                 | 0.054 (NMOS)                                            |
| Cigsd   | Parameter for Igs,d                                        | V <sup>-1</sup>      | 0.075 (NMOS)                                            |
| Aigbacc | Parameter for Igb                                          | None                 | 1.36e-2 (for version $\geq$ 4.50),<br>0.43 (otherwise)  |
| Bigbacc | Parameter for Igb                                          | None                 | 1.71e-3 (for version $\geq$ 4.50),<br>0.054 (otherwise) |
| Cigbacc | Parameter for Igb                                          | V <sup>-1</sup>      | 0.075                                                   |
| Aigbinv | Parameter for Igb                                          | None                 | 1.11e-2 (for version $\geq$ 4.50),<br>0.35 (otherwise)  |
| Bigbinv | Parameter for Igb                                          | None                 | 9.49e-4 (for version $\geq$ 4.50),                      |

| Cigbinv  | Parameter for Igb                                                      | V-1               | 0.006                |
|----------|------------------------------------------------------------------------|-------------------|----------------------|
| Nigc     | Parameter for Igc slope                                                | None              | 1.0                  |
| Nigbinv  | Parameter for Igbinv slope                                             | None              | 3.0                  |
| Nigbacc  | Parameter for Igbacc slope                                             | None              | 1.0                  |
| Ntox     | Exponent for Tox ratio                                                 | None              | 1.0                  |
| Eigbinv  | Parameter for the Si bandgap for Igbinv                                | V                 | 1.1                  |
| Pigcd    | Parameter for Igc partition                                            | None              | 1.0                  |
| Poxedge  | Factor for the gate edge Tox                                           | None              | 1.0                  |
| Ijthdfwd | Forward drain diode forward limiting current; defaults to Ijthsfwd     |                   | defaults to Ijthsfwd |
| Ijthsfwd | Forward source diode forward limiting current                          | A                 | 0.1                  |
| Ijthdrev | Reverse drain diode forward limiting current; defaults to Ijthsrev     | A                 | defaults to Ijthsrev |
| Ijthsrev | Reverse source diode forward limiting current                          | A                 | 0.1                  |
| Xjbvd    | Fitting parameter for drain diode breakdown current; defaults to Xjbvs | None              | defaults to Xjbvs    |
| Xjbvs    | Fitting parameter for source diode breakdown current                   | None              | 1.0                  |
| Bvd      | Drain diode breakdown voltage; defaults to Bvs                         | V                 | defaults to Bvs      |
| Bvs      | Source diode breakdown voltage                                         | V                 | 10.0                 |
| Gbmin    | Minimum body conductance                                               | Ohm <sup>-1</sup> | 1.0e-12              |
| Jtss     | Source bottom trap-assisted saturation current density                 | None              | 0.0                  |
| Jtsd     | Drain bottom trap-assisted saturation current density                  | None              | 0.0                  |
| Jtssws   | Source STI sidewall trap-assisted saturation current density           | None              | 0.0                  |
| Jtsswd   | Drain STI sidewall trap-assisted saturation current density            | None              | 0.0                  |
| Jtsswgs  | Source gate-edge sidewall trap-assisted saturation current density     | None              | 0.0                  |
| Jtsswgd  | Drain gate-edge sidewall trap-assisted saturation current density      | None              | 0.0                  |
| Njts     | Non-ideality factor for bottom junction                                | None              | 20.0                 |
| Njtssw   | Non-ideality factor for STI sidewall junction                          | None              | 20.0                 |
| Njtsswg  | Non-ideality factor for gate-edge sidewall junction                    | None              | 20.0                 |
| Xtss     | Power dependence of Jtss on temperature                                | None              | 0.02                 |
| Xtsd     | Power dependence of Jtsd on temperature                                | None              | 0.02                 |
| Xtssws   | Power dependence of Jtssws on temperature                              | None              | 0.02                 |
| Xtsswd   | Power dependence of Jtsswd on temperature                              | None              | 0.02                 |
| Xtsswgs  | Power dependence of Jtsswgs on temperature                             | None              | 0.02                 |
| Xtsswgd  | Power dependence of Jtsswgd on temperature                             | None              | 0.02                 |
| Tnjts    | Temperature coefficient for Njts                                       | None              | 0.0                  |
| Tnjtssw  | Temperature coefficient for Njtssw                                     | None              | 0.0                  |
| Tnjtsswg | Temperature coefficient for Njtsswg                                    | None              | 0.0                  |
| Vtss     | Source bottom trap-assisted voltage dependent parameter                | None              | 10.0                 |
| Vtsd     | Drain bottom trap-assisted voltage dependent parameter                 | None              | 10.0                 |
| Vtssws   | Source STI sidewall trap-assisted voltage dependent                    | None              | 10.0                 |

Advanced Design System 2011.01 - Nonlinear Devices

| Advanced Design System 2011.01 -                                    | Nonlinear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drain STI sidewall trap-assisted voltage dependent parameter        | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Source gate-edge sidewall trap-assisted voltage dependent parameter | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Drain gate-edge sidewall trap-assisted voltage dependent parameter  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Resistance between bNode and dbNode                                 | Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Resistance between bNodePrime and bNode                             | Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Resistance between bNode and sbNode                                 | Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Resistance between bNodePrime and sbNode                            | Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Resistance between bNodePrime and bNode                             | Ohm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Length dependence of cdsc                                           | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of cdscb                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of cdscd                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of cit                                            | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of nfactor                                        | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of xj                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of vsat                                           | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of at                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of a0                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of ags                                            | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of a1                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of a2                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of nsub                                           | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of nsd                                            | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of phin                                           | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of ngate                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of gamma1                                         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of gamma2                                         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Length dependence of dvt1                                           | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | Drain STI sidewall trap-assisted voltage dependent<br>parameterSource gate-edge sidewall trap-assisted voltage<br>dependent parameterDrain gate-edge sidewall trap-assisted voltage<br>dependent parameterResistance between bNode and dbNodeResistance between bNode Prime and bNodeResistance between bNodePrime and sbNodeResistance between bNodePrime and bNodeResistance between bNodePrime and bNodeResistance between bNodePrime and bNodeLength dependence of cdscLength dependence of cdscdLength dependence of cdscdLength dependence of cdscdLength dependence of xjLength dependence of vsatLength dependence of alLength dependence of agsLength dependence of alLength dependence of alLength dependence of alLength dependence of systLength dependence of alLength dependence of nautoLength depende | parameterNoneSource gate-edge sidewall trap-assisted voltage<br>dependent parameterNoneDrain gate-edge sidewall trap-assisted voltage<br>dependent parameterNoneResistance between bNode and dbNodeOhmResistance between bNodePrime and bNodeOhmResistance between bNodePrime and bNodeOhmResistance between bNodePrime and bNodeOhmResistance between bNodePrime and bNodeOhmResistance between bNodePrime and bNodeNoneLength dependence of cdscbNoneLength dependence of cdscbNoneLength dependence of cdscdNoneLength dependence of sigNoneLength dependence of sigNoneLength dependence of atNoneLength dependence of alNoneLength dependence of alNoneLength dependence of sigsNoneLength dependence of alNoneLength dependence of sigsNoneLength dependence of nepNoneLength dependence of negsNoneLength dependence of negNoneLength dependence of negNoneLength dependence of negNoneLength dependence of negNoneLength dependence of of sidNoneLength dependence of sigNoneLength dependence of sigNone< |

Advanced Design System 2011.01 - Nonlinear Devices

|          | Advanced Design System 2     |      |     |
|----------|------------------------------|------|-----|
| Ldvt2    | Length dependence of dvt2    | None | 0.0 |
| Ldvt0w   | Length dependence of dvt0w   | None | 0.0 |
| Ldvt1w   | Length dependence of dvt1w   | None | 0.0 |
| Ldvt2w   | Length dependence of dvt2w   | None | 0.0 |
| Ldrout   | Length dependence of drout   | None | 0.0 |
| Ldsub    | Length dependence of dsub    | None | 0.0 |
| Lvth0    | Length dependence of vto     | None | 0.0 |
| Lua      | Length dependence of ua      | None | 0.0 |
| Lua1     | Length dependence of ua1     | None | 0.0 |
| Lub      | Length dependence of ub      | None | 0.0 |
| Lub1     | Length dependence of ub1     | None | 0.0 |
| Luc      | Length dependence of uc      | None | 0.0 |
| Luc1     | Length dependence of uc1     | None | 0.0 |
| Lu0      | Length dependence of u0      | None | 0.0 |
| Lute     | Length dependence of ute     | None | 0.0 |
| Luce     | Length dependence of voff    | None | 0.0 |
|          |                              | None | 0.0 |
| Lminv    | Length dependence of minv    |      |     |
| Ldelta   | Length dependence of delta   | None | 0.0 |
| Lrdsw    | Length dependence of rdsw    | None | 0.0 |
| Lrsw     | Length dependence of rsw     | None | 0.0 |
| Lrdw     | Length dependence of rdw     | None | 0.0 |
| Lprwg    | Length dependence of prwg    | None | 0.0 |
| Lprwb    | Length dependence of prwb    | None | 0.0 |
| Lprt     | Length dependence of prt     | None | 0.0 |
| Leta0    | Length dependence of eta0    | None | 0.0 |
| Letab    | Length dependence of etab    | None | 0.0 |
| LpcIm    | Length dependence of pclm    | None | 0.0 |
| Lpdiblc1 | Length dependence of pdiblc1 | None | 0.0 |
| Lpdiblc2 | Length dependence of pdiblc2 | None | 0.0 |
| Lpdiblcb | Length dependence of pdiblcb | None | 0.0 |
| Lfprout  | Length dependence of pdiblcb | None | 0.0 |
| Lpdits   | Length dependence of pdits   | None | 0.0 |
| Lpditsd  | Length dependence of pditsd  | None | 0.0 |
| Lpscbe1  | Length dependence of pscbe1  | None | 0.0 |
| Lpscbe2  | Length dependence of pscbe2  | None | 0.0 |
| Lpvag    | Length dependence of pvag    | None | 0.0 |
| Lwr      | Length dependence of wr      | None | 0.0 |
| Ldwg     | Length dependence of dwg     | None | 0.0 |
| Ldwb     | Length dependence of dwb     | None | 0.0 |
| Lb0      | Length dependence of b0      | None | 0.0 |
| Lb0      | Length dependence of b1      | None | 0.0 |
|          |                              |      |     |
| Lcgsl    | Length dependence of cgsl    | None | 0.0 |
| Lcgdl    | Length dependence of cgdl    | None | 0.0 |
| Lckappas | Length dependence of ckappas | None | 0.0 |
| Lckappad | Length dependence of ckappad | None | 0.0 |
| Lcf      | Length dependence of cf      | None | 0.0 |
| Lclc     | Length dependence of clc     | None | 0.0 |

Advanced Design System 2011.01 - Nonlinear Devices

|           | Advanced Design System        | 2011.01 - Nonlinear |     |
|-----------|-------------------------------|---------------------|-----|
| Lcle      | Length dependence of cle      | None                | 0.0 |
| Lalpha0   | Length dependence of alpha0   | None                | 0.0 |
| Lalpha1   | Length dependence of alpha1   | None                | 0.0 |
| Lbeta0    | Length dependence of beta0    | None                | 0.0 |
| Lagidl    | Length dependence of agidl    | None                | 0.0 |
| Lbgidl    | Length dependence of bgidl    | None                | 0.0 |
| Lcgidl    | Length dependence of cgidl    | None                | 0.0 |
| Legidl    | Length dependence of egidl    | None                | 0.0 |
| Laigc     | Length dependence of aigc     | None                | 0.0 |
| Lbigc     | Length dependence of bigc     | None                | 0.0 |
| Lcigc     | Length dependence of cigc     | None                | 0.0 |
| Laigsd    | Length dependence of aigsd    | None                | 0.0 |
| Lbigsd    | Length dependence of bigsd    | None                | 0.0 |
| Lcigsd    | Length dependence of cigsd    | None                | 0.0 |
| Laigbacc  | Length dependence of aigbacc  | None                | 0.0 |
| Lbigbacc  | Length dependence of bigbacc  | None                | 0.0 |
| Lcigbacc  | Length dependence of cigbacc  | None                | 0.0 |
| Laigbinv  | Length dependence of aigbinv  | None                | 0.0 |
| Lbigbinv  | Length dependence of bigbinv  | None                | 0.0 |
| Lcigbinv  | Length dependence of cigbinv  | None                | 0.0 |
| Lnigc     | Length dependence of nigc     | None                | 0.0 |
| Lnigbinv  | Length dependence of nigbinv  | None                | 0.0 |
| Lnigbacc  | Length dependence of nigbacc  | None                | 0.0 |
| Lingbace  | Length dependence of ntox     | None                | 0.0 |
| Leigbinv  | Length dependence for eigbinv | None                | 0.0 |
| -         |                               | <u>_</u>            | 0.0 |
| Lpigcd    | Length dependence for pigcd   | None                |     |
| Lpoxedge  | Length dependence for poxedge | None                | 0.0 |
| Lvfbcv    | Length dependence of vfbcv    | None                | 0.0 |
| Lvfb      | Length dependence of vfb      | None                | 0.0 |
| Lacde     | Length dependence of acde     | None                | 0.0 |
| Lmoin     | Length dependence of moin     | None                | 0.0 |
| Lnoff     | Length dependence of noff     | None                | 0.0 |
| Lvoffcv   | Length dependence of voffcv   | None                | 0.0 |
| Lxrcrg1   | Length dependence of xrcrg1   | None                | 0.0 |
| Lxrcrg2   | Length dependence of xrcrg2   | None                | 0.0 |
| Llambda   | Length dependence of Lambda   | None                | 0.0 |
| Lvtl      | Length dependence of Vtl      | None                | 0.0 |
| Lxn       | Length dependence of Xn       | None                | 0.0 |
| Leu       | Length dependence of eu       | None                | 0.0 |
| Lvfbsdoff | Length dependence of Vfbsdoff | None                | 0.0 |
| Wcdsc     | Width dependence of cdsc      | None                | 0.0 |
| Wcdscb    | Width dependence of cdscb     | None                | 0.0 |
| Wcdscd    | Width dependence of cdscd     | None                | 0.0 |
| Wcit      | Width dependence of cit       | None                | 0.0 |
| Wnfactor  | Width dependence of nfactor   | None                | 0.0 |
| Wxj       | Width dependence of xj        | None                | 0.0 |
|           |                               |                     |     |

Advanced Design System 2011.01 - Nonlinear Devices

|          | Advanced Design Syster     | n 2011.01 - Nonlinear | Devices |
|----------|----------------------------|-----------------------|---------|
| Wat      | Width dependence of at     | None                  | 0.0     |
| Wa0      | Width dependence of a0     | None                  | 0.0     |
| Wags     | Width dependence of ags    | None                  | 0.0     |
| Wa1      | Width dependence of a1     | None                  | 0.0     |
| Wa2      | Width dependence of a2     | None                  | 0.0     |
| Wketa    | Width dependence of keta   | None                  | 0.0     |
| Wnsub    | Width dependence of nsub   | None                  | 0.0     |
| Wndep    | Width dependence of ndep   | None                  | 0.0     |
| Wnsd     | Width dependence of nsd    | None                  | 0.0     |
| Wphin    | Width dependence of phin   | None                  | 0.0     |
| Wngate   | Width dependence of ngate  | None                  | 0.0     |
| Wgamma1  | Width dependence of gamma1 | None                  | 0.0     |
| Wgamma2  | Width dependence of gamma2 | None                  | 0.0     |
| Wvbx     | Width dependence of vbx    | None                  | 0.0     |
| Wvbm     | Width dependence of vbm    | None                  | 0.0     |
| Wxt      | Width dependence of xt     | None                  | 0.0     |
| Wk1      | Width dependence of k1     | None                  | 0.0     |
| Wkt1     | Width dependence of kt1    | None                  | 0.0     |
| Wkt1l    | Width dependence of kt1l   | None                  | 0.0     |
| Wkt2     | Width dependence of kt2    | None                  | 0.0     |
| Wk2      | Width dependence of k2     | None                  | 0.0     |
| Wk3      | Width dependence of k3     | None                  | 0.0     |
| Wk3b     | Width dependence of k3b    | None                  | 0.0     |
| Ww0      | Width dependence of w0     | None                  | 0.0     |
| Wdvtp0   | Width dependence of dvtp0  | None                  | 0.0     |
| Wdvtp1   | Width dependence of dvtp1  | None                  | 0.0     |
| Wlpe0    | Width dependence of Ipe0   | None                  | 0.0     |
| Wlpeb    | Width dependence of lpeb   | None                  | 0.0     |
| Wdvt0    | Width dependence of dvt0   | None                  | 0.0     |
| Wdvt1    | Width dependence of dvt1   | None                  | 0.0     |
| Wdvt2    | Width dependence of dvt2   | None                  | 0.0     |
| Wdvt0w   | Width dependence of dvt0w  | None                  | 0.0     |
| Wdvt1w   | Width dependence of dvt1w  | None                  | 0.0     |
| Wdvt2w   | Width dependence of dvt2w  | None                  | 0.0     |
| Wdrout   | Width dependence of drout  | None                  | 0.0     |
| Wdsub    | Width dependence of dsub   | None                  | 0.0     |
| Wvth0    | Width dependence of vto    | None                  | 0.0     |
| Wua      | Width dependence of ua     | None                  | 0.0     |
| Wua1     | Width dependence of ua1    | None                  | 0.0     |
| Wub      | Width dependence of ub     | None                  | 0.0     |
| Wub1     | Width dependence of ub1    | None                  | 0.0     |
| Wuc      | Width dependence of uc     | None                  | 0.0     |
| Wuc1     | Width dependence of uc1    | None                  | 0.0     |
| Wu0      | Width dependence of u0     | None                  | 0.0     |
| Wute     | Width dependence of ute    | None                  | 0.0     |
| Wvoff    | Width dependence of voff   | None                  | 0.0     |
| Wminv    | Width dependence of woh    | None                  | 0.0     |
| VVIIIIIV |                            | INUTIE                |         |

| Wdelta   | Width dependence of delta   | None | 0.0 |
|----------|-----------------------------|------|-----|
| Wrdsw    | Width dependence of rdsw    | None | 0.0 |
| Wrsw     | Width dependence of rsw     | None | 0.0 |
| Wrdw     | Width dependence of rdw     | None | 0.0 |
| Wprwg    | Width dependence of prwg    | None | 0.0 |
| Wprwb    | Width dependence of prwb    | None | 0.0 |
| Wprt     | Width dependence of prt     | None | 0.0 |
| Weta0    | Width dependence of eta0    | None | 0.0 |
| Wetab    | Width dependence of etab    | None | 0.0 |
| Wpclm    | Width dependence of pclm    | None | 0.0 |
| Wpdiblc1 | Width dependence of pdiblc1 | None | 0.0 |
| Wpdiblc2 | Width dependence of pdiblc2 | None | 0.0 |
| Wpdiblcb | Width dependence of pdiblcb | None | 0.0 |
| Wfprout  | Width dependence of pdiblcb | None | 0.0 |
| Wpdits   | Width dependence of pdits   | None | 0.0 |
| Wpditsd  | Width dependence of pditsd  | None | 0.0 |
| Wpscbe1  | Width dependence of pscbe1  | None | 0.0 |
| Wpscbe2  | Width dependence of pscbe2  | None | 0.0 |
| Wpvag    | Width dependence of pvag    | None | 0.0 |
| Wwr      | Width dependence of wr      | None | 0.0 |
| Wdwg     | Width dependence of dwg     | None | 0.0 |
| Wdwb     | Width dependence of dwb     | None | 0.0 |
| Wb0      | Width dependence of b0      | None | 0.0 |
| Wb1      | Width dependence of b1      | None | 0.0 |
| Wcgsl    | Width dependence of cgsl    | None | 0.0 |
| Wcgdl    | Width dependence of cgdl    | None | 0.0 |
| Wckappas | Width dependence of ckappas | None | 0.0 |
| Wckappad | Width dependence of ckappad | None | 0.0 |
| Wcf      | Width dependence of cf      | None | 0.0 |
| Wclc     | Width dependence of clc     | None | 0.0 |
| Wcle     | Width dependence of cle     | None | 0.0 |
| Walpha0  | Width dependence of alpha0  | None | 0.0 |
| Walpha1  | Width dependence of alpha1  | None | 0.0 |
| Wbeta0   | Width dependence of beta0   | None | 0.0 |
| Wagidl   | Width dependence of agidl   | None | 0.0 |
| Wbgidl   | Width dependence of bgidl   | None | 0.0 |
| Wcgidl   | Width dependence of cgidl   | None | 0.0 |
| Wegidl   | Width dependence of egidl   | None | 0.0 |
| Waigc    | Width dependence of aigc    | None | 0.0 |
| Wbigc    | Width dependence of bigc    | None | 0.0 |
| Wcigc    | Width dependence of cigc    | None | 0.0 |
| Waigsd   | Width dependence of aigsd   | None | 0.0 |
| Wbigsd   | Width dependence of bigsd   | None | 0.0 |
| Wcigsd   | Width dependence of cigsd   | None | 0.0 |
| Waigbacc | Width dependence of aigbacc | None | 0.0 |
| Wbigbacc | Width dependence of bigbacc | None | 0.0 |
| Wcigbacc | Width dependence of cigbacc | None | 0.0 |

| Waigbinv  | Advanced Design System 2<br>Width dependence of aigbinv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None | 0.0 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| Wbigbinv  | Width dependence of bigbinv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |
| Wcigbinv  | Width dependence of bigbinv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |
| Wnigc     | Width dependence of nigc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None | 0.0 |
| Wnigbinv  | Width dependence of high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None | 0.0 |
| Wnigbacc  | Width dependence of higbarc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |
| Whitox    | Width dependence of https://www.width.dependence.of https://wwwwwwwwwwwwwwwwwwwwwwwwww.width.dependence.of https://www.width.dependence.of https://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww | None | 0.0 |
|           | Width dependence of http://www.width.dependence.org/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None | 0.0 |
| Weigbinv  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None | 0.0 |
| Wpigcd    | Width dependence for pigcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 0.0 |
| Wpoxedge  | Width dependence for poxedge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None |     |
| Wvfbcv    | Width dependence of vfbcv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None | 0.0 |
| Wvfb      | Width dependence of vfb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None | 0.0 |
| Wacde     | Width dependence of acde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None | 0.0 |
| Wmoin     | Width dependence of moin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None | 0.0 |
| Wnoff     | Width dependence of noff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None | 0.0 |
| Wvoffcv   | Width dependence of voffcv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None | 0.0 |
| Wxrcrg1   | Width dependence of xrcrg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None | 0.0 |
| Wxrcrg2   | Width dependence of xrcrg2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None | 0.0 |
| Wlambda   | Width dependence of Lambda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None | 0.0 |
| Wvtl      | Width dependence of Vtl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None | 0.0 |
| Wxn       | Width dependence of Xn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None | 0.0 |
| Weu       | Width dependence of eu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None | 0.0 |
| Wvfbsdoff | Width dependence of Vfbsdoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None | 0.0 |
| Pcdsc     | Cross-term dependence of cdsc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None | 0.0 |
| Pcdscb    | Cross-term dependence of cdscb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | None | 0.0 |
| Pcdscd    | Cross-term dependence of cdscd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | None | 0.0 |
| Pcit      | Cross-term dependence of cit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None | 0.0 |
| Pnfactor  | Cross-term dependence of nfactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None | 0.0 |
| Pxj       | Cross-term dependence of xj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |
| Pvsat     | Cross-term dependence of vsat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None | 0.0 |
| Pat       | Cross-term dependence of at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |
| Pa0       | Cross-term dependence of a0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |
| Pags      | Cross-term dependence of ags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None | 0.0 |
| Pa1       | Cross-term dependence of a1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |
| Pa2       | Cross-term dependence of a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |
| Pketa     | Cross-term dependence of keta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None | 0.0 |
| Pnsub     | Cross-term dependence of nsub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None | 0.0 |
| Pndep     | Cross-term dependence of ndep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None | 0.0 |
| Pnsd      | Cross-term dependence of nsd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None | 0.0 |
| Pphin     | Cross-term dependence of phin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None | 0.0 |
| Pngate    | Cross-term dependence of ngate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | None | 0.0 |
| Pgamma1   | Cross-term dependence of gamma1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None | 0.0 |
| Pgamma2   | Cross-term dependence of gamma2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None | 0.0 |
| Pvbx      | Cross-term dependence of vbx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None | 0.0 |
| Pvbm      | Cross-term dependence of vbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None | 0.0 |
| Pxt       | Cross-term dependence of xt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |
| Pk1       | Cross-term dependence of k1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | None | 0.0 |

| Pkt1     | Cross-term dependence of kt1     | None | 0.0 |
|----------|----------------------------------|------|-----|
| Pkt1l    | Cross-term dependence of kt1l    | None | 0.0 |
| Pkt2     | Cross-term dependence of kt2     | None | 0.0 |
| Pk2      | Cross-term dependence of k2      | None | 0.0 |
| Pk3      | Cross-term dependence of k3      | None | 0.0 |
| Pk3b     | Cross-term dependence of k3b     | None | 0.0 |
| Pw0      | Cross-term dependence of w0      | None | 0.0 |
| Pdvtp0   | Cross-term dependence of dvtp0   | None | 0.0 |
| Pdvtp1   | Cross-term dependence of dvtp1   | None | 0.0 |
| Plpe0    | Cross-term dependence of Ipe0    | None | 0.0 |
| Plpeb    | Cross-term dependence of lpeb    | None | 0.0 |
| Pdvt0    | Cross-term dependence of dvt0    | None | 0.0 |
| Pdvt1    | Cross-term dependence of dvt1    | None | 0.0 |
| Pdvt2    | Cross-term dependence of dvt2    | None | 0.0 |
| Pdvt0w   | Cross-term dependence of dvt0w   | None | 0.0 |
| Pdvt1w   | Cross-term dependence of dvt1w   | None | 0.0 |
| Pdvt2w   | Cross-term dependence of dvt2w   | None | 0.0 |
| Pdrout   | Cross-term dependence of drout   | None | 0.0 |
| Pdsub    | Cross-term dependence of dsub    | None | 0.0 |
| Pvth0    | Cross-term dependence of vto     | None | 0.0 |
| Pua      | Cross-term dependence of ua      | None | 0.0 |
| Pua1     | Cross-term dependence of ua1     | None | 0.0 |
| Pub      | Cross-term dependence of ub      | None | 0.0 |
| Pub1     | Cross-term dependence of ub1     | None | 0.0 |
| Puc      | Cross-term dependence of uc      | None | 0.0 |
| Puc1     | Cross-term dependence of uc1     | None | 0.0 |
| Pu0      | Cross-term dependence of u0      | None | 0.0 |
| Pute     | Cross-term dependence of ute     | None | 0.0 |
| Pvoff    | Cross-term dependence of voff    | None | 0.0 |
| Pminv    | Cross-term dependence of minv    | None | 0.0 |
| Pdelta   | Cross-term dependence of delta   | None | 0.0 |
| Prdsw    | Cross-term dependence of rdsw    | None | 0.0 |
| Prsw     | Cross-term dependence of rsw     | None | 0.0 |
| Prdw     | Cross-term dependence of rdw     | None | 0.0 |
| Pprwg    | Cross-term dependence of prwg    | None | 0.0 |
| Pprwb    | Cross-term dependence of prwb    | None | 0.0 |
| Pprt     | Cross-term dependence of prt     | None | 0.0 |
| Peta0    | Cross-term dependence of eta0    | None | 0.0 |
| Petab    | Cross-term dependence of etab    | None | 0.0 |
| Ppclm    | Cross-term dependence of pclm    | None | 0.0 |
| Ppdiblc1 | Cross-term dependence of pdiblc1 | None | 0.0 |
| Ppdiblc2 | Cross-term dependence of pdiblc2 | None | 0.0 |
| Ppdiblcb | Cross-term dependence of pdiblcb | None | 0.0 |
| Pfprout  | Cross-term dependence of pdiblcb | None | 0.0 |
| Ppdits   | Cross-term dependence of pdits   | None | 0.0 |
| Ppditsd  | Cross-term dependence of pditsd  | None | 0.0 |
| Ppscbe1  | Cross-term dependence of pscbe1  | None | 0.0 |

| Dura te a D | Advanced Design System 2          |       |     |
|-------------|-----------------------------------|-------|-----|
| Ppscbe2     | Cross-term dependence of pscbe2   | None  | 0.0 |
| Ppvag       | Cross-term dependence of pvag     | None  | 0.0 |
| Pwr         | Cross-term dependence of wr       | None  | 0.0 |
| Pdwg        | Cross-term dependence of dwg      | None  | 0.0 |
| Pdwb        | Cross-term dependence of dwb      | None  | 0.0 |
| Pb0         | Cross-term dependence of b0       | None  | 0.0 |
| Pb1         | Cross-term dependence of b1       | None  | 0.0 |
| Pcgsl       | Cross-term dependence of cgsl     | None  | 0.0 |
| Pcgdl       | Cross-term dependence of cgdl     | None  | 0.0 |
| Pckappas    | Cross-term dependence of ckappas  | None  | 0.0 |
| Pckappad    | Cross-term dependence of ckappad  | None  | 0.0 |
| Pcf         | Cross-term dependence of cf       | None  | 0.0 |
| Pclc        | Cross-term dependence of clc      | None  | 0.0 |
| Pcle        | Cross-term dependence of cle      | None  | 0.0 |
| Palpha0     | Cross-term dependence of alpha0   | None  | 0.0 |
| Palpha1     | Cross-term dependence of alpha1   | None  | 0.0 |
| Pbeta0      | Cross-term dependence of beta0    | None  | 0.0 |
| Pagidl      | Cross-term dependence of agidl    | None  | 0.0 |
| Pbgidl      | Cross-term dependence of bgidl    | None  | 0.0 |
| Pcgidl      | Cross-term dependence of cgidl    | None  | 0.0 |
| Pegidl      | Cross-term dependence of egidl    | None  | 0.0 |
| Paigc       | Cross-term dependence of aigc     | None  | 0.0 |
| Pbigc       | Cross-term dependence of bigc     | None  | 0.0 |
| Pcigc       | Cross-term dependence of cigc     | None  | 0.0 |
| Paigsd      | Cross-term dependence of aigsd    | None  | 0.0 |
| Pbigsd      | Cross-term dependence of bigsd    | None  | 0.0 |
| Pcigsd      | Cross-term dependence of cigsd    | None  | 0.0 |
| Paigbacc    | Cross-term dependence of aigbacc  | None  | 0.0 |
| Pbigbacc    | Cross-term dependence of bigbacc  | None  | 0.0 |
| Pcigbacc    | Cross-term dependence of cigbacc  | None  | 0.0 |
| Paigbinv    | Cross-term dependence of aigbinv  | None  | 0.0 |
| Pbigbinv    | Cross-term dependence of bigbinv  | None  | 0.0 |
| Pcigbinv    | Cross-term dependence of cigbinv  | None  | 0.0 |
| Pnigc       | Cross-term dependence of nigc     | None  | 0.0 |
| Pnigbinv    | Cross-term dependence of nigbinv  | None  | 0.0 |
| Pnigbacc    | Cross-term dependence of nigbacc  | None  | 0.0 |
| Pntox       | Cross-term dependence of ntox     | None  | 0.0 |
| Peigbinv    | Cross-term dependence for eigbinv | None  | 0.0 |
| Ppigcd      | Cross-term dependence for pigcd   | None  | 0.0 |
| Ppoxedge    | Cross-term dependence for poxedge | None  | 0.0 |
| Pvfbcv      | Cross-term dependence of vfbcv    | None  | 0.0 |
| Pvfb        | Cross-term dependence of vfb      | None  | 0.0 |
| Pacde       | Cross-term dependence of acde     | None  | 0.0 |
| Pmoin       | Cross-term dependence of moin     | None  | 0.0 |
| Pnoff       | Cross-term dependence of noff     | None  | 0.0 |
| Pvoffcv     | Cross-term dependence of voffcv   | None  | 0.0 |
| Pxrcrg1     | Cross-term dependence of voncv    | None  | 0.0 |
|             |                                   | INDIE |     |

Advanced Design System 2011.01 - Nonlinear Devices

| Pxrcrg2   | Advanced Design System 2011.01 - N<br>Cross-term dependence of xrcrg2 | None | 0.0              |
|-----------|-----------------------------------------------------------------------|------|------------------|
| Plambda   | Cross-term dependence of Lambda                                       | None | 0.0              |
| Pvtl      | Cross-term dependence of Vtl                                          | None | 0.0              |
|           |                                                                       |      |                  |
| Pxn       | Cross-term dependence of Xn                                           | None | 0.0              |
| Peu       | Cross-term dependence of eu                                           | None | 0.0              |
| Pvfbsdoff | Cross-term dependence of Vfbsdoff                                     | None | 0.0              |
| Saref     | Reference distance between OD edge to poly of one side                | m    | 1.0e-6           |
| Sbref     | Reference distance between OD edge to poly of the other side          | m    | 1.0e-6           |
| Wlod      | Width parameter for stress effect                                     | m    | 0.0              |
| Ku0       | Mobility degradation/enhancement coefficient for LOD                  | m    | 0.0              |
| Kvsat     | Saturation velocity degradation/enhancement<br>parameter for LOD      | m    | 0.0              |
| Kvth0     | Threshold shift parameter for LOD                                     | V×m  | 0.0              |
| Tku0      | Temperature coefficient of Ku0                                        | None | 0.0              |
| Llodku0   | Length parameter for U0 LOD effect                                    | None | 0.0              |
| Wlodku0   | Width parameter for U0 LOD effect                                     | None | 0.0              |
| Llodvth   | Length parameter for Vth LOD effect                                   | None | 0.0              |
| Wlodvth   | Width parameter for Vth LOD effect                                    | None | 0.0              |
| Lku0      | Length dependence of Ku0                                              | None | 0.0              |
| Wku0      | Width dependence of Ku0                                               | None | 0.0              |
| Pku0      | Cross-term dependence of Ku0                                          | None | 0.0              |
| Lkvth0    | Length dependence of Kvth0                                            | None | 0.0              |
| Wkvth0    | Width dependence of Kvth0                                             | None | 0.0              |
| Pkvth0    | Cross-term dependence of Kvth0                                        | None | 0.0              |
| Stk2      | K2 shift factor related to stress effect on Vth                       | m    | 0.0              |
| Lodk2     | K2 shift modification factor for stress effect                        | None | 1.0              |
| Steta0    | Eta0 shift factor related to stress effect on Vth                     | m    | 0.0              |
| Lodeta0   | Eta0 shift modification factor for stress effect                      | None | 1.0              |
| Noia      | Flicker noise parameter                                               | None | 6.25e41 (NMOS),  |
| Noib      | Flicker noise parameter                                               | None | 3.125e26 (NMOS), |
| Noic      | Flicker noise parameter                                               | None | 8.75e9           |
| Tnoia     | Thermal noise parameter                                               | None | 1.5              |
| Tnoib     | Thermal noise parameter                                               | None | 3.5              |
| Rnoia     | Thermal noise coefficient                                             | None | 0.577            |
| Rnoib     | Thermal noise coefficient                                             | None | 0.5164           |
| Ntnoi     | Thermal noise parameter                                               | None | 1.0              |
| Em        | Flicker noise parameter                                               | V/m  | 4.1e7            |
| Ef        | Flicker noise frequency exponent                                      | None | 1.0              |
| Af        | Flicker noise exponent                                                | None | 1.0              |
| Kf        | Flicker noise coefficient                                             | None | 0.0              |
| Tlev      | Temperature equation selector $(0/1/2/3)$                             |      | 0                |
| Tlevc     | Temperature equation selector for capacitance $(0/1/2/3)$             |      | 1                |
| Eg        | Band Gap                                                              | eV   | 1.16             |
|           |                                                                       | V/°C | 7.04e-4          |
| Gap1      | Energy gap temperature coefficient alpha                              | V/ C |                  |

| L          | Advanced Design System 2011.01 -<br>Channel length                     | m               | None                                  |
|------------|------------------------------------------------------------------------|-----------------|---------------------------------------|
| W          | Channel width                                                          | m               | None                                  |
| Ad         | Drain area                                                             | m <sup>2</sup>  | None                                  |
| As         | Source area                                                            | m <sup>2</sup>  | None                                  |
| Pd         | Drain perimeter                                                        | m               | None                                  |
| Ps         | Source perimeter                                                       | m               | None                                  |
| Nrd        | Drain squares                                                          | None            | None                                  |
| Nrs        | Source squares                                                         | None            | None                                  |
| Imelt      | Explosion current similar to Imax; defaults to Imax (refer to note 13) | A               | defaults to Imax                      |
| wBvsub     | substrate junction reverse breakdown voltage warning                   | V               | None                                  |
| wBvds      | gate oxide breakdown voltage warning                                   | V               | None                                  |
| wBvds      | drain-source breakdown voltage warning                                 | V               | None                                  |
| wIdsmax    | maximum drain-source current warning                                   | A               | None                                  |
| wPmax      | maximum power dissipation warning                                      | W               | None                                  |
| AllParams  | Data Access Component (DAC) Based Parameters                           | None            | None                                  |
| Ud         | Mobility Coulumb scattering coefficient                                | m <sup>-2</sup> | 0.0 for version ≥4.61, 1e14 otherwise |
| Ud1        | Temperature coefficient for Ud                                         | m <sup>-2</sup> | 0.0                                   |
| Up         | Mobility channel length coefficient                                    | m <sup>-2</sup> | 0                                     |
| Lp         | Mobility channel length exponential coefficient                        | m               | 1e-8                                  |
| Tvoff      | Temperature coefficient of Voff                                        | K <sup>-1</sup> | 0.0                                   |
| Tvfbsdoff  | Temperature coefficient of Vfbsdoff                                    | K <sup>-1</sup> | 0.0                                   |
| Lud        | Length dependence of Ud                                                | None            | 0.0                                   |
| Lud1       | Length dependence of Ud1                                               | None            | 0.0                                   |
| Lup        | Length dependence of Up                                                | None            | 0.0                                   |
| L1p        | Length dependence of Lp                                                | None            | 0.0                                   |
| Ltvoff     | Length dependence of Tvoff                                             | None            | 0.0                                   |
| Ltvfbsdoff | Length dependence of Tvfbsdoff                                         | None            | 0.0                                   |
| Wud        | Width dependence of Ud                                                 | None            | 0.0                                   |
| Wud1       | Width dependence of Ud1                                                | None            | 0.0                                   |
| Wup        | Width dependence of Up                                                 | None            | 0.0                                   |
| Wip        | Width dependence of Lp                                                 | None            | 0.0                                   |
| Wtvoff     | Width dependence of Tvoff                                              | None            | 0.0                                   |
| Wtvfbsdoff | Width dependence of Tvfbsdoff                                          | None            | 0.0                                   |
| Pud        | Cross-term dependence of Ud                                            | None            | 0.0                                   |
| Pud1       | Cross-term dependence of Ud1                                           | None            | 0.0                                   |
| Pup        | Cross-term dependence of Up                                            | None            | 0.0                                   |
| P1p        | Cross-term dependence of Lp                                            | None            | 0.0                                   |
| Ptvoff     | Cross-term dependence of Tvoff                                         | None            | 0.0                                   |
| Ptvfbsdoff | Cross-term dependence of Tvfbsdoff                                     | None            | 0.0                                   |
| Rbps0      | Scaling prefactor for Rbps                                             | Ohm             | 50                                    |
| Rbps1      | Length Scaling parameter for Rbps                                      | None            | 0.0                                   |
| Rbpsw      | Width Scaling parameter for Rbps                                       | None            | 0.0                                   |
| Rbpsnf     | Number of fingers Scaling parameter for Rbps                           | None            | 0.0                                   |
| Rbpd0      | Scaling prefactor for Rbpd                                             | Ohm             | 50                                    |

Advanced Design System 2011.01 - Nonlinear Devices Rbpd1 Length Scaling parameter for Rbpd None 0.0 Rbpdw Width Scaling parameter for Rbpd None 0.0 Rbpdnf Number of fingers Scaling parameter for Rbpd None 0.0 Rbpbx0 Scaling prefactor for Rbpbx Ohm 100 Length Scaling parameter for Rbpbx None 0.0 Rbpbx1 Rbpbxw Width Scaling parameter for Rbpbx None 0.0 Rbpbxnf Number of fingers Scaling parameter for Rbpbx None 0.0 100 Rbpby0 Scaling prefactor for Rbpby Ohm Rbpby1 Length Scaling parameter for Rbpby None 0.0 Rbpbyw Width Scaling parameter for Rbpby None 0.0 Rbpbynf Number of fingers Scaling parameter for Rbpby None 0.0 Ohm 100 Rbsbx0 Scaling prefactor for Rbsbx Rbsby0 Scaling prefactor for Rbsby Ohm 100 Rbdbx0 Scaling prefactor for Rbdbx Ohm 100 Scaling prefactor for Rbdby Ohm 100 Rbdby0 Rbsdbx1 Length Scaling parameter for Rbsbx and Rbdbx None 0.0 Rbsdbxw Width Scaling parameter for Rbsbx and Rbdbx None 0.0 Rbsdbxnf Number of fingers Scaling parameter for Rbsbx and 0.0 None Rbdbx Length Scaling parameter for Rbsby and Rbdby 0.0 Rbsdby1 None Width Scaling parameter for Rbsby and Rbdby 0.0 Rbsdbyw None Rbsdbynf Number of fingers Scaling parameter for Rbsby and None 0.0 Rbdby Wpemod Flag for well proximity effect model (Wpemod=1 to None 0 activate this model) Web Coefficient for Scb None 0.0 0.0 Wec Coefficient for Scc None Ktvh0we 0.0 Threshold shift factor for well proximity effect None K2we K2 shift factor for well proximity effect None 0.0 Mobility degradation factor for well proximity effect Ku0we None 0.0 m Scref Reference distance to calculate Sca, Scb and Scc 1e-6 Lkvth0we Length dependence of Kvth0we None 0.0 Lk2we Length dependence of K2we None 0.0 Length dependence of Ku0we 0.0 Lku0we None Wkvth0we 0.0 Width dependence of Kvth0we None Wk2we Width dependence of K2we None 0.0 Wku0we Width dependence of Ku0we None 0.0 Pkvth0we Cross-term dependence of Kvth0we None 0.0 Cross-term dependence of K2we Pk2we None 0.0 Pku0we Cross-term dependence of Ku0we None 0.0 0 Cvchargemod Threshold voltage for C-V model selector None 0 Mtrlmod New material model selector None Eot Equivalent gate oxide thickness m 1.5e-9 V Vddeot Gate voltage at which EOT is measured 1.5 (NMOS), -1.5 (PMOS) Ados Density of states parameter to control charge None 1 centroid 1 Bdos Density of states parameter to control charge None centroid

Advanced Design System 2011.01 - Nonlinear Devices Work function of gate None Phig 4.05 Dielectric constant of gate relative to vacuum None 11.7 Epsrgate eV Easub Electron affinity of substrate 4.05 11.7 Epsrsub Dielectric constant of substrate relative to vacuum None Ni0sub Intrinsic carrier concentration of substrate at 300.15K 1.45e10 cm<sup>-3</sup> eV Bq0sub Band-gap of substrate at T=0K 1.16 Tbgasub First parameter of band-gap change due to eV/K 7.02e-4 temperature K Second parameter of band-gap change due to 1108.0 Tbgbsub temperature 0 Minvcv Fitting parameter for moderate inversion in Vgsteffcv None Voffcvl Length dependence parameter for Vth offset in CV None 0 Dlcigd Delta L for Ig model drain side m default to Dlcig Pre-exponential constant for GISL Ohm⁻1 default to Agidl Agisl Exponential constant for GISL V/m default to Bgidl Bgisl V3 Cgisl Parameter for body-bias dependence of GISL default to Cgidl V Egisl Fitting parameter for Bandbending default to Egidl None 1.36e-2 (NMOS), 9.8e-3 Aigs Parameter for Iqs (PMOS) 1.71e-3 (NMOS), 7.59e-4 None Bigs Parameter for Igs (PMOS) Cigs Parameter for Igs None 0.075 (NMOS), 0.03 (PMOS) Aigd Parameter for Igd None 1.36e-2 (NMOS), 9.8e-3 (PMOS) 1.71e-3 (NMOS), 7.59e-4 Bigd Parameter for Igd None (PMOS) None Cigd Parameter for Igd 0.075 (NMOS), 0.03 (PMOS) Njtsd Non-ideality factor for bottom junction drain side None default to Nits Non-ideality factor for STI sidewall junction drain side None Njtsswd default to Nitssw Njtsswgd Non-ideality factor for gate-edge sidewall junction None default to Njtsswg drain side None Tnjtsd Temperature coefficient for Njtsd default to Tnjts Tnjtsswd Temperature coefficient for Njtsswd None default to Tnjtssw Tnitsswad Temperature coefficient for Njtsswgd None default to Tnjtsswg Lminvcv Length dependence of Minvcv None 0 Length dependence of Agisl None 0 Lagisl Lbgisl Length dependence of Bgisl None 0 0 Lcgisl Length dependence of Cgisl None 0 Legisl Length dependence of Egisl None 0 Laigs Length dependence of Aigs None Lbigs Length dependence of Bigs None 0 Length dependence of Cigs None 0 Lcigs Laigd Length dependence of Aigd None 0 Lbigd Length dependence of Bigd None 0 Lcigd Length dependence of Cigd None 0 0 Wminvcv Width dependence of Minvcv None Wagisl Width dependence of Agisl None 0 Width dependence of Bgisl None 0 Wbgisl Width dependence of Cgisl Wcgisl None 0

| Advanced | Design | System | 2011.01 | - Nonline | ar Devices |
|----------|--------|--------|---------|-----------|------------|
|          |        |        |         |           |            |

| Wogicl  | Width dependence of Egicl                    | None   | 0                       |
|---------|----------------------------------------------|--------|-------------------------|
| Wegisl  | Width dependence of Egisl                    |        | 0                       |
| Waigs   | Width dependence of Aigs                     | None   |                         |
| Wbigs   | Width dependence of Bigs                     | None   | 0                       |
| Wcigs   | Width dependence of Cigs                     | None   | 0                       |
| Waigd   | Width dependence of Aigd                     | None   | 0                       |
| Wbigd   | Width dependence of Bigd                     | None   | 0                       |
| Wcigd   | Width dependence of Cigd                     | None   | 0                       |
| Pminvcv | Cross-term dependence of Minvcv              | None   | 0                       |
| Pagisl  | Cross-term dependence of Agisl               | None   | 0                       |
| Pbgisl  | Cross-term dependence of Bgisl               | None   | 0                       |
| Pcgisl  | Cross-term dependence of Cgisl               | None   | 0                       |
| Pegisl  | Cross-term dependence of Egisl               | None   | 0                       |
| Paigs   | Cross-term dependence of Aigs                | None   | 0                       |
| Pbigs   | Cross-term dependence of Bigs                | None   | 0                       |
| Pcigs   | Cross-term dependence of Cigs                | None   | 0                       |
| Paigd   | Cross-term dependence of Aigd                | None   | 0                       |
| Pbigd   | Cross-term dependence of Bigd                | None   | 0                       |
| Pcigd   | Cross-term dependence of Cigd                | None   | 0                       |
| Tempeot | Temperature for extraction of EOT            | Kelvin | 300.15                  |
| Leffeot | Effective length for extraction of EOT       | um     | 1.0                     |
| Weffeot | Effective width for extraction of EOT        | um     | 10.0                    |
| Ucs     | Colombic scattering exponent                 | None   | 1.67 (NMOS), 1.0 (PMOS) |
| Ucste   | Temperature coefficient of colombic mobility | None   | -4.775e-3               |
| Jtweff  | TAT current width dependance                 | None   | 0.0                     |
| Lucste  | Length dependence of ucste                   | None   | 0.0                     |
| Lucs    | Length dependence of ucs                     | None   | 0.0                     |
| Wucste  | Width dependence of ucste                    | None   | 0.0                     |
| Wucs    | Width dependence of ucs                      | None   | 0.0                     |
| Pucste  | Cross-term dependence of ucste               | None   | 0.0                     |
| Pucs    | Cross-term dependence of ucs                 | None   | 0.0                     |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

#### model modelname BSIM4 \[parm=value\]\\*

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *BSIM4*. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the

parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to ADS Simulator Input Syntax (cktsim). Example:

model Nch7 BSIM4 \ Vtho=0.7 Cjs=3e-4 NMOS=yes

#### **Notes/Equations**

- 1. BSIM4 was developed by the Device Research Group of the Department of Electrical Engineering and Computer Science, University of California, Berkeley and copyrighted by the University of California.
- 2. More information about this model is available at:

"http://www-device.eecs.berkeley.edu/%7ebsim3"

3. Several DC, AC, and capacitance parameters can be binned as described in the parameters table; these parameters follow this implementation:

$$P = P_0 + \frac{P_L}{L_{eff}} + \frac{P_w}{W_{eff}} + \frac{P_p}{L_{eff} \times W_{eff}}$$

For example, for the parameter K1, the following relationships exist:  $P_0=k1$ ,  $P_L=lk1$ ,  $P_W=wk1$ ,  $P_P=pk1$ . The Binunit parameter is a binning unit selector. If Binunit=1, the units of  $L_{eff}$  and  $W_{eff}$  used in the preceding binning equation have units of microns, otherwise meters. For example, for a device with  $L_{eff}=0.5$ mm and  $W_{eff}=10$ mm, if Binunit=1, parameter values are le5, le4, 2e4, and 3e4 for Vsat, Lvsat, Wvsat, and Pvsat, respectively, Therefore, the effective value of Vsat for this device is:

 $Vsat = 1e5 + 1e4/0.5 + 2e4/10 + 3e4/(0.5 \times 10) = 1.28e5$ 

To get the same effective value of Vsat for Binunit=0, values of Vsat, Lvsat, Wvsat, and Pvsat would be 1e5, le2, 2e2, 3e8, respectively. Thus:

Vsat = 1e5 + 1e-2/0.5e6 + 2e2/10e6 + 3e 8/(0.5e-6 × 10e6) = 1.28e5
4. DC operating point data is generated for this model. If a DC simulation is performed, device operating point data can be viewed for a component. The procedure for viewing device operating point data for a component is in *Using Circuit Simulators* (cktsim). The device operating point information that is displayed for the BSIM4 model is:

Gm: small-signal Vgs to Ids transconductance, in Siemens Gmb: small-signal Vbs to Ids transconductance, in Siemens Gds: small-signal drain source conductance, in Siemens Vth: threshold voltage, in volts Vdsat: saturation voltage, in volts DqgDvgb: small-signal transcapacitance dQg/dVg, in farads DqgDvdb: small-signal transcapacitance dQg/dVs, in farads DqgDvsb: small-signal transcapacitance dQg/dVs, in farads DqgDvgb: small-signal transcapacitance dQg/dVs, in farads Advanced Design System 2011.01 - Nonlinear Devices DqbDvdb: small-signal transcapacitance dQb/dVd, in farads DqbDvsb: small-signal transcapacitance dQb/dVs, in farads DqdDvgb: small-signal transcapacitance dQd/dVg, in farads DqdDvdb: small-signal transcapacitance dQd/dVd, in farads DqdDvsb: small-signal transcapacitance dQd/dVs, in farads

5. If 1 is not given, it is calculated by

$$\gamma_1 = \frac{\sqrt{2q\varepsilon_{si}NDEP}}{C_{oxe}}$$

If 2 is not given, it is calculated by

$$\gamma_2 = \frac{\sqrt{2q\epsilon_{si}NSUB}}{C_{oxe}}$$

6. If NDEP is not given and 1 is given, NDEP is calculated from

$$NDEP = \frac{\gamma_1^2 C_{oxe}}{2q \varepsilon_{si}}^2$$

If both 1 and NDEP are not given, NDEP defaults to  $1.7e17cm^{-3}$  and is calculated from NDEP

7. If VBX is not given, it is calculated by

$$\frac{qNDEP \times XT^2}{2\varepsilon_{si}} = (\Phi_s - VBX)$$

8. If VTH 0 is not given it is calculated by

$$VTH0 = VFB + \Phi_s + K1\sqrt{\Phi_s} - V_{bs}$$

where VFB = -1.0If VTH 0 is given, VFB defaults to

$$VFB = VTH0 - \Phi_{s} - K1 \sqrt{\Phi_{s} - V_{bs}}$$

9. If  $K_1$  and  $K_2$  are not given, they are calculated by

$$\begin{split} K1 &= \gamma_2 - 2K2 \sqrt{\Phi_s - VBM} \\ K2 &= \frac{(\gamma_1 - \gamma_2)(\sqrt{\Phi_s - VBX} - \sqrt{\Phi_s})}{2\sqrt{\Phi_s}(\sqrt{\Phi_s - VBM} - \sqrt{\Phi_s}) + VBM} \end{split}$$

10. If *Cgso* is not given, it is calculated by: If *DLC* is given and > 0.0

$$Cgso = DLC \times C \text{ oxe } - CGSL$$
  
if  $Cgso < 0.0, CGSO = 0.0$ 

Else

 $CGSO = 0.6 \times XJ \times C$  oxe

If CGDO is not given, it is calculated by: If DLC is given and > 0.0

> $CGDO = DLC \times C \text{ oxe } - CGDL$ if CGDO < 0.0, CGDO = 0.0

Else

 $CGDO = 0.6 \times XJ \times C$  oxe

If CGBO is not given, it is calculated by:

 $CGBO = 2 \times DWC \times C$  oxe 11. If *CF* is not given, it is calculated by

$$CF = \frac{2 \times EPSROX \times \varepsilon_0}{\pi} \times \log\left(1 + \frac{4.0e - 7}{TOXE}\right)$$

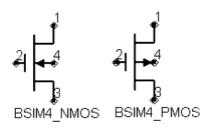
- 12. For dioMod = 0, if Xjbvs < 0.0, it is reset to 1.0 For dioMod = 2, if Xjbvs 0.0, it is reset to 1.0 For dioMod = 0, if Xjbvd < 0.0, it is reset to 1.0 For dioMod = 2, if Xjbvd 0.0, it is reset to 1.0
- 13. Imelt, Ijth, Ijthsfwd, Ijthsrev, Ijthdfwd, and Ijthdrev Parameters Imelt, Ijth, Ijthsfwd, Ijthsrev, Ijthdfwd, and Ijthdrev are used to determine the different diode limiting currents (also known as P-N junction explosion current). Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value. Ijth can be specified only in the Options component.

If Ijthsfwd is not specified and Ijth is specified, Ijthsfwd = Ijth.

If Ijthsrev is not specified and Ijth is specified, Ijthsrev = Ijth.

If Ijthdfwd is not specified and Ijth is specified, Ijthdfwd = Ijth.

If Ijthdrev is not specified and Ijth is specified, Ijthdrev = Ijth.


If the Imelt value is less than the maximum value of Ijthsfwd, Ijthsrev, Ijthdfwd, and Ijthdrev, the Imelt value is increased to the maximum value.

If Imelt is specified (in the model or in Options) all diode limiting currents (Ijthsfwd, Ijthsrev, Ijthdfwd, and Ijthdrev) = Imelt; otherwise, each diode limiting current is used to limit its own diode current.

14. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent (Data Access Component)* (ccsim)). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

# BSIM4\_NMOS, BSIM4\_PMOS (BSIM4 Transistor, NMOS, PMOS)

#### **Symbol**



#### **Parameters**

# Model parameters must be specified in SI units

| Name                | Description                                                    | Units          | Default                |
|---------------------|----------------------------------------------------------------|----------------|------------------------|
| Model               | model instance name                                            | None           | BSIM4M1                |
| Length <sup>†</sup> | channel length                                                 | m              | 5.0e-6                 |
| Width <sup>†</sup>  | channel width                                                  | m              | 5.0e-6                 |
| Nf                  | number of fingers                                              | None           | 1.0                    |
| Sa <sup>†</sup>     | distance between outer diameter edge to poly of one side       | m              | 0.0                    |
| Sb <sup>†</sup>     | distance between outer diameter edge to poly of the other side | m              | 0.0                    |
| Sd <sup>†</sup>     | distance between neighboring fingers                           | m              | 0.0                    |
| Min                 | minimize either D or S                                         | None           | 0                      |
| Ad <sup>†</sup>     | Drain area                                                     | m <sup>2</sup> | 0.0                    |
| As <sup>†</sup>     | Source area                                                    | m <sup>2</sup> | 0.0                    |
| Pd <sup>†</sup>     | Drain perimeter                                                | m              | 0.0                    |
| Ps <sup>†</sup>     | Source perimeter                                               | m              | 0.0                    |
| Nrd                 | number of squares in drain                                     | None           | 1.0                    |
| Nrs                 | number of squares in source                                    | None           | 1.0                    |
| Off                 | device is initially off                                        | None           | 0.0                    |
| Rbdb                | body resistance; defaults to Rbdb model                        | None           | defaults to Rbdb model |
| Rbsb                | body resistance; defaults to Rbsb model                        | None           | defaults to Rbsb model |
| Rbpb                | body resistance; defaults to Rbpb model                        | None           | defaults to Rbpb model |
| Rbps                | body resistance; defaults to Rbps model                        | None           | defaults to Rbps model |
| Rbpd                | body resistance; defaults to Rbpd model                        | None           | defaults to Rbpd model |

| Trnqsmod | Advanced Design System 2011.01 - Nonlir<br>transient NQS model selector; defaults to Trnqsmod<br>model | None | defaults to Trnqsmod model |
|----------|--------------------------------------------------------------------------------------------------------|------|----------------------------|
| Acnqsmod | AC NQS model selector; defaults to Acnqsmod model                                                      | None | defaults to Acnqsmod model |
| Rbodymod | distributed model R model selector; defaults to Rbodymod model                                         | None | defaults to Rbodymod model |
| Rgatemod | gate resistance model selector; defaults to Rgatemod model                                             | None | defaults to Rgatemod model |
| Geomod   | geometry dependent parasitics model selector; defaults to Geomod model                                 | None | defaults to Geomod model   |
| Rgeomod  | source/drain resistance and contact model selector; defaults to Rgeomod model                          | None | defaults to Rgeomod model  |
| Temp     | device operating temperature                                                                           | °C   | 25                         |
| Mode     | simulation mode: Nonlinear, Linear, Standard (refer to note 1)                                         | None | Nonlinear                  |
| Noise    | noise generation option: yes=1, no=0                                                                   | None | yes                        |
| _M       | number of devices in parallel                                                                          | None | 1                          |
| Sc       | Distance to a single well edge                                                                         | m    | 0.0                        |
| Sca      | Integral of the first distribution function for scattered well dopant                                  | None | 0.0                        |
| Scb      | Integral of the second distribution function for scattered well dopant                                 | None | 0.0                        |
| Scc      | Integral of the third distribution function for scattered well dopant                                  | None | 0.0                        |
| Xgw      | Distance from the gate contact to the channel edge                                                     | m    | model Xgw                  |
| Ngcon    | Number of gate contacts                                                                                | None | model Ngcon                |

<sup>+</sup> Each instance parameter whose dimension contains a power of meter will be multiplied by the Scale to the same power. For example, a parameter with a dimension of m will be multiplied by  $scale^1$  and a parameter with a dimension of  $m^2$  will be multiplied by  $scale^2$ . Note that only parameters whose dimensions contain meter are scaled. For example, a parameter whose dimension contains *cm* instead of meter is not scaled.

#### **Notes/Equations**

- The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 2. The following table lists the DC operating point parameters that can be sent to the dataset.

#### **DC Operating Point Information**

| Name    | Description                            | Units   |
|---------|----------------------------------------|---------|
| Id      | Drain current                          | amperes |
| Ig      | Gate current                           | amperes |
| Is      | Source current                         | amperes |
| Ib      | Bulk current                           | amperes |
| Power   | DC power dissipated                    | watts   |
| Gm      | Forward transconductance (dIds/dVgs)   | siemens |
| Gmb     | Backgate transconductance (dIds/dVbs)  | siemens |
| Gds     | Output conductance (dIds/dVds)         | siemens |
| Vth     | Threshold voltage                      | volts   |
| Vdsat   | Drain-source saturation voltage        | volts   |
| DqgDvgb | (dQg/dVgb)                             | farads  |
| DqgDvdb | (dQg/dVdb)                             | farads  |
| DqgDvsb | (dQg/dVsb)                             | farads  |
| DqbDvgb | (dQb/dVgb)                             | farads  |
| DqbDvdb | (dQb/dVdb)                             | farads  |
| DqbDvsb | (dQb/dVsb)                             | farads  |
| DqdDvgb | (dQd/dVgb)                             | farads  |
| DqdDvdb | (dQd/dVdb)                             | farads  |
| DqdDvsb | (dQd/dVsb)                             | farads  |
| Vgs     | Internal gate-internal source voltage  | volts   |
| Vds     | Internal drain-internal source voltage | volts   |
| Vbs     | Internal bulk-internal source voltage  | volts   |
| Vgms    | Midgate-source voltage                 | volts   |
| Vges    | External gate-source voltage           | volts   |
| Vdbs    | Drain body-internal source voltage     | volts   |
| Vsbs    | Source body-internal source voltage    | volts   |

## bsimsoi (bsimsoi MOSFET Model and Instance)

#### **Model Parameters**

The bsimsoi model uses almost the same model parameters and model parameter definitions as the BSIMSOI4.3 model from the University of California-Berkeley. For more information about BSIMSOI4.3 see:

#### http://www-

device.eecs.berkeley.edu/~bsimsoi/archive/bsimsoi4p3/BSIMSOI\_4p3\_users\_manual.pdf

Appendix B of the University of California-Berkeley documentation covers the Model Parameter List and Appendix E covers Model Parameter Binning.

The minor differences in model parameters between the ADS bsimsoi model and the BSIMSOI4.3 model from University of California-Berkeley are as follows:

- 1. Model parameter names are completely lower case.
- 2. Model parameter *level* is removed.
- 3. Bsimsoi model is specified by using its model name *bsimsoi*.
- 4. New model parameter *version*, model version selector. It has no unit and the default value is 4.3. Available values are 3.0, 3.1, 3.11, 3.2, 4.0, and 4.3.
- 5. New model parameter *noimod*, the noise model selector for versions 3.11 and lower. It has no unit and the default is 1. Available values are 1, 2, 3, and 4.
- 6. In ADS, the transistor type of the bsimsoi model is specified by the model parameter *gender*. Available values are 1 (N-type) and -1 (P-type).

#### **Model Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to the *Design Kit Development* (dkarch).

model modelName bsimsoi[parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the *modelName* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *bsimsoi*. Use the parameter *gender* to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

Example:

#### **Instance Parameters**

| Name     | Description                                                                                                                                     | Units          | Default |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|
| I        | Channel length                                                                                                                                  | m              | 5e-6    |
| w        | Channel width                                                                                                                                   | m              | 5e-6    |
| nf       | Number of fingers                                                                                                                               | 1.0            |         |
| sa       | Stress effect parameter                                                                                                                         | m              | 0.0     |
| sb       | Stress effect parameter                                                                                                                         | m              | 0.0     |
| sd       | Stress effect parameter                                                                                                                         | m              | 0.0     |
| ad       | Drain diffusion area                                                                                                                            | m <sup>2</sup> | 0.0     |
| as       | Source diffusion area                                                                                                                           | m <sup>2</sup> | 0.0     |
| pd       | Drain diffusion perimeter length                                                                                                                | m              | 0.0     |
| ps       | Source diffusion perimeter length                                                                                                               | m              | 0.0     |
| nrd      | Number of squares in drain series resistance                                                                                                    | 1.0            |         |
| nrs      | Number of squares in source series resistance                                                                                                   | 1.0            |         |
| off      | Device simulation off                                                                                                                           | 0              |         |
| bjtoff   | Turn off BJT current if equal to 1                                                                                                              | 0              |         |
| rth0     | Thermal resistance per unit width, if not specified, rth0 is extracted from model card, if specified, it will override the one in model card.   |                | 0.0     |
| cth0     | Thermal capacitance per unit width, if not specified, cth0 is extracted from model card, if specified, it will over-ride the one in model card. |                | 1e-5    |
| nrb      | Number of squares in body series resistance                                                                                                     | 1.0            |         |
| frbody   | Layout-dependent body resistance coefficient                                                                                                    | 1.0            |         |
| rbdb     | Body resistance                                                                                                                                 | Ohm            | 50.0    |
| rbsb     | Body resistance                                                                                                                                 | Ohm            | 50.0    |
| delvto   | Zero bias threshold voltage variation                                                                                                           | Volts          | 0.0     |
| soimod   | Instance model selector for PD/FD operation                                                                                                     | 0              |         |
| nbc      | Number of body contact isolation edge                                                                                                           | 0.0            |         |
| nseg     | Number of segments for channel width partitioning                                                                                               | 1.0            |         |
| pdbcp    | Parasitic perimeter length for body contact at drain side                                                                                       | m              | 0.0     |
| psbcp    | Parasitic perimeter length for body contact at source side                                                                                      | m              | 0.0     |
| agbcp    | Parasitic gate-to-body overlap area for body contact (n <sup>+</sup> -p)                                                                        | m <sup>2</sup> | 0.0     |
| agbcp2   | Parasitic gate-to-body overlap area for body contact (p <sup>+</sup> -p)                                                                        | m <sup>2</sup> | 0.0     |
| agbcpd   | Parasitic gate-to-body overlap area for body contact in DC                                                                                      | m <sup>2</sup> | 0.0     |
| aebcp    | Parasitic body-to-substrate overlap area for body contact                                                                                       | m <sup>2</sup> | 0.0     |
| tnodeout | Temperature node flag indicating the usage of T node                                                                                            | 0              |         |
| rgatemod | Gate resistance model selector                                                                                                                  | 0              |         |
| rbodymod | Body resistance model selector                                                                                                                  | 0              |         |

#### **Instance Netlist Format**

modelName:instanceName D G S E [P] [B] [T] [parm=value]

where D is the drain node, G is the gate node, S is the source node, E is the substrate

node, P is the optional external body contact node, B is the optional internal body node, and T is the optional temperature node. Refer to <u>Note 2</u> for more information on optional nodes.

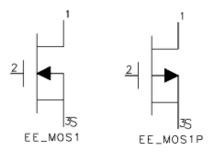
#### Example:

Nch7:M1 2 1 0 0 w=1u l=0.1u

#### **Notes/Equations**

1. BSIMSOI4.3 was developed by the Device Research Group of the Department of Electrical Engineering and Computer Science, University of California, Berkeley and copyrighted by the University of California. More information about this model is available at:

"http://www-device.eecs.berkeley.edu/~bsimsoi/"


- 2. There are three optional nodes, P, B and T. P and B nodes are used for body contact devices. Consider the case when tnodeout is 0, if the user specifies four nodes, this element is a 4-terminal device, i.e., floating body. If the user specifies five nodes, the fifth node represents the external body contact node (P). There is a body resistance between the internal body node and the P node. In these two cases, an internal body node is created but it is not accessible in the circuit deck. If the user specifies six nodes, the fifth node represents the P node and the sixth node represents the internal body node (B). This configuration is useful for distributed body resistance simulation. If thodeout is set to 1, the last node is interpreted as the temperature node. In this case, if user specifies five nodes, it is a floating body case. If user specifies six nodes, it is a body-contacted case. Finally, if the user specifies seven nodes, it is a body-contacted case with an accessible internal body node. The temperature node is useful for thermal coupling simulation.
- 3. *DC Operating Point Information* lists the DC operating point parameters that can be sent to the dataset.

#### **DC Operating Point Information**

| Name  | Description                                            | Units    |
|-------|--------------------------------------------------------|----------|
| Id    | Drain current                                          | amperes  |
| Ig    | Gate current                                           | amperes  |
| Is    | Source current                                         | amperes  |
| Ie    | Substrate current                                      | amperes  |
| Ip    | External body current                                  | amperes  |
| Ib    | Internal body current                                  | amperes  |
| Power | Total dissipated power                                 | watts    |
| Vds   | External drain-source voltage                          | volts    |
| Vgs   | External gate-source voltage                           | volts    |
| Ves   | External substrate-source voltage                      | volts    |
| Vps   | External body contact to source voltage                | volts    |
| Vbs   | External source to internal body voltage               | volts    |
| Ids   | Internal drain-source current                          | amperes  |
| Ibd   | Internal body-drain current                            | amperes  |
| Ibs   | Internal body-source current                           | amperes  |
| Isub  | Internal impact ionization current                     | amperes  |
| Igidl | Internal GIDL current                                  | amperes  |
| Igisl | Internal GISL current                                  | amperes  |
| Igs   | Internal gate-source tunneling current                 | amperes  |
| Igd   | Internal gate-drain tunneling current                  | amperes  |
| Igb   | Internal gate-body tunneling current                   | amperes  |
| Igcs  | Internal gate-channel tunneling current at source side |          |
| Igcd  | Internal gate-channel tunneling current at drain side  | amperes  |
| Vdsat | Drain-source saturation voltage                        | volts    |
| Vth   | Threshold voltage                                      | volts    |
| Qg    | Internal gate charge                                   | coulombs |
| Qb    | Internal body charge                                   | coulombs |
| Qd    | Internal drain charge                                  | coulombs |
| Qs    | Internal source charge                                 | coulombs |
| Gmbs  | Body transconductance                                  | siemens  |
| Gm    | Forward transconductance                               | siemens  |
| Gmids | Gm/Ids                                                 | 1/volts  |
| Gds   | Output conductance                                     | siemens  |
| Cgg   | dQg/dVgb                                               | farads   |
| Cgd   | dQg/dVdb                                               | farads   |
| Cgs   | dQg/dVsb                                               | farads   |
| Cbg   | dQb/dVgb                                               | farads   |
| Cbd   | dQb/dVdb                                               | farads   |
| Cbs   | dQb/dVsb                                               | farads   |
| Cdg   | dQd/dVgb                                               | farads   |
| Cdd   | dQd/dVdb                                               | farads   |
| Cds   | dQd/dVsb                                               | farads   |

### EE\_MOS1, EE\_MOS1P (EEsof Nonlinear MOSFETs, N-Channel, P-Channel)

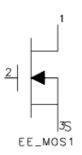
#### Symbol



#### **Parameters**

| Name  | Description                    | Units | Default |
|-------|--------------------------------|-------|---------|
| Model | Model instance name            | None  | EEMOS1  |
| Temp  | device operating temperature   | °C    | 25.0    |
| Noise | noise generation: yes=1, no =0 | None  | yes     |
| _M    | number of devices in parallel  | None  | 1       |

#### **Notes/Equations**


1. The following table lists the DC operating point parameters that can be sent to the dataset.

#### **DC Operating Point Information**

| Name      | Description                                      | Units   |
|-----------|--------------------------------------------------|---------|
| Id        | Drain current                                    | amperes |
| Ig        | Gate current                                     | amperes |
| Is        | Source current                                   | amperes |
| Power     | DC power dissipated                              | watts   |
| Gm        | Forward transconductance (dIds/dVgs)             | siemens |
| Gds       | Output conductance (dIds/dVds)                   | siemens |
| GmAc      | Forward transconductance (dIds/dVgs + dIdb/dVgs) | siemens |
| GdsAc     | Output conductance (dIds/dVds + dIdb/dVgd)       | siemens |
| dIdb_dVgs | (dIdb/dVgs)                                      | siemens |
| dIdb_dVgd | (dIdb/dVgd)                                      | siemens |
| dIdb_dVds | (dIdb/dVds)                                      | siemens |
| Cgc       | Gate-source capacitance (dQgc/dVgc)              | farads  |
| Сду       | Gate-drain capacitance (dQgy/dVgy)               | farads  |
| Cds       | Drain-source capacitance                         | farads  |
| dQgc_dVgy | (dQgc/dVgy)                                      | farads  |
| dQgy_dVgc | (dQgy_dVgc)                                      | farads  |
| Vgs       | Gate-source voltage                              | volts   |
| Vds       | Gate-drain voltage                               | volts   |

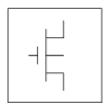
## **EE\_MOS1 (EEsof Nonlinear MOSFET, N-Channel)**

Symbol



#### **Parameters**

| Name  | Description                    | Units | Default |
|-------|--------------------------------|-------|---------|
| Model | Model instance name            | None  | EEMOS1  |
| Temp  | device operating temperature   | °C    | 25.0    |
| Noise | noise generation: yes=1, no =0 | None  | yes     |
| _M    | number of devices in parallel  | None  | 1       |


#### **Notes/Equations**

1. The following table lists the DC operating point parameters that can be sent to the dataset.

| Name      | Description                                      | Units   |
|-----------|--------------------------------------------------|---------|
| Id        | Drain current                                    | amperes |
| Ig        | Gate current                                     | amperes |
| Is        | Source current                                   | amperes |
| Power     | DC power dissipated                              | watts   |
| Gm        | Forward transconductance (dIds/dVgs)             | siemens |
| Gds       | Output conductance (dIds/dVds)                   | siemens |
| GmAc      | Forward transconductance (dIds/dVgs + dIdb/dVgs) | siemens |
| GdsAc     | Output conductance (dIds/dVds + dIdb/dVgd)       | siemens |
| dIdb_dVgs | (dIdb/dVgs)                                      | siemens |
| dIdb_dVgd | (dIdb/dVgd)                                      | siemens |
| dIdb_dVds | (dIdb/dVds)                                      | siemens |
| Cgc       | Gate-source capacitance (dQgc/dVgc)              | farads  |
| Сду       | Gate-drain capacitance (dQgy/dVgy)               | farads  |
| Cds       | Drain-source capacitance                         | farads  |
| dQgc_dVgy | (dQgc/dVgy)                                      | farads  |
| dQgy_dVgc | (dQgy_dVgc)                                      | farads  |
| Vgs       | Gate-source voltage                              | volts   |
| Vds       | Gate-drain voltage                               | volts   |

## EE\_MOS1\_Model (EEsof Nonlinear MOSFET Model)

#### Symbol



#### **Parameters**

| Name     | Description                                             | Units | Default  |
|----------|---------------------------------------------------------|-------|----------|
| Is       | Substrate diode reverse saturation current              | A     | 1.0e-14  |
| N        | Substrate diode ideality factor                         | None  | 1.0      |
| Vbi      | Substrate diode built-in potential                      | V     | 0.7      |
| Mj       | Junction grading coefficient                            | None  | 0.5      |
| Fc       | Substrate depletion capacitance linearization point     | None  | 1.0e-4   |
| Vbr      | Breakdown onset voltage                                 | V     | 1.0e-4   |
| Kbo      | Breakdown current coefficient                           | None  | 1.0e-4   |
| Nbr      | Breakdown current exponent                              | None  | 2.0      |
| Vinfl    | Inflection point in Cgs-Vgs characteristic              | V     | 5.0      |
| Deltds   | Capacitance forward to reverse mode transition          | V     | 1.0      |
| Deltgs   | Cgsth to Cgso transition voltage                        | V     | 1.0      |
| Cgsmax   | Maximum value of Cgs                                    | F     | 1.0e-12  |
| Vgo      | Gate-source voltage where transconductance is a maximum | V     | 7.0      |
| Vto      | Zero-bias threshold                                     | V     | -1.0     |
| Gamma    | Drain-source dependent threshold                        | 1/V   | 0.0      |
| Gmmax    | Peak transconductance                                   | S     | 10.0e-03 |
| Delt     | transconductance tail-off rate                          | V     | 2.0      |
| Vbreak   | Voltage where transconductance tail-off begins          | V     | 4.0      |
| Lambda   | Output conductance parameter                            | 1/V   | 0.0      |
| Vsatm    | Maximum value of saturation voltage                     | V     | 10.0     |
| Vgm      | Gate-source volatge where saturation voltage is VSATM   | V     | 5.0      |
| Rdb      | Dispersion source output impedence                      | Ohm   | 1.0e+9   |
| Cbs      | Dispersion source capacitance                           | F     | 1.6e-13  |
| Gmmaxac  | AC value of Gmmax                                       | S     | 60.0e-03 |
| Deltac   | AC value of Delt                                        | V     | 2.0      |
| Vbreakac | AC value of Vbreak                                      | V     | 4.0      |
| Vgoac    | AC value of Vgo                                         | V     | 7.0      |
| Lambdaac | AC value of Lambda                                      | 1/V   | 0.0      |
| Vsatmac  | AC value of VSATM                                       | V     | 10.0     |

| Vgmac     | AC value of VGM                                       | V    | 5.0     |
|-----------|-------------------------------------------------------|------|---------|
| Gdbm      | Additional d-b branch conductance at Vds=VDSM         | None | 0.0     |
| Kdb       | Controls Vds dependence of D-B branch conductance     | None | 0.0     |
| Vdsm      | Voltage where D-B branch conductance becomes constant | V    | 1.0     |
| Rd        | Drain contact resistance                              | Ohm  | 1.0     |
| Rs        | Source contact resistance                             | Ohm  | 1.0     |
| Rg        | Gate metallization resistance                         | Ohm  | 1.0     |
| Ris       | Source end channel resistance                         | Ohm  | 1.0     |
| Rid       | Drain end channel resistance                          | Ohm  | 1.0     |
| wBvg      | Gate oxide breakdown voltage (warning)                | V    | None    |
| wBvds     | Drain-source breakdown voltage (warning)              | V    | None    |
| wIdsmax   | Maximum drain-source current (warning)                | А    | None    |
| wPmax     | Maximum power dissipation (warning)                   | W    | None    |
| Cdso      | Zero-bias output capacitance                          | F    | 0.0     |
| Cgso      | Constant portion of gate-source capacitance           | F    | 1.0e-13 |
| Cgdo      | Constant portion of gate-drain capacitance            | F    | 1.0e-13 |
| AllParams | DataAccessComponent-based parameters                  | None | None    |

#### **Notes/Equations**

- 1. This model supplies values for an EE\_MOS device.
- 2. Model parameters such as Ls, Ld, Lg (as well as other package-related parameters that are included as part of the model file output from the EEMOS1 IC-CAP kernel) are not used by EE\_MOS in the simulator. Only those parameters listed are part of EE\_MOS. Any extrinsic devices must be added externally by the user.
- 3. To prevent numerical problems, the setting of some model parameters to 0 is trapped by the simulator. The parameter values are changed internally:
  - $Rd = 10^{-4}$   $Rs = 10^{-4}$   $Rg = 10^{-4}$   $Rid = 10^{-4}$  Vgm = 0.1 Vgmac = 0.1 Vsatmac = 0.1 Vsatmac = 0.1 Deltds = 0.1
- 4. TEMP parameter is only used to calculate the noise performance of this model. Temperature scaling of model parameters is not performed.
- 5. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.
- 6. This device has no default artwork associated with it.

Equations/Discussion

EEMOS1 is an empirical analytic model that was developed by Agilent EEsof for the express purpose of fitting measured electrical behavior of 3-terminal n-channel MOSFETs intended for high-frequency analog applications. Unlike most physics-based MOSFET models found in SPICE programs, EEMOS1 contains no process or physical parameters. It does, however, accurately fit those electrical quantities that have direct bearing on the RF predictive abilities of the model, namely  $g_m$  vs. bias,  $g_{ds}$  vs. bias and, to a lesser degree,

input and output capacitances vs. bias. The model includes the following features:

- Accurate drain-source current model fits measured current over gate and drain bias variations.
- Flexible transconductance formulation permits accurate fitting of  $g_m$  compression found in MOSFETs.
- Charge model that accurately tracks measured capacitance values.
- Dispersion model that permits simultaneous fitting of high-frequency conductances and DC characteristics.
- Well-behaved analytic expressions permit accurate extrapolations outside of the measurement range used to extract the model.

The model equations were developed concurrently with parameter extraction techniques to ensure the model would contain only parameters that were extractable from measured data. Although the model is amenable to automated parameter extraction techniques, it was designed to consist of parameters that are easily estimated (visually) from measured data such as  $g_m - V_{as}$  plots. Because the model

equations are all well-behaved analytic expressions, EEMOS1 possesses no inherent limitations with respect to its usable power range. Agilent EEsof's IC-CAP program provides the user with the capability of extracting EEMOS1 models from measured data.

#### **Channel Current**

The channel current model in EEMOS1 is comprised of empirically derived analytic expressions and requires the specification of 9 parameter values. Because EEMOS1 is intended for large-signal analog applications, no attempt is made to characterize this channel current in the subthreshold or *weak* inversion region. The channel current expression is intended for use above V<sub>t</sub> only. The equations were developed through examination of I<sub>ds</sub> vs. bias and g<sub>m</sub> vs. bias plots on a number of DMOS devices from various manufacturers. The equations are sufficiently flexible enough to handle either enhancement or depletion mode devices. The expressions below are given for V<sub>ds</sub>>0.0V although the model is equally valid for V<sub>ds</sub><0.0V. The model assumes the device is symmetrical; simply replace V<sub>gs</sub> with V<sub>gd</sub> and V<sub>ds</sub> with  $-V_{ds}$  obtain the reverse region (V<sub>ds</sub><0.0V) equations. The g<sub>m</sub> g<sub>ds</sub> and I<sub>ds</sub> equations take on take on two different forms depending on the value of V<sub>gs</sub> relative to some of the model parameters. The I<sub>ds</sub> expression is continuous through at least the second derivative everywhere except at V<sub>t</sub>, where the second derivative is discontinuous.

The following voltages define regions of operation that are used in the current definitions:

$$V_t = Vto - Gamma \times V_{ds}$$

$$V_{gst} = V_{gs} - V_t$$

for  $V_{gst} \le 0$ 

 $g_{mo} = 0.0$  $I_{dso} = 0.0$  $g_{dso} = 0.0$ 

for  $\rm V_{gst}$  > 0 and  $\rm V_{gs}$   $\leq$   $\rm V_{break}$ 

$$\begin{split} g_{mo} &= g_{mm}(V_{gs}, V_{ds}) \\ I_{dso} &= I_{dsm}(V_{gs}, V_{ds}) \\ g_{dso} &= g_{dsm}(V_{gs}, V_{ds}) \end{split}$$

for  $V_{gst} > 0$  and  $V_{gs} > V_{break}$ 

$$g_{mo} = a(V_{gs} - V_{asym})^{b}$$

$$I_{dso} = I_{dsm}(Vbreak, V_{ds}) + \frac{a}{b+1}[(V_{gs} - V_{asym})^{b+1} - Delt^{b+1}]$$

$$g_{dso} = g_{dsm}(Vbreak, V_{ds})$$

where:

$$\begin{split} g_{mm}(V, V_{ds}) &= Gmmax \bigg[ 1 - \Big( \frac{V - Vgo}{V_t - Vgo} \Big)^2 \bigg] \\ I_{dsm}(V, V_{ds}) &= \Big( Gmmax \times \bigg[ (V - Vgo) \Big( 1 - \frac{1}{3} \Big( \frac{V - Vgo}{V_t - Vgo} \Big)^2 \Big) - \frac{2}{3} (V_t - Vgo) \bigg] \Big) \\ g_{dsm}(V, V_{ds}) &= Gmmax \times \bigg[ \frac{2 \times Gamma}{3} \Big( 1 - \Big( \frac{V - Vgo}{V_t - Vgo} \Big)^3 \Big) \bigg] \end{split}$$

$$m_{g_{mm}} = \left. \frac{\partial g_{mm}}{\partial V} \right|_{V = V break}$$

$$= -\frac{2 \times Gmmax}{V_t - Vgo} \left(\frac{Vbreak - Vgo}{V_t - Vgo}\right)$$

 $V_{asym} = Vbreak - Delt$ 

$$b = \frac{m_{g_{mm}} \times Delt}{g_{mm}(Vbreak, V_{ds})}$$
$$a = \frac{g_{mm}(Vbreak, V_{ds})}{Delt^{b}}$$

If b = -1, then the integral of  $g_{mo}$  ( $I_{dso}$ ) is comprised of natural log functions:

$$I_{dso} = I_{dsm}(Vbreak, V_{ds}) + a[\log(V_{gs} - V_{asym}) - \log(Delt)]$$

The current saturation mechanism in EEMOS1 is described empirically through the parameters Vgm and Vsatm. The drain voltage where the channel current saturates is dependent on  $V_{as}$  through the following relation:

$$V_{sat} = Vsatm \times tanh \left[ \frac{3(V_{gs} - V_t)}{Vgm} \right]$$

The preceding relations for  $I_{dso}$ ,  $g_{mo}$  and  $g_{dso}$  can now be substituted in the following equations that model the current saturation and output conductance. This portion of the model is similar to an approach described by Curtice for modeling MESFETs [1].

$$I_{ds} = I_{dso}(1 + Lambda \times V_{ds}) \tanh\left(\frac{3V_{ds}}{V_{sat}}\right)$$

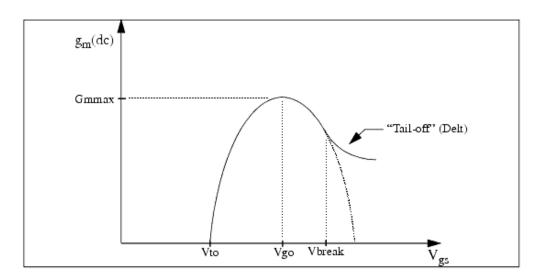
$$g_{m} = \left[g_{mo} \tanh\left(\frac{3V_{ds}}{V_{sat}}\right) - I_{dso} \operatorname{sech}^{2}\left(\frac{3V_{ds}}{V_{sat}}\right) \times \left[\frac{3V_{ds}}{V_{sat}^{2}}\frac{\partial V_{sat}}{\partial V_{gs}}\right]\right]$$

$$\times (1 + Lambda \times V_{ds})$$

$$g_{ds} = \{g_{dso}(1 + Lambda \times V_{ds}) + I_{dso}Lambda\} \tanh\left(\frac{3V_{ds}}{V_{sat}}\right)$$

$$+ I_{dso} \times \frac{3 \left( V_{sat} - V_{ds} \frac{\partial V_{sat}}{\partial V_{ds}} \right) (1 + Lambda \times V_{ds})}{V_{sat}^2} \operatorname{sech}^2 \left( \frac{3 V_{ds}}{V_{sat}} \right)$$

where:


$$\frac{\partial V_{sat}}{\partial V_{gs}} = \frac{3 \times Vsatm}{Vgm} \operatorname{sech}^{2} \left( \frac{3(V_{gs} - V_{t})}{Vgm} \right)$$
$$\frac{\partial V_{sat}}{\partial V_{ds}} = -\frac{3 \times Vsatm \times Gamma}{Vgm} \operatorname{sech}^{2} \left( \frac{3(V_{gs} - V_{t})}{Vgm} \right)$$

Qualitatively, the operation of the channel current model can be described as follows. The  $V_{ds}$  dependence of the equations is dominated by the parameters Vsatm, Vgm,

Gamma, and Lambda. Output conductance is controlled by Gamma and Lambda. The parameter Vsatm represents the maximum drain-source voltage where the drain current saturates. Vgm is the gate voltage corresponding to the I-V trace where  $V_{sat}$ =Vsatm.

When Gamma=0, Vsatm=0 and Lambda=0, EEMOS1 becomes dependent on V<sub>gs</sub> only. Under these simplified conditions, the parameters describing the  $g_m - V_{gs}$  dependence of the model are easily explained. Vto is the V<sub>gs</sub> value where  $g_m$  becomes zero. The transconductance peaks at V<sub>gs</sub>=VGO with a value of Gmmax. At V<sub>gs</sub>=Vbreak, the model breaks from its quadratic  $g_m$  dependence and follows a hyperbolic dependence. The parameter Delt controls the voltage asymptote of this hyperbola. The shape of this tail-off region can be altered by tuning on the parameter Delt. EEMOS1 constrains the hyperbola to match the derivative of the quadratic function at V<sub>gs</sub>=Vbreak. This ensures a

continuous transition between the respective modeling regions for simulation. The parameter definitions are shown in the following illustration.



EEMOS1 g<sub>m</sub>-V<sub>gs</sub> Parameters

#### **Dispersion Current (Idb)**

The circuit used to model conductance dispersion consists of the elements Rdb, Cbs (these

linear elements are also parameters) and the nonlinear source  $I_{db}(V_{gs}, V_{ds})$ . The model is a large-signal generalization of the dispersion model proposed by Golio et al. for MESFETs [2]. At DC, the drain-source current is just

the current  $I_{ds}$ . At high frequency (well above the transition frequency), the drain source current will be equal to  $I_{ds}$ (high frequency) =  $I_{ds}$ (dc) +  $I_{db}$ .

Linearization of the drain-source model yields the following expressions for  $y_{21}$  and  $y_{22}$  of the intrinsic EEMOS1 model:

$$y_{21} = g_{dsgs} + g_{dbgs} - \frac{g_{dbgs}}{1 + j\omega \times Cbs \times Rdb}$$

$$y_{22} = g_{dsds} + g_{dbds} + \frac{1}{Rdb} - \frac{\left(g_{dbds} + \frac{1}{Rdb}\right)}{1 + j\omega \times Cbs \times Rdb}$$

where:

$$g_{dsgs} = \frac{\partial I_{ds}}{\partial V_{gs}}$$
$$g_{dsds} = \frac{\partial I_{ds}}{\partial V_{ds}}$$
$$g_{dbgs} = \frac{\partial I_{db}}{\partial V_{gs}}$$
$$g_{dbds} = \frac{\partial I_{db}}{\partial V_{gs}}$$

Evaluating these expressions at the frequencies  $\omega = 0$  and  $\omega = infinity$ , produces the following results for transconductance and output conductance: For  $\omega = 0$ ,

$$Re[y_{21}] = g_m = g_{dsgs}$$
$$Re[y_{22}] = g_{ds} = g_{dsds}$$

For  $\omega = infinity$ ,

$$Re[y_{21}] = g_m = g_{dsgs} + g_{dbgs}$$
$$Re[y_{22}] = g_{ds} = g_{dsds} + g_{dbds} + \overline{R}$$

Between these two extremes, the conductances make a smooth transition, the abruptness of that is governed by the time constant  $\tau disp = Rdb \times Cbs$ . The frequency  $f_0$  at which the conductances are midway between these two extremes is defined as:

$$f_0 = \frac{1}{2\pi\tau_{disp}}$$

The parameter Rdb should be set large enough so that its contribution to the output conductance is negligible. Unless the user is specifically interested in simulating the device near  $f_0$ , the default values of Rdb and Cbs will be adequate for most RF applications.

The EEMOS1  $I_{ds}$  model can be extracted to fit either DC or AC characteristics. In order to simultaneously fit both DC I-Vs and AC conductances, EEMOS1 uses a simple scheme for modeling the  $I_{db}$  current source whereby different values of the same parameters can be used in the  $I_{ds}$  equations. The DC and AC drain-source currents can be expressed as follows:

 $I_{ds}^{dc}(\textit{Voltages},\textit{Parameters}) = I_{ds}(\textit{Voltages},\textit{Vto},\textit{Gamma},\textit{Vgo},\textit{Gmmax},$ 

Delt, Vbreak, Lambda, Vsatm, Vgm

 $I_{ds}^{ac}(Voltages, Parameters) = I_{ds}(Voltages, Vto, Gamma, Vgoac,$ 

Gmmaxac, Deltac, Vbreakac,

Lambdaac, Vsatmac, Vgmac

Parameters such as Vto that do not have an AC counterpart (there is no Vtoac parameter), have been found not to vary significantly between extractions using DC measurements versus those using AC measurements. The difference between the AC and DC values of  $I_{ds}$  plus an additional term that is a function of  $V_{ds}$  only gives the value of  $I_{db}$  for the dispersion model:

$$I_{db}(V_{gs}, V_{ds}) = I_{ds}^{ac}(V_{gs}, V_{ds}) - I_{ds}^{dc}(V_{gs}, V_{ds}) + I_{dbp}(V_{ds})$$

where  $\boldsymbol{I}_{dbp}$  and its associated conductance are given by:

for  $V_{ds}$  > Vdsm and  $Kdb \neq 0$ :

$$I_{dbp} = \sqrt{\frac{Gdbm}{Kdb}} \tan^{-1}((V_{ds} - Vdsm)\sqrt{Kdb \times Gdbm}) + Gdbm \times Vdsm$$

$$g_{dbp} = \frac{Gabm}{(Kdb(Gdbm(V_{ds} - Vdsm)^2 + 1))}$$

for  $V_{ds} < -Vdsm$  and  $Kdb \neq 0$ :

$$I_{dbp} = \sqrt{\frac{Gdbm}{Kdb}} \tan^{-1}((V_{ds} + Vdsm)\sqrt{Kdb \times Gdbm}) - Gdbm \times Vdsm$$

$$g_{dbp} = \frac{Gdbm}{Kdb \times Gdbm((V_{ds} + Vdsm)^2 + 1)}$$

for  $-Vdsm \le V_{ds} \le Vdsm$  or Kdb = 0:

$$I_{dsm} = Gdbm \times V_{ds}$$
$$g_{dbm} = Gdbm$$

By setting the seven high-frequency parameters equal to their DC counterparts, the dispersion model reduces to  $I_{db} = I_{dbp}$ . Examination of the  $I_{dbp}$  expression reveals that the additional setting of Gdbm to zero disables the dispersion model entirely. Because the  $I_{dbn}$ current is a function of  $\mathrm{V}_{\mathrm{ds}}$  only, it will impact output conductance only. However, the current function  $I_{ds}^{ac}$  will impact both  $g_m$  and  $g_{ds}$ . For this reason, the model is primarily intended to use  $\mathbf{g}_{\mathrm{m}}$  data as a means for tuning  $I_{ds}^{ac}$  . Once this fitting is accomplished, parameters Gdbm, Kdb and Vdsm can be tuned to optimize the g<sub>ds</sub> fit.

#### **Charge Model**

The EEMOS1 charge model consists of three separate charge sources that model channel charge and charge associated with the substrate (output) diode. The channel charge is partitioned between the two charge sources  $\boldsymbol{q}_{ac}$  and  $\boldsymbol{q}_{av}$  such that symmetry is maintained relative to  $V_{ds} = 0V$ . These expressions were empirically developed by Agilent EEsof such that their derivatives would fit measured capacitance data. The channel charge expressions are:

$$\begin{aligned} q_{gc} &= \frac{Cgsmax}{4} \Big[ V_{gc} - Vinfl + \sqrt{(V_{gc} - Vinfl)^2 + Deltgs^2} \Big] \\ &: \times \Big[ 1 + \tanh\left(\frac{3(V_{gc} - V_{gy})}{Deltds}\right) \Big] + Cgso \times V_{gc} \end{aligned}$$

$$\begin{aligned} q_{gy} &= \frac{Cgsmax}{4} \Big[ V_{gy} - Vinfl + \sqrt{\left(V_{gy} - Vinfl\right)^2 + Deltgs^2} \\ &\times \Big[ 1 - \tanh\left(\frac{3\left(V_{gy} - V_{gc}\right)}{Deltds}\right) \Big] + Cgdo \times V_{gy} \end{aligned}$$

The output charge and its derivative are modeled using the standard junction diode depletion formula:

 $-V_{ds} < Fc \times Vbi$ 

$$\begin{split} q_{ds} &= -\frac{Cdso \times Vbi}{1 - Mj} \Big[ 1 - \Big( 1 + \frac{V_{ds}}{Vbi} \Big)^{1 - Mj} \Big] \\ C_{dsds} &= \frac{\partial q_{ds}}{\partial V_{ds}} = \frac{Cdso}{\Big[ 1 + \frac{V_{ds}}{Vbi} \Big]^{Mj}} \end{split}$$

For  $^{-V_{ds}\,<\,-Fc\, imes Vbi}$ 

the capacitance is extrapolated linearly from its value at  $Fc \times Vbi$  according to the standard SPICE equation for a junction diode [3]. The charge derivatives are related to the small-signal capacitances through the following expressions:

$$C_{gs} \approx C_{gcgc} + C_{gygc}$$
$$C_{gd} \approx C_{gcgy} + C_{gygy}$$
$$C_{ds} \approx C_{dsds} - C_{gcgy}$$

where:

$$\begin{split} C_{gcgc} &= \frac{\partial q_{gc}}{\partial V_{gc}} \\ C_{gcgy} &= \frac{\partial q_{gc}}{\partial V_{gy}} \\ C_{gvgy} &= \frac{\partial q_{gy}}{\partial V_{gy}} \\ C_{gygc} &= \frac{\partial q_{gy}}{\partial V_{gy}} \end{split}$$

#### Substrate Diode and Breakdown

When the drain-source voltage is reverse-biased, the substrate diode conducts according to the standard diode relation:

$$I_{for}(V_{ds}) = Is \times \left[e^{\frac{-qV_{ds}}{nkT}} - 1\right]$$

where q is the charge on an electron, k is Boltzmann's constant, and T is the junction temperature.

The EEMOS1 breakdown model is based on a simple power law expression. The model consists of three parameters that are easily optimized to measured data. The breakdown current is given by:

For 
$$V_{ds} > Vbr$$
,

$$I_{bkdn}(V_{ds}) = Kbo(V_{ds} - Vbr)^{Nbr}$$

For  $V_{ds} \leq Vbr$ 

$$I_{bkdn}(V_{ds}) = 0$$

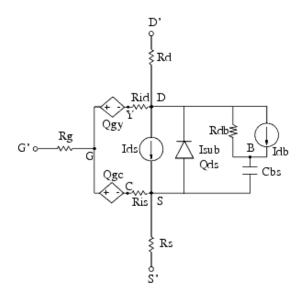
Total current flowing through the substrate (body) diode from source to drain is given by:

$$I_{sub}(V_{ds}) = I_{for}(V_{ds}) - I_{bkdn}(V_{ds})$$

#### Noise Model

Thermal noise generated by resistors Rg, Rs, Rd, Ris, Rid, and Rdb is characterized by the following spectral density.

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$


Channel noise generated by the DC transconductance gm is characterized by the following spectral density:

$$\frac{\langle i_{ds}^2 \rangle}{\Delta f} = \frac{8kTg_m}{3}$$

In the preceding expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge, and  $\Delta f$  is the noise bandwidth.

Flicker noise for this device is not modeled in this simulator version. However, the biasdependent noise sources I\_NoiseBD and V\_NoiseBD (from the Sources library) can be connected external to the device to model flicker noise.

#### **Equivalent Circuit**



#### References

- 1. W. R. Curtice, "A MESFET model for use in the design of GaAs integrated circuits," *IEEE Transactions of Microwave Theory and Techniques,* Vol. MTT-28, pp. 448-456, May 1980.
- J. M. Golio, M. Miller, G. Maracus, D. Johnson. "Frequency dependent electrical characteristics of GaAs MESFETs," *IEEE Trans. Elec. Devices*, vol. ED-37, pp. 1217-1227, May 1990.
- 3. P. Antognetti and G. Massobrio. *Semiconductor Device Modeling with SPICE,* Second Edition, McGraw-Hill, Inc., 1993.

## hisim2 (HiSIM 2 MOSFET Model and Instance)

#### **Model Parameters**

The maximum and minimum limits of the model parameter are recommended values. These values may be violated in some specific cases.

Items with \* indicate minor parameters.

#### **Basic Device Parameters**

| Parameter | Description                                         | Units             | Min                 | Max                 | Default                  | Remarks |
|-----------|-----------------------------------------------------|-------------------|---------------------|---------------------|--------------------------|---------|
| тох       | physical oxide thickness                            | m                 |                     |                     | 3n                       |         |
| XL        | difference between real and drawn gate length       | m                 |                     |                     | 0                        |         |
| XW        | difference between real and drawn gate width        | m                 |                     |                     | 0                        |         |
| XLD       | gate-overlap length                                 | m                 | 0                   | 50n                 | 0                        |         |
| XWD       | gate-overlap length                                 | m                 | -10n                | 100n                | 0                        |         |
| TPOLY     | height of the gate poly-Si for fringing capacitance | m                 |                     |                     | 200×10 <sup>-</sup><br>9 |         |
| LL        | coefficient of gate length modification             |                   |                     |                     | 0                        |         |
| LLD       | coefficient of gate length modification             | m                 |                     |                     | 0                        |         |
| LLN       | coefficient of gate length modification             |                   |                     |                     | 0                        |         |
| WL        | coefficient of gate width modification              |                   |                     |                     | 0                        |         |
| WLD       | coefficient of gate width modification              | m                 |                     |                     | 0                        |         |
| WLN       | coefficient of gate width modification              |                   |                     |                     | 0                        |         |
| NSUBC     | substrate-impurity concentration                    | cm <sup>-3</sup>  | 1×10 <sup>16</sup>  | 1×10 <sup>19</sup>  | $5 \times 10^{17}$       |         |
| NSUBP     | maximum pocket concentration                        | cm⁻³              | $1 \times 10^{16}$  | 1×10 <sup>19</sup>  | 1×10 <sup>18</sup>       |         |
| LP        | pocket penetration length                           | m                 | 0                   | 300n                | 15n                      |         |
| *NPEXT    | maximum concentration of pocket tail                | cm <sup>-3</sup>  | 1×10 <sup>16</sup>  | $1 \times 10^{18}$  | $5 \times 10^{17}$       |         |
| *LPEXT    | extension length of pocket tail                     | m                 | 1×10 <sup>-50</sup> | 10×10 <sup>-6</sup> | 1×10 <sup>-50</sup>      |         |
| VFBC      | flat-band voltage                                   | V                 | -1.2                | -0.8                | -1.0                     |         |
| VBI       | built-in potential                                  | V                 | 1.0                 | 1.2                 | 1.1                      |         |
| KAPPA     | dielectric constant for gate dielectric             | _                 |                     |                     | 3.9                      |         |
| EG0       | bandgap                                             | eV                | 1.0                 | 1.3                 | 1.1785                   |         |
| BGTMP1    | temperature dependence of bandgap                   | eVK <sup>-1</sup> | 50×10⁻<br>6         | 100×10⁻<br>6        | 90.25µ                   | fixed   |
| BGTMP2    | temperature dependence of bandgap                   | eVK <sup>-2</sup> | -1µ                 | 1µ                  | 0.1µ                     |         |
| ТNOM      | temperature selected as a nominal temperature value | °C                | 22                  | 32                  | 27                       |         |

#### Velocity

| Parameter | Description                                       | Units                | Min  | Max   | Default | Remarks |
|-----------|---------------------------------------------------|----------------------|------|-------|---------|---------|
| VMAX      | saturation velocity                               | cm s <sup>-1</sup>   | 1MEG | 20MEG | 10MEG   |         |
| VOVER     | velocity overshoot effect                         | cm <sup>VOVERP</sup> | 0    | 1.0   | 0.3     |         |
| VOVERP    | $L_{\rm eff}$ dependence of velocity overshoot    | —                    | 0    | 2     | 0.3     |         |
| *VTMP     | temperature dependence of the saturation velocity | cm s <sup>-1</sup>   | -2.0 | 1.0   | 0       |         |

#### **Quantum Mechanical Effect**

| Parameter | Description                                          | Units             | Min | Max  | Default | Remarks |
|-----------|------------------------------------------------------|-------------------|-----|------|---------|---------|
| QME1      | $V_{\sf gs}$ dependence of quantum mechanical effect | V <sup>-2</sup> m | 0   | 300n | 0       |         |
| QME2      | $V_{\sf gs}$ dependence of quantum mechanical effect | V                 | 0   | 3.0  | 1.0     |         |
| QME3      | minimum $T_{ox}$ modification                        | m                 | 0   | 800p | 0       |         |

#### **Poly-Silicon Gate Depletion Effect**

| Parameter | Description                                      | Units | Min | Max | Default | Remarks |
|-----------|--------------------------------------------------|-------|-----|-----|---------|---------|
| PGD1      | strength of poly-depletion effect                | V     | 0   | 50m | 0       |         |
| PGD2      | threshold voltage of poly-depletion effect       | V     | 0   | 1.5 | 1.0     |         |
| PGD3      | $V_{\rm ds}$ dependence of poly-depletion effect | -     | 0   | 1.0 | 0.8     |         |
| *PGD4     | $L_{gate}$ dependence of poly-depletion effect   | —     | 0   | 3.0 | 0       |         |

#### Short Channel Effect

| Parameter | Description                                                  | Units             | Min | Max  | Default | Remarks |
|-----------|--------------------------------------------------------------|-------------------|-----|------|---------|---------|
| PARL2     | depletion width of channel/contact junction                  | m                 | 0   | 50n  | 10n     |         |
| SC1       | magnitude of short-channel effect                            | _                 | 0   | 200  | 1.0     |         |
| SC2       | $V_{\sf ds}$ dependence of short-channel effect              | V <sup>-1</sup>   | 0   | 50   | 1.0     |         |
| *SC3      | $V_{\sf bs}$ dependence of short-channel effect              | V <sup>-1</sup> m | 0   | 1m   | 0       |         |
| SCP1      | magnitude of short-channel effect due to pocket              | _                 | 0   | 50   | 1.0     |         |
| SCP2      | $V_{\sf ds}$ dependence of short-channel due to pocket       | V <sup>-1</sup>   | 0   | 50   | 0.1     |         |
| *SCP3     | $V_{ m bs}$ dependence of short-channel effect due to pocket | V <sup>-1</sup> m | 0   | 1m   | 0       |         |
| *SCP21    | short-channel-effect modification for small $V_{ m ds}$      | V                 | 0   | 5.0  | 0       |         |
| *SCP22    | short-channel-effect modification for small $V_{ m ds}$      | V <sup>4</sup>    | 0   | 50m  | 0       |         |
| *BS1      | body-coefficient modification by impurity profile            | V <sup>2</sup>    | 0   | 100m | 0       |         |
| *BS2      | body-coefficient modification by impurity profile            | V                 | 0.5 | 1.0  | 0.9     |         |

#### Mobility

Advanced Design System 2011.01 - Nonlinear Devices

| Parameter | Description                                               | Units                                                                                      | Min        | Max        | Default             | Remarks |
|-----------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|------------|---------------------|---------|
| MUECB0    | coulomb scattering                                        | cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup>                                            | 100        | 100K       | 1K                  |         |
| MUECB1    | coulomb scattering                                        | cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup>                                            | 15         | 10K        | 100                 |         |
| MUEPH0    | phonon scattering                                         | —                                                                                          | 0.25       | 0.35       | 0.3                 | fixed   |
| MUEPH1    | phonon scattering                                         | cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup><br>(V cm <sup>-1</sup> ) <sup>MUEPH0</sup> | 2К         | 30K        | 25K(nMOS),9K(pMOS)  |         |
| MUETMP    | temperature dependence of phonon scattering               | —                                                                                          | 0.5        | 2.0        | 1.5                 |         |
| *MUEPHL   | length dependence of phonon mobility reduction            | —                                                                                          |            |            | 0                   |         |
| *MUEPLP   | length dependence of phonon mobility reduction            | —                                                                                          |            |            | 1.0                 |         |
| MUESR0    | surface-roughness scattering                              | _                                                                                          | 1.8        | 2.2        | 2.0                 |         |
| MUESR1    | surface-roughness scattering                              | cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup><br>(V cm <sup>-1</sup> ) <sup>MUESR0</sup> | 1×10<br>14 | 1×10<br>16 | 1×10 <sup>15</sup>  |         |
| *MUESRL   | length dependence of surface roughness mobility reduction |                                                                                            |            |            | 0                   |         |
| *MUESLP   | length dependence of surface roughness mobility reduction |                                                                                            |            |            | 1.0                 |         |
| NDEP      | depletion charge contribution on effective-electric field | —                                                                                          | 0          | 1.0        | 1.0                 |         |
| *NDEPL    | modification of $Q_{\rm B}$ contribution                  | -                                                                                          |            |            | 0                   |         |
|           | for short-channel case                                    |                                                                                            |            |            |                     |         |
| *NDEPLP   | modification of $Q_{\rm B}$ contribution                  | —                                                                                          |            |            | 1.0                 |         |
|           | for short-channel case                                    |                                                                                            |            |            |                     |         |
| NINV      | inversion charge contribution on effective-electric field | —                                                                                          | 0          | 1.0        | 0.5                 |         |
| BB        | high-field-mobility degradation                           | _                                                                                          |            |            | 2.0(nMOS),1.0(pMOS) | fixed   |

#### **Channel-Length Modulation**

| Parameter | Description                                        | Units | Min | Max | Default | Remarks |
|-----------|----------------------------------------------------|-------|-----|-----|---------|---------|
| CLM1      | hardness coefficient of channel/contact junction   | _     | 0.5 | 1.0 | 0.7     |         |
| CLM2      | coefficient for <i>Q</i> <sub>B</sub> contribution | -     | 1.0 | 2.0 | 2.0     |         |
| CLM3      | coefficient for $Q_{\rm I}$ contribution           | -     | 1.0 | 5.0 | 1.0     |         |
| *CLM4     | no longer used                                     |       |     |     |         |         |
| *CLM5     | effect of pocket implantation                      | _     | 0   | 5.0 | 1.0     |         |
| *CLM6     | effect of pocket implantation                      | _     | 0   | 5.0 | 0       |         |

#### **Narrow Channel Effect**

| Parameter | Description                                                                         | Units                                 | Min                        | Max                    | Default                  | Remarks |
|-----------|-------------------------------------------------------------------------------------|---------------------------------------|----------------------------|------------------------|--------------------------|---------|
| WFC       | threshold voltage change due to capacitance change                                  | F cm <sup>-2</sup><br>m <sup>-1</sup> | -5.0×10 <sup>-</sup><br>15 | 1×10 <sup>-</sup><br>6 | 0                        |         |
| *WVTH0    | threshold voltage shift                                                             |                                       |                            |                        | 0                        |         |
| *NSUBP0   | modification of pocket concentration for narrow width                               | cm <sup>-3</sup>                      |                            |                        | 0                        |         |
| *NSUBWP   | modification of pocket concentration for narrow width                               |                                       |                            |                        | 1.0                      |         |
| *MUEPHW   | phonon related mobility reduction                                                   |                                       |                            |                        | 0                        |         |
| *MUEPWP   | phonon related mobility reduction                                                   |                                       |                            |                        | 1.0                      |         |
| *MUESRW   | change of surface roughness related mobility                                        |                                       |                            |                        | 0                        |         |
| *MUESWP   | change of surface roughness related mobility                                        |                                       |                            |                        | 1.0                      |         |
| *VTHSTI   | threshold voltage shift due to STI                                                  |                                       |                            |                        | 0                        |         |
| *VDSTI    | $V_{\rm ds}$ dependence of STI subthreshold                                         |                                       |                            |                        | 0                        |         |
| *SCSTI1   | the same effect as SC1 but at STI edge                                              |                                       |                            |                        | 0                        |         |
| *SCSTI2   | the same effect as SC2 but at STI edge                                              |                                       |                            |                        | 0                        |         |
| NSTI      | substrate-impurity concentration at the STI edge                                    | cm <sup>-3</sup>                      | 1×10 <sup>16</sup>         | 1×10<br>19             | 5×10 <sup>17</sup>       |         |
| WSTI      | width of the high-field region at STI edge                                          | m                                     |                            |                        | 0                        |         |
| *WSTIL    | channel-length dependence of WSTI                                                   |                                       |                            |                        | 0                        |         |
| *WSTILP   | channel-length dependence of WSTI                                                   |                                       |                            |                        | 1.0                      |         |
| *WSTIW    | channel-width dependence of WSTI                                                    |                                       |                            |                        | 0                        |         |
| *WSTIWP   | channel-width dependence of WSTI                                                    |                                       |                            |                        | 1.0                      |         |
| WL1       | threshold voltage shift of STI leakage due to small size effect                     |                                       |                            |                        | 0                        |         |
| WL1P      | threshold voltage shift of STI leakage due to small size effect                     |                                       |                            |                        | 1.0                      |         |
| NSUBPSTI1 | pocket concentration change due to diffusion-<br>region length between gate and STI | m                                     |                            |                        | 0                        |         |
| NSUBPSTI2 | pocket concentration change due to diffusion-<br>region length between gate and STI | m                                     |                            |                        | 0                        |         |
| NSUBPSTI3 | pocket concentration change due to diffusion-<br>region length between gate and STI | m                                     |                            |                        | 1.0                      |         |
| MUESTI1   | mobility change due to diffusion-region length<br>between gate and STI              |                                       |                            |                        | 0                        |         |
| MUESTI2   | mobility change due to diffusion-region length<br>between gate and STI              |                                       |                            |                        | 0                        |         |
| MUESTI3   | mobility change due to diffusion-region length<br>between gate and STI              |                                       |                            |                        | 1.0                      |         |
| SAREF     | reference length of diffusion between gate and STI                                  | m                                     |                            |                        | 1.0×10 <sup>-</sup><br>6 |         |
| SBREF     | reference length of diffusion between gate and STI                                  | m                                     |                            |                        | 1.0×10 <sup>-</sup><br>6 |         |

**Small Size Effect** 

| Parameter | Description                                        | Units | Min | Max | Default | Remarks |
|-----------|----------------------------------------------------|-------|-----|-----|---------|---------|
| WL2       | threshold voltage shift due to small size effect   |       |     |     | 0       |         |
| WL2P      | threshold voltage shift due to small size effect   |       |     |     | 1.0     |         |
| *MUEPHS   | mobility modification due to small size            |       |     |     | 0       |         |
| *MUEPSP   | mobility modification due to small size            |       |     |     | 1.0     |         |
| *VOVERS   | modification of maximum velocity due to small size | _     |     |     | 0       |         |
| *VOVERSP  | modification of maximum velocity due to small size | _     |     |     | 0       |         |

#### Substrate Current

| Parameter | Description                                       | Units                | Min | Max | Default              | Remarks |
|-----------|---------------------------------------------------|----------------------|-----|-----|----------------------|---------|
| SUB1      | substrate current coefficient of magnitude        | V <sup>-1</sup>      |     |     | 10                   |         |
| SUB1L     | $L_{gate}$ dependence SUB1                        | m                    |     |     | 2.5×10 <sup>-3</sup> |         |
| SUB1LP    | $L_{gate}$ dependence SUB1                        | _                    |     |     | 1.0                  |         |
| SUB2      | substrate current coefficient of exponential term | V                    |     |     | 25.0                 |         |
| SUB2L     | $L_{gate}$ dependence of SUB2                     | m                    | 0   | 1.0 | 2×10 <sup>-6</sup>   |         |
| SVDS      | substrate current dependence on $V_{\rm ds}$      | _                    |     |     | 0.8                  |         |
| SLG       | substrate current dependence on $L_{gate}$        | m                    |     |     | 3×10 <sup>-8</sup>   |         |
| SLGL      | substrate current dependence on $L_{gate}$        | m <sup>SLGLP</sup>   |     |     | 0                    |         |
| SLGLP     | substrate current dependence on $L_{gate}$        | _                    |     |     | 1.0                  |         |
| SVBS      | substrate current dependence on $V_{\rm bs}$      | _                    |     |     | 0.5                  |         |
| SVBSL     | L <sub>gate</sub> dependence of SVBS              | m <sup>SV BSLP</sup> |     |     | 0                    |         |
| SVBSLP    | L <sub>gate</sub> dependence of SVBS              | —                    |     |     | 1.0                  |         |
| SVGS      | substrate current dependence on $V_{gs}$          | —                    |     |     | 0.8                  |         |
| SVGSL     | L <sub>gate</sub> dependence of SVGS              | m <sup>SV GSLP</sup> |     |     | 0                    |         |
| SVGSLP    | L <sub>gate</sub> dependence of SVGS              | _                    |     |     | 1.0                  |         |
| SVGSW     | $W_{gate}$ dependence of SVGS                     | m <sup>SV GSWP</sup> |     |     | 0                    |         |
| SVGSWP    | W <sub>gate</sub> dependence of SVGS              | _                    |     |     | 1.0                  |         |

#### Subthreshold Swing

| Parameter | Description                       | Units | Min | Max | Default | Remarks |
|-----------|-----------------------------------|-------|-----|-----|---------|---------|
| *PTHROU   | correction for subthreshold swing | _     | 0   | 50m | 0       |         |

Impact-ionization Induced Bulk Potential Change

| Parameter | Description                                     | Units            | Min | Мах                  | Default | Remarks |
|-----------|-------------------------------------------------|------------------|-----|----------------------|---------|---------|
| IBPC1     | impact-ionization induced bulk potential change | VA <sup>-1</sup> | 0   | $1.0 \times 10^{12}$ | 0       |         |
| IBPC2     | impact-ionization induced bulk potential change | V <sup>-1</sup>  | 0   | $1.0 \times 10^{12}$ | 0       |         |

#### Gate Leakage Current

| Parameter | Description                                                                         | Units                                   | Min | Max | Default                  | Remarks |
|-----------|-------------------------------------------------------------------------------------|-----------------------------------------|-----|-----|--------------------------|---------|
| GLEAK1    | gate to channel current coefficient                                                 | AV <sup>-3/2</sup> C <sup>-</sup>       |     |     | 50                       |         |
| GLEAK2    | gate to channel current coefficient                                                 | V <sup>-1/2</sup> m <sup>-</sup><br>1   |     |     | 10M                      |         |
| GLEAK3    | gate to channel current coefficient                                                 | -                                       |     |     | 60×10 <sup>-3</sup>      |         |
| GLEAK4    | gate to channel current coefficient                                                 | m <sup>-1</sup>                         |     |     | 4.0                      |         |
| *GLEAK5   | gate to channel current coefficient ( short channel correction )                    | V m⁻¹                                   |     |     | 7.5×10 <sup>3</sup>      |         |
| *GLEAK6   | gate to channel current coefficient ( $V_{\rm ds}$ dependence correction )          | V                                       |     |     | 250×10⁻<br>3             |         |
| *GLEAK7   | gate to channel current coefficient ( gate length and width dependence correction ) | m <sup>2</sup>                          |     |     | 1×10 <sup>-6</sup>       |         |
| *EGIG     | temperature dependence of gate leakage                                              | V                                       |     |     | 0.0                      |         |
| *IGTEMP2  | temperature dependence of gate leakage                                              | V K                                     |     |     | 0                        |         |
| *IGTEMP3  | temperature dependence of gate leakage                                              | V К <sup>2</sup>                        |     |     | 0                        |         |
| GLKSD1    | gate to source/drain current coefficient                                            | A m V <sup>-2</sup>                     |     |     | 1f                       |         |
| GLKSD2    | gate to source/drain current coefficient                                            | V <sup>-1</sup> m <sup>-1</sup>         |     |     | 5M                       |         |
| GLKSD3    | gate to source/drain current coefficient                                            | m <sup>-1</sup>                         |     |     | -5M                      |         |
| GLKB1     | gate to bulk current coefficient                                                    | A V <sup>-2</sup>                       |     |     | 5×10 <sup>-16</sup>      |         |
| GLKB2     | gate to bulk current coefficient                                                    | m V <sup>-1</sup>                       |     |     | 1.0                      |         |
| *GLKB3    | flat-bans shift for gate to bulk current                                            | V                                       |     |     | 0                        |         |
| GLPART1   | partitioning ratio of gate leakage current                                          | —                                       | 0   | 1.0 | 0.5                      |         |
| FN1       | coefficient of Fowler-Nordheim-current contribution                                 | V <sup>-1.5</sup> - m <sup>2</sup>      | 2   |     | 50                       |         |
| FN2       | coefficient of Fowler-Nordheim-current contribution                                 | V <sup>-0.5</sup> - m <sup>-</sup><br>1 | -   |     | 170×10 <sup>-</sup><br>6 |         |
| FN3       | coefficient of Fowler-Nordheim-current contribution                                 | V                                       |     |     | 0                        |         |
| FVBS      | V <sub>bs</sub> dependence of Fowler-Nordheim current                               | _                                       |     |     | 12×10 <sup>-3</sup>      |         |

#### **GIDL Current**

| Parameter | Description                           | Units                                             | Min | Max | Default           | Remarks |
|-----------|---------------------------------------|---------------------------------------------------|-----|-----|-------------------|---------|
| GIDL1     | magnitude of GIDL                     | A V <sup>-3/2</sup> C <sup>-1</sup> m             |     |     | 2.0               |         |
| GIDL2     | field dependence of GIDL              | V <sup>-2</sup> m <sup>-1</sup> F <sup>-3/2</sup> |     |     | 3×10 <sup>7</sup> |         |
| GIDL3     | $V_{\rm ds}$ dependence of GIDL       | —                                                 |     |     | 0.9               |         |
| *GIDL4    | threshold of $V_{ds}$ dependence      | V                                                 |     |     | 0                 |         |
| *GIDL5    | correction of high-field contribution | —                                                 |     |     | 0.2               |         |

#### Conservation of the Symmetry at Vds = 0 for Short-Channel MOSFETs

| Parameter | Description                       | Units | Min | Max | Default | Remarks |
|-----------|-----------------------------------|-------|-----|-----|---------|---------|
| VZADD0    | symmetry conservation coefficient | V     |     |     | 10m     | fixed   |
| PZADD0    | symmetry conservation coefficient | V     |     |     | 5m      | fixed   |

#### Smoothing coefficient between linear and saturation region

| Parameter | Description                                           | Units | Min | Max | Default | Remarks |
|-----------|-------------------------------------------------------|-------|-----|-----|---------|---------|
| *DDLTMAX  | smoothing coefficient for V <sub>ds</sub>             |       | 0   | 20  | 10      |         |
| *DDLTSLP  | L <sub>gate</sub> dependence of smoothing coefficient |       | 0   | 20  | 0       |         |
| *DDLTICT  | $L_{gate}$ dependence of smoothing coefficient        |       | -3  | 20  | 10      |         |

Source/Bulk and Drain/Bulk Diodes

| Advanced Design System 2011.01 - Nonlinear Devices |
|----------------------------------------------------|
|----------------------------------------------------|

| Parameter | Description                                                                             | Units             | Min | Max | Default                  | Remarks |
|-----------|-----------------------------------------------------------------------------------------|-------------------|-----|-----|--------------------------|---------|
| JS0       | saturation current density                                                              | A m <sup>-2</sup> |     |     | 0.5×10 <sup>-</sup><br>6 |         |
| JSOSW     | sidewall saturation current density                                                     | A m <sup>-1</sup> |     |     | 0                        |         |
| NJ        | emission coefficient                                                                    | _                 |     |     | 1.0                      |         |
| NJSW      | sidewall emission coefficient                                                           | _                 |     |     | 1.0                      |         |
| XTI       | temperature coefficient for forward current densities                                   | _                 |     |     | 2.0                      |         |
| XTI2      | temperature coefficient for reverse current densities                                   | _                 |     |     | 0                        |         |
| DIVX      | reverse current coefficient                                                             | V <sup>-1</sup>   |     |     | 0                        |         |
| CTEMP     | temperature coefficient of reverse currents                                             | _                 |     |     | 0                        |         |
| CISB      | reverse biased saturation current                                                       | _                 |     |     | 0                        |         |
| CISBK     | reverse biased saturation current ( at low temperature )                                | A                 |     |     | 0                        |         |
| CVB       | bias dependence coefficient of CISB                                                     | _                 |     |     | 0                        |         |
| CVBK      | bias dependence coefficient of CISB ( at low temperature )                              | _                 |     |     | 0                        |         |
| CJ        | bottom junction capacitance per unit area at zero bias                                  | F m <sup>-2</sup> |     |     | 5×10 <sup>-4</sup>       |         |
| CJSW      | source/drain sidewall junction cap. grading coefficient per<br>unit length at zero bias | F m <sup>-1</sup> |     |     | 5×10 <sup>-10</sup>      |         |
| CJSWG     | source/drain sidewall junction capacitance per unit length at zero bias                 | F m <sup>-1</sup> |     |     | 5×10 <sup>-10</sup>      |         |
| MJ        | bottom junction capacitance grading coefficient                                         | _                 |     |     | 0.5                      |         |
| MJSW      | source/drain sidewall junction capacitance grading coefficient                          | —                 |     |     | 0.33                     |         |
| MJSWG     | source/drain gate sidewall junction capacitance grading coefficient                     | —                 |     |     | 0.33                     |         |
| PB        | bottom junction build-in potential                                                      | V                 |     |     | 1.0                      |         |
| PBSW      | source/drain sidewall junction build-in potential                                       | V                 |     |     | 1.0                      |         |
| PBSWG     | source/drain gate sidewall junction build-in potential                                  | V                 |     |     | 1.0                      |         |
| VDIFFJ    | diode threshold voltage between source/drain and substrate                              | V                 |     |     | 0.6×10⁻<br>3             |         |

#### 1/f Noise

| Parameter | Description                                          | Units                            | Min | Max | Default             | Remarks |
|-----------|------------------------------------------------------|----------------------------------|-----|-----|---------------------|---------|
| NFALP     | contribution of the mobility fluctuation             | cm s                             |     |     | 1×10 <sup>-19</sup> |         |
| NFTRP     | ratio of trap density to attenuation coefficient     | V <sup>-1</sup> cm <sup>-2</sup> |     |     | 10G                 |         |
| *CIT      | capacitance caused by the interface trapped carriers | F cm <sup>-2</sup>               |     |     | 0                   |         |

#### **DFM Support**

| Parameter | Description                                | Units | Min | Max | Default | Remarks |
|-----------|--------------------------------------------|-------|-----|-----|---------|---------|
| MPHDFM    | mobility dependence on NSUBC due to phonon |       | -3  | 3   | -0.3    |         |

#### Non-Quasi-Static Model

| Advanced Design        | System 2011 | .01 - Nonlinear | Devices |
|------------------------|-------------|-----------------|---------|
| i la la la la colorigu |             |                 | 2011000 |

| Parameter | Description                                         | Units | Min | Max | Default               | Remarks |
|-----------|-----------------------------------------------------|-------|-----|-----|-----------------------|---------|
| DLY1      | coefficient for delay due to diffusion of carriers  | s     |     |     | 100×10 <sup>-12</sup> |         |
| DLY2      | coefficient for delay due to conduction of carriers | _     |     |     | 0.7                   |         |
| DLY3      | coefficient for RC delay of bulk carriers           | Ω     |     |     | 0.8×10 <sup>-6</sup>  |         |

#### Capacitance

| Parameter | Description                                                  | Units            | Min | Мах             | Default                  | Remarks              |
|-----------|--------------------------------------------------------------|------------------|-----|-----------------|--------------------------|----------------------|
| XQY       | distance from drain junction to maximum electric field point | m                | 0   | 50n             | 0                        |                      |
| *XQY1     | $V_{\rm bs}$ dependence of $Q_{\rm y}$                       | F-µm<br>xQY2-1   | 0   |                 | 0                        |                      |
| *XQY2     | $L_{\text{gate}}$ dependence of $Q_{y}$                      | -                | 0   |                 | 2                        |                      |
| LOVER     | overlap length                                               | m                |     |                 | 30n                      |                      |
| NOVER     | impurity concentration in overlap region                     | cm⁻ <sup>3</sup> |     |                 | 0                        |                      |
| VFBOVER   | flat-band voltage in overlap region                          | V                |     |                 | -0.5                     |                      |
| OVSLP     | coefficient for overlap capacitance                          | -                |     |                 | 2.1×10 <sup>-</sup><br>7 |                      |
| OVMAG     | coefficient for overlap capacitance                          | V                |     |                 | 0.6                      |                      |
| CGSO      | gate-to-source overlap capacitance                           | Fm <sup>-1</sup> | 0   | 100nm × C<br>ox |                          | to be set by<br>user |
| CGDO      | gate-to-drain overlap capacitance                            | Fm <sup>-1</sup> | 0   | 100nm × C<br>ox |                          | to be set by<br>user |
| CGBO      | gate-to-bulk overlap capacitance                             | Fm <sup>-1</sup> | 0   |                 | 0                        |                      |

#### **Parasitic Resistances**

| Parameter | Description                             | Units                       | Min | Max  | Default     | Remarks                           |
|-----------|-----------------------------------------|-----------------------------|-----|------|-------------|-----------------------------------|
| RS        | source-contact resistance in LDD region | Ωm                          | 0   | 10m  | 0           |                                   |
| RD        | drain-contact resistance in LDD region  | Ωm                          | 0   | 10m  | 0           |                                   |
| RSH       | source/drain sheet resistance           | V A <sup>-1</sup><br>square | 0   | 1m   | 0           |                                   |
| RSHG      | gate sheet resistance                   | V A <sup>-1</sup><br>square | 0   | 100µ | 0           |                                   |
| GBMIN     | substrate resistance network            | -                           |     |      | 1×10⁻<br>12 | requested by circuit sim.         |
| RBPB      | substrate resistance network            | Ω                           |     |      | 50          | treated also as an instance p.    |
| RBPD      | substrate resistance network            | Ω                           |     |      | 50          | treated also as an instance p.    |
| RBPS      | substrate resistance network            | Ω                           |     |      | 50          | treated also as an instance p.    |
| RBDB      | substrate resistance network            | Ω                           |     |      | 50          | treated also as an instance<br>p. |
| RBSB      | substrate resistance network            | Ω                           |     |      | 50          | treated also as an instance<br>p. |

#### **Binning Model**

| Parameter | Description                                | Units | Min | Max | Default | Remarks |
|-----------|--------------------------------------------|-------|-----|-----|---------|---------|
| LBINN     | power of L <sub>drawn</sub> dependence     | -     |     |     | 1       |         |
| WBINN     | power of $W_{drawn}$ dependence            | -     |     |     | 1       |         |
| LMAX      | maximum length of L <sub>drawn</sub> valid | μm    |     |     |         |         |
| LMIN      | minimum length of L <sub>drawn</sub> valid | μm    |     |     |         |         |
| WMAX      | maximum length of $W_{drawn}$ valid        | μm    |     |     |         |         |
| WMIN      | minimum length of $W_{\rm drawn}$ valid    | μm    |     |     |         |         |

**Model Netlist Format** 

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelName hisim2 version=241 [parm=value]\*

Example: model Nch7 hisim2 Gender=1 Version=241 Tox=2.15e-9

#### **Instance Parameters**

Partly the same instance-parameter names and their definitions as in the BSIM3/4 models are adopted for the convenience of HiSIM users.

The maximum and minimum limits of the instance parameters are recommended values. These values

# Advanced Design System 2011.01 - Nonlinear Devices may be violated in individual cases.

| Name                            | Description                                        | Units | Min          | Max          | Default | Remarks                           |
|---------------------------------|----------------------------------------------------|-------|--------------|--------------|---------|-----------------------------------|
| L                               | gate length ( L <sub>gate</sub> )                  | m     |              |              | 5μ      |                                   |
| W                               | gate width ( $W_{gate}$ )                          | m     |              |              | 5µ      |                                   |
| Diode                           |                                                    |       |              |              |         |                                   |
| AD                              | area of drain junction                             | m²    |              |              | 0       |                                   |
| AS                              | area of source junction                            | m²    |              |              | 0       |                                   |
| PD                              | perimeter of drain junction                        | m     |              |              | 0       |                                   |
| PS                              | perimeter of source junction                       | m     |              |              | 0       |                                   |
| Source/Drain<br>Resistance      |                                                    |       |              |              |         |                                   |
| NRS                             | number of source squares                           | m     |              |              | 1       |                                   |
| NRD                             | number of drain squares                            | m     |              |              | 1       |                                   |
| Gate Resistance                 |                                                    |       |              |              |         |                                   |
| XGW                             | distance from the gate contact to the channel edge | m     |              |              | 0       |                                   |
| XGL                             | offset of the gate length                          | m     |              |              | 0       |                                   |
| NF                              | number of gate fingers                             | —     |              |              | 1       |                                   |
| M                               | multiplication factor                              |       |              |              |         |                                   |
| NGCON                           | number of gate contacts                            | m     |              |              | 1       |                                   |
| Substrate Network               |                                                    |       |              |              |         |                                   |
| RBPB                            | substrate resistance network                       | Ω     |              |              | 50      | treated also as a model parameter |
| RBPD                            | substrate resistance network                       | Ω     |              |              | 50      | treated also as a model parameter |
| RBPS                            | substrate resistance network                       | Ω     |              |              | 50      | treated also as a model parameter |
| RBDB                            | substrate resistance network                       | Ω     |              |              | 50      | treated also as a model parameter |
| RBSB                            | substrate resistance network                       | Ω     |              |              | 50      | treated also as a model parameter |
| Length of Diffusion             |                                                    |       |              |              |         |                                   |
| SA                              | length of diffusion between gate and STI           | m     |              |              | 0       |                                   |
| SB                              | length of diffusion between gate and STI           | m     |              |              | 0       |                                   |
| SD                              | length of diffusion between<br>gate and gate       | m     |              |              | 0       |                                   |
| Temperature                     |                                                    |       |              |              |         |                                   |
| TEMP                            | device temperature (T)                             | °C    |              |              | 27      |                                   |
| DTEMP                           | device temperature change                          | °C    |              |              | 0       |                                   |
| Design for<br>Manufacturability |                                                    |       |              |              |         |                                   |
| NSUBCDFM                        | substrate impurity concentration                   | cm⁻³  | 1.0×10<br>16 | 1.0×10<br>19 |         |                                   |

**Instance Netlist Format** 

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use

Advanced Design System 2011.01 - Nonlinear Devices foundry model kits, refer to *Design Kit Development* (dkarch).

modelName [:Name] d g s b

#### Example:

Nch7:M1 2 1 0 0 W=10u L=0.9u

#### **Notes/Equations**

1. To exclude specific modeled effects, following parameter settings should be chosen:

| Short-Channel Effect         | SC1 = SC2 = SC3 = 0    |
|------------------------------|------------------------|
| Reverse-Short-Channel Effect | LP = 0                 |
| Quantum-Mechanical Effect    | QME1 = QME3 = 0        |
| Poly-Depletion Effect        | PGD1 = PGD2 = PGD3 = 0 |
| Channel-Length Modulation    | CLM1 = CLM2 = CLM3 = 0 |
| Narrow-Channel Effect        | WFC = MUEPHW = WL1 = 0 |
| Small-Size Effect            | WL2 = 0                |

Following flags are prepared to select required model options.

2. Contact resistances  $R_s$  and  $R_d$  are included:

CORSRD = 0: no (default) CORSRD = 1 & RS/RD  $\neq$  0: yes, as internal resistances of HiSIM CORSRD = 2 & RD  $\neq$  0: yes, simple analytical formulation CORSRD = -1 & RS/RD  $\neq$  0: yes, as external resistances of HiSIM

3. Overlap capacitance model is selected as:

COOVLP = 0: constant overlap capacitance (default) either given LOVER plus CGS0/CGD0 or LOVER only COOVLP = 1: yes selecting a model either by defining NOVER value or not

4. Substrate current  $I_{sub}$  is calculated:

COISUB = 0: no (default) COISUB = 1: yes 5. Gate current  $I_{\text{gate}}$  is calculated:

> COIIGS = 0: no (default) COIIGS = 1: yes

6. GIDL current  $I_{GIDL}$  is calculated:

COGIDL = 0: no (default)COGIDL = 1: yesTI leakage current *I* is calculat

7. STI leakage current  $I_{ds,STI}$  is calculated:

COISTI = 0: no (default) COISTI = 1: yes

8. Lateral field induced and overlap charges/capacitances are added to intrinsic ones:

COADOV = 0: no

COADOV = 1: yes (default)

9. Non-quasi-static mode is invoked:

CONQS = 0: no (default)

CONQS = 1: yes

10. Gate-contact resistance is included (This flag can also be given as a instance parameter.):

CORG = 0: no (default)

CORG = 1: yes

11. Substrate resistance network is invoked (This flag can also be given as a instance parameter.):

CORBNET = 0: no (default) CORBNET = 1: yes

12. 1/f noise is calculated:

COFLICK = 0: no (default) COFLICK = 1: yes

13. Thermal noise is calculated:

COTHRML = 0: no (default) COTHRML = 1: yes

14. Induced gate and cross correlation noise are calculated:

COIGN = 0 || COTHRML = 0: no (default) COIGN = 1 & COTHRML = 1: yes

15. Previous Ids is used for calculating source/drain resistance effect ( $R_s$  and/or  $R_d \neq 0$ ):

 $\begin{array}{l} \text{COIPRV} = 0: \text{ no} \\ \text{COIPRV} = 1: \text{ yes (default)} \\ \text{16. Previous } \varPhi_{\text{S}} \text{ is used for the iteration:} \end{array}$ 

COPPRV = 0: no COPPRV = 1: yes (default)

17. Parameter variations for the DFM support is considered:

CODFM = 0: no (default) CODFM = 1: yes

# HiSIM\_HV (HiSIM\_HV version 1.11 MOSFET Model and Instance)

#### \rm Note

For detailed information please refer to the HiSIM\_HV manual provided by the Hiroshima university.

#### **Model Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelName HiSIM\_HV [parm=value]\*

Example:

model Nch HiSIM\_HV Tox=2.15e-9

#### **Model Parameters**

| Name<br>(Alias) | Description                                                 |
|-----------------|-------------------------------------------------------------|
| Gender          | +1=N-type, -1=P-type                                        |
| Tnom            | Parameter measurement temperature                           |
| Secured         | Secured model parameters                                    |
| Info            | Information level (for debug, etc.)                         |
| Noise           | Noise model selector                                        |
| Version         | Model version                                               |
| Show            | Show physical value                                         |
| Corsrd          | Handling of Rs and Rd                                       |
| Corg            | Activate gate resistance (1) or not (0)                     |
| Coiprv          | Use ids_prv as initial guess of Ids (internal flag)         |
| Copprv          | Use ps{0/l}_prv as initial guess of Ps{0/l} (internal flag) |
| Coadov          | Add overlap to intrisic                                     |
| Coisub          | Calculate isub                                              |
| Coiigs          | Calculate igate                                             |
| Cogidl          | Calculate igidl                                             |
| Coovlp          | Calculate overlap charge on the drain side                  |
| Coovlps         | Calculate overlap charge on the source side                 |
| Coflick         | Calculate 1/f noise                                         |
| Coisti          | Calculate STI                                               |
| Conqs           | Calculate in nqs mode or qs mode                            |
| Corbnet         |                                                             |
| Cothrml         | Calculate thermal noise                                     |
| Coign           | Calculate induced gate noise                                |
| Codfm           | Calculation of model for DFM                                |
| Coselfheat      | Calculation of self heating model                           |
| Cosym           | Model selector for symmetry device                          |
| Vbsmin          | Minimum back bias voltage to be treated in hsmhveval [V]    |

| Vmax     | Advanced Design System 2011.01 - Nonlinear Devices<br>Saturation velocity [cm/s] |  |
|----------|----------------------------------------------------------------------------------|--|
| Bgtmp1   | First order temp. coeff. for band gap [V/K]                                      |  |
| Bgtmp2   | Second order temp. coeff. for band gap [V/K^2]                                   |  |
| Eg0      |                                                                                  |  |
| Тох      | Oxide thickness [m]                                                              |  |
| Xld      | Lateral diffusion of S/D under the gate [m]                                      |  |
| Xldld    | Lateral diffusion of Drain under the gate [m]                                    |  |
| Lover    | Overlap length on source side [m], alias for lovers                              |  |
| Lovers   | Overlap length on source side [m]                                                |  |
| Rdov11   | Dependence coeff. for overlap length                                             |  |
| Rdov12   | Dependence coeff. for overlap length                                             |  |
| Rdov13   | Dependence coeff. for overlap length                                             |  |
| Rdslp1   | LDRIFT1 dependence of resistance for CORSRD=1,3                                  |  |
| Rdict1   | LDRIFT1 dependence of resistance for CORSRD=1,3                                  |  |
| Rdslp2   | LDRIFT2 dependence of resistance for CORSRD=1,3                                  |  |
| Rdict2   | LDRIFT2 dependence of resistance for CORSRD=1,3                                  |  |
| Loverld  | Overlap length on the drain side                                                 |  |
| Ldrift1  | Drift region length-1 on the drain side[m]                                       |  |
| Ldrift2  | Drift region length-2 on the drain side[m]                                       |  |
| Ldrift1s | Drift region length-1 on the source side[m]                                      |  |
| Ldrift2s | Drift region length-2 on the source side[m]                                      |  |
| Subld1   | Impact-ionization current in the drift region [-]                                |  |
| Subld2   | Impact-ionization current in the drift region [m^{-1}*V^{3/2}]                   |  |
| Ddltmax  |                                                                                  |  |
| Ddltslp  |                                                                                  |  |
| Ddltict  |                                                                                  |  |
| Vfbover  |                                                                                  |  |
| Nover    |                                                                                  |  |
| Novers   |                                                                                  |  |
| Xwd      | Lateral diffusion along the width dir. [m]                                       |  |
| XI       | Gate length offset due to mask/etch effect [m]                                   |  |
| Xw       | Gate width offset due to mask/etch effect [m]                                    |  |
| Saref    | Reference distance from STI edge to Gate edge [m]                                |  |
| Sbref    | Reference distance from STI edge to Gate edge [m]                                |  |
| LI       | Gate length parameter                                                            |  |
| Lld      | Gate length parameter                                                            |  |
| Lln      | Gate length parameter                                                            |  |
| WI       | Gate width parameter                                                             |  |
| WI1      | Gate width parameter                                                             |  |
| Wl1p     | Gate width parameter                                                             |  |
| WI2      | Gate width parameter                                                             |  |
| WI2p     | Gate width parameter                                                             |  |
| Wld      | Gate width parameter                                                             |  |
| Wln      | Gate width parameter                                                             |  |
| Хqу      | [m]                                                                              |  |
| Xqy1     | [F m^{XQY2}]                                                                     |  |
| Xqy2     | [-]                                                                              |  |

#### Advanced Design System 2011.01 - Nonlinear Devices Source contact resistance [ohm m] Rs Drain contact resistance [ohm m] Rd Rsh Source/drain diffusion sheet resistance [ohm] Rshq Gate-elecrode sheet resistance Vfbc Constant part of Vfb [V] Built-in potential [V] Vbi Nsubc Constant part of Nsub [1/cm^3] Parl2 Under diffusion [m] Lp Length of pocket potential [m] Nsubp [1/cm^3] Nsubp0 Pocket implant parameter Pocket implant parameter Nsubwp Parameter for pocket [-] Scp1 Scp2 Parameter for pocket [1/V] Parameter for pocket [m/V] Scp3 Parameter for SCE [-] Sc1 Parameter for SCE [1/V] Sc2 Parameter for SCE [m/V] Sc3 Sc4 Parameter for SCE [1/V] Parameter for gate-poly depletion [V] Pgd1 Parameter for gate-poly depletion [V] Pgd2 Parameter for gate-poly depletion [-] Pgd3 Pgd4 Parameter for gate-poly depletion [-] Coeff. of Qbm for Eeff [-] Ndep Ndepl Coeff. of Qbm for Eeff [-] Ndeplp Coeff. of Qbm for Eeff [-] Ninv Coeff. of Qnm for Eeff [-] Modification of Vdse dependence on Eeff [1/V] Ninvd Const. part of coulomb scattering [cm<sup>2</sup>/Vs] Muecb0 Muecb1 Coeff. for coulomb scattering [cm^2/Vs] Mueph0 Power of Eeff for phonon scattering [-] Mueph1 Muephw Muepwp Phonon scattering parameter Muephl Phonon scattering parameter Mueplp Phonon scattering parameter Muephs Muepsp Vtmp Wvth0 Muesr0 Power of Eeff for S.R. scattering [-] Muesr1 Coeff. for S.R. scattering [-] Muesrl Surface roughness parameter Change of surface roughness related mobility Muesrw Mueswp Change of surface roughness related mobility Surface roughness parameter Mueslp Muetmp Parameter for mobility [-]

| Bb               | Advanced Design System 2011.01 - Nonlinear Devices<br>Empirical mobility model coefficient [-] |
|------------------|------------------------------------------------------------------------------------------------|
| Sub1             | Parameter for Isub [1/V]                                                                       |
| Sub2             | Parameter for Isub [V]                                                                         |
| Svgs             | Coefficient for Vg of Psislsat                                                                 |
| Svbs             | Coefficient for Vbs of Psislsat                                                                |
| Svbsl            |                                                                                                |
| Svds             |                                                                                                |
| Slg              |                                                                                                |
| Sub1l            |                                                                                                |
| Sub2l            |                                                                                                |
| Fn1              |                                                                                                |
| Fn2              |                                                                                                |
| Fn3              |                                                                                                |
| Fvbs             |                                                                                                |
| Svgsl            |                                                                                                |
| Svgslp           |                                                                                                |
| Svgsip<br>Svgswp |                                                                                                |
| Svgswp<br>Svgsw  |                                                                                                |
|                  |                                                                                                |
| Svbslp           |                                                                                                |
| Sigi             |                                                                                                |
| Sigip            |                                                                                                |
| Sub1lp           |                                                                                                |
| Nsti             | Parameter for STI [1/cm^3]                                                                     |
| Wsti             | Parameter for STI [m]                                                                          |
| Wstil            | Parameter for STI [?]                                                                          |
| Wstilp           | Parameter for STI [?]                                                                          |
| Wstiw            | Parameter for STI [?]                                                                          |
| Wstiwp           | Parameter for STI [?]                                                                          |
| Scsti1           | Parameter for STI [-]                                                                          |
| Scsti2           | Parameter for STI [1/V]                                                                        |
| Vthsti           | Parameter for STI                                                                              |
| Vdsti            | Parameter for STI [-]                                                                          |
| Muesti1          | STI Stress mobility parameter                                                                  |
| Muesti2          | STI Stress mobility parameter                                                                  |
| Muesti3          | STI Stress mobility parameter                                                                  |
| Nsubpsti1        | STI Stress pocket implant parameter                                                            |
| Nsubpsti2        | STI Stress pocket implant parameter                                                            |
| Nsubpsti3        | STI Stress pocket implant parameter                                                            |
| Lpext            | Pocket extension                                                                               |
| Npext            | Pocket extension                                                                               |
| Scp22            |                                                                                                |
| Scp21            |                                                                                                |
| Bs1              |                                                                                                |
| Bs2              |                                                                                                |
| Cgso             | G-S overlap capacitance per unit W [F/m]                                                       |
| Cgdo             | G-D overlap capacitance per unit W [F/m]                                                       |
|                  |                                                                                                |

| Tpoly   | Advanced Design System 2011.01 - Nonlinear Devices<br>Height of poly gate on the source side[m]   |  |  |
|---------|---------------------------------------------------------------------------------------------------|--|--|
| Js0     | Saturation current density [A/m^2]                                                                |  |  |
| Js0sw   | Side wall saturation current density [A/m]                                                        |  |  |
| Nj      | Emission coefficient [-]                                                                          |  |  |
| Njsw    | Sidewall emission coefficient                                                                     |  |  |
| Xti     | Junction current temperature exponent coefficient [-]                                             |  |  |
| Cj      | Bottom junction capacitance per unit area at zero bias [F/m^2]                                    |  |  |
| Cjsw    | Source/drain sidewall junction capacitance grading coefficient per unit length at zero bias [F/m] |  |  |
| Cjswg   | Source/drain gate sidewall junction capacitance per unit length at zero bias [F/m]                |  |  |
| Mj      | Bottom junction capacitance grading coefficient                                                   |  |  |
| Mjsw    | Source/drain sidewall junction capacitance grading coefficient                                    |  |  |
| Mjswg   | Source/drain gate sidewall junction capacitance grading coefficient                               |  |  |
| Pb      | Bottom junction build-in potential [V]                                                            |  |  |
| Pbsw    | Source/drain sidewall junction build-in potential [V]                                             |  |  |
| Pbswg   | Source/drain gate sidewall junction build-in potential [V]                                        |  |  |
| Xti2    | Temperature coefficient [-]                                                                       |  |  |
| Cisb    | Reverse bias saturation current [-]                                                               |  |  |
| Cvb     | Bias dependence coefficient of cisb [-]                                                           |  |  |
| Ctemp   | Temperature coefficient [-]                                                                       |  |  |
| Cisbk   | Reverse bias saturation current [A]                                                               |  |  |
| Cvbk    | Bias dependence coefficient of cisb [-]                                                           |  |  |
| Divx    | [1/V]                                                                                             |  |  |
| Clm1    | Parameter for CLM [-]                                                                             |  |  |
| Clm2    | Parameter for CLM [1/m]                                                                           |  |  |
| Clm3    | Parameter for CLM [-]                                                                             |  |  |
| Clm5    | Parameter for CLM [-]                                                                             |  |  |
| Clm6    | Parameter for CLM [um^{-clm5}]                                                                    |  |  |
| Vover   | Parameter for overshoot [m^{voverp}]                                                              |  |  |
| Voverp  | Parameter for overshoot [-]                                                                       |  |  |
| Vovers  | Parameter for overshoot [-]                                                                       |  |  |
| Voversp | Parameter for overshoot [-]                                                                       |  |  |
| Wfc     | Parameter for narrow channel effect [m*F/(cm^2)]                                                  |  |  |
| Nsubcw  | Parameter for narrow channel effect                                                               |  |  |
| Nsubcwp | Parameter for narrow channel effect                                                               |  |  |
| Qme1    | Parameter for quantum effect [mV]                                                                 |  |  |
| Qme2    | Parameter for quantum effect [V]                                                                  |  |  |
| Qme3    | Parameter for quantum effect [m]                                                                  |  |  |
| Gidl1   | Parameter for GIDL [?]                                                                            |  |  |
| Gidl2   | Parameter for GIDL [?]                                                                            |  |  |
| Gidl3   | Parameter for GIDL [?]                                                                            |  |  |
| Gidl4   | Parameter for GIDL [?]                                                                            |  |  |
| Gidl5   | Parameter for GIDL [?]                                                                            |  |  |
| Glpart1 | Parameter for gate current [-]                                                                    |  |  |
| Gleak1  | Parameter for gate current [A*V^(-3/2)/C]                                                         |  |  |
| Gleak2  | Parameter for gate current [V^(-1/2)/m ]                                                          |  |  |
| Gleak3  | Parameter for gate current [-]                                                                    |  |  |

| Gleak4   | Advanced Design System 2011.01 - Nonlinear Devices<br>Parameter for gate current [1/m] |
|----------|----------------------------------------------------------------------------------------|
| Gleak5   | Parameter for gate current [V/m]                                                       |
| Gleak6   | Parameter for gate current [V]                                                         |
| Gleak7   | Parameter for gate current [m^2]                                                       |
| Glksd1   | Parameter for gate current [A*m/V^2]                                                   |
| Glksd2   | Parameter for gate current [1/(V*m)]                                                   |
| Glksd3   | Parameter for gate current [1/m]                                                       |
| Glkb1    | Parameter for gate current [A/V^2]                                                     |
| Glkb2    | Parameter for gate current [m/V]                                                       |
| Glkb2    | Parameter for gate current [V]                                                         |
| Egig     | Parameter for gate current [V]                                                         |
| Igtemp2  | Parameter for gate current [V*k]                                                       |
| Igtemp2  | Parameter for gate current [V*k^2]                                                     |
| Vzadd0   | Vzadd at Vds=0 [V]                                                                     |
| Pzadd0   | Pzadd at Vds=0 [V]                                                                     |
| Nftrp    |                                                                                        |
| Nfalp    |                                                                                        |
| Cit      |                                                                                        |
|          | Devenuetor for 1/f poice                                                               |
| Falph    | Parameter for 1/f noise                                                                |
| Kappa    | Dielectric constant for high-k stacked gate                                            |
| Pthrou   | Modify subthreshold slope [-]                                                          |
| Vdiffj   | Threshold voltage for S/D junction diode [V]                                           |
| Dly1     | Parameter for transit time [-]                                                         |
| Dly2     | Parameter for transit time [-]                                                         |
| Dly3     | Parameter for transforming bulk charge [s/F]                                           |
| Dlyov    | Parameter for transforming overlap charge [s/F]                                        |
| Ovslp    |                                                                                        |
| Ovmag    |                                                                                        |
| Gbmin    |                                                                                        |
| Rbpb     |                                                                                        |
| Rbpd     |                                                                                        |
| Rbps     |                                                                                        |
| Rbdb     |                                                                                        |
| Rbsb     |                                                                                        |
| Ibpc1    | Parameter for impact-ionization induced bulk potential change                          |
| Ibpc2    | Parameter for impact-ionization induced bulk potential change                          |
| Mphdfm   | NSUBCDFM dependence of phonon scattering for DFM                                       |
| Rdvg11   |                                                                                        |
| Rdvg12   |                                                                                        |
| Rth0     | Thermal resistance                                                                     |
| Cth0     | Thermal capacitance                                                                    |
| Powrat   |                                                                                        |
| Tcjbd    | Temperature dependence of cjbd                                                         |
| Tcjbs    | Temperature dependence of cjbs                                                         |
| Tcjbdsw  | Temperature dependence of cjbdsw                                                       |
| Tcjbssw  | Temperature dependence of cjbssw                                                       |
| Tcjbdswg | Temperature dependence of cjbdswg                                                      |

| Tcjbsswg  | Temperature dependence of cjbsswg                 |
|-----------|---------------------------------------------------|
| Qdftvd    | Qdrift Vd dependence                              |
| Rdvd      |                                                   |
| Rdvb      |                                                   |
| Rd20      |                                                   |
| Rd21      |                                                   |
| Rd22      |                                                   |
| Rd22d     |                                                   |
| Rd23      |                                                   |
| Rd24      |                                                   |
| Rd25      |                                                   |
| Rd26      | Alias for qovsm                                   |
| Rdvdl     |                                                   |
| Rdvdlp    |                                                   |
| Rdvds     |                                                   |
| Rdvdsp    |                                                   |
| Rd23I     |                                                   |
| Rd23lp    |                                                   |
| Rd23s     |                                                   |
| Rd23sp    |                                                   |
| Rds       |                                                   |
| Rdsp      |                                                   |
| Qovsm     | Smoothing Qover at depletion/inversion transition |
| Ldrift    | Alias for Idrift2                                 |
| Rdtemp1   | Temperature-dependence of Rd                      |
| Rdtemp2   | Temperature-dependence of Rd                      |
| Rth0r     | Heat radiation for SHE                            |
| Rdvdtemp1 | Temperature-dependence of RDVD                    |
| Rdvdtemp2 | Temperature-dependence of RDVD                    |
| Rth0w     | Width-dependence of RTH0                          |
| Rth0wp    | Width-dependence of RTH0                          |
| Rth0nf    | nf-dependence of RTH0                             |
| Cvdsover  | vds drop along the overlap                        |
| Lmin      | Minimum length for the model                      |
| Lmax      | Maximum length for the model                      |
| Wmin      | Minimum width for the model                       |
| Wmax      | Maximum width for the model                       |
| Lbinn     | L modulation coefficient for binning              |
| Wbinn     | W modulation coefficient for binning              |
| Lvmax     | Length dependence of vmax                         |
| Lbgtmp1   | Length dependence of bgtmp1                       |
| Lbgtmp2   | Length dependence of bgtmp2                       |
| Leg0      | Length dependence of eg0                          |
| Lvfbover  | Length dependence of vfbover                      |
| Lnover    | Length dependence of nover                        |
| Lnovers   | Length dependence of nover on source size         |
| Lwl2      | Length dependence of wI2                          |
|           |                                                   |

| Lvfbc      | Advanced Design System 2011.01 - Nonlinear Devices |
|------------|----------------------------------------------------|
| Lnsubc     | Length dependence of nsubc                         |
| Linsubp    | Length dependence of hsubc                         |
| Liscp1     | Length dependence of scp1                          |
| Lscp1      | Length dependence of scp2                          |
|            | Length dependence of scp2                          |
| Lscp3      |                                                    |
| Lsc1       | Length dependence of sc1                           |
| Lsc2       | Length dependence of sc2                           |
| Lsc3       | Length dependence of sc3                           |
| Lpgd1      | Length dependence of pgd1                          |
| Lpgd3      | Length dependence of pgd3                          |
| Lndep      | Length dependence of ndep                          |
| Lninv      | Length dependence of ninv                          |
| Lmuecb0    | Length dependence of muecb0                        |
| Lmuecb1    | Length dependence of muecb1                        |
| Lmueph1    | Length dependence of mueph1                        |
| Lvtmp      | Length dependence of vtmp                          |
| Lwvth0     | Length dependence of wvth0                         |
| Lmuesr1    | Length dependence of muesr1                        |
| Lmuetmp    | Length dependence of muetmp                        |
| Lsub1      | Length dependence of sub1                          |
| Lsub2      | Length dependence of sub2                          |
| Lsvds      | Length dependence of svds                          |
| Lsvbs      | Length dependence of svbs                          |
| Lsvgs      | Length dependence of svgs                          |
| Lfn1       | Length dependence of fn1                           |
| Lfn2       | Length dependence of fn2                           |
| Lfn3       | Length dependence of fn3                           |
| Lfvbs      | Length dependence of fvbs                          |
| Lnsti      | Length dependence of nsti                          |
| Lwsti      | Length dependence of wsti                          |
| Lscsti1    | Length dependence of scsti1                        |
| Lscsti2    | Length dependence of scsti2                        |
| Lvthsti    | Length dependence of vthsti                        |
| Lmuesti1   | Length dependence of muesti1                       |
| Lmuesti2   | Length dependence of muesti2                       |
| Lmuesti3   | Length dependence of muesti3                       |
| Lnsubpsti1 | Length dependence of nsubpsti1                     |
| Lnsubpsti2 | Length dependence of nsubpsti2                     |
| Lnsubpsti3 | Length dependence of nsubpsti3                     |
| Lcgso      | Length dependence of cgso                          |
| Lcgdo      | Length dependence of cgdo                          |
| Ljs0       | Length dependence of js0                           |
| Ljs0sw     | Length dependence of js0sw                         |
| Lnj        | Length dependence of nj                            |
| Lcisbk     | Length dependence of cisbk                         |
| Lclm1      | Length dependence of clm1                          |
|            |                                                    |

| Lclm2    | Advanced Design System 2011.01 - Nonlinear Devices<br>Length dependence of clm2 |
|----------|---------------------------------------------------------------------------------|
| Lclm3    | Length dependence of clm2                                                       |
| Lwfc     | Length dependence of wfc                                                        |
| Lgidl1   | Length dependence of gidl1                                                      |
| Lgidl2   | Length dependence of gidl2                                                      |
|          |                                                                                 |
| Lgleak1  | Length dependence of gleak1                                                     |
| Lgleak2  | Length dependence of gleak2                                                     |
| Lgleak3  | Length dependence of gleak3                                                     |
| Lgleak6  | Length dependence of gleak6                                                     |
| Lglksd1  | Length dependence of glksd1                                                     |
| Lglksd2  | Length dependence of glksd2                                                     |
| Lglkb1   | Length dependence of glkb1                                                      |
| Lglkb2   | Length dependence of glkb2                                                      |
| Lnftrp   | Length dependence of nftrp                                                      |
| Lnfalp   | Length dependence of nfalp                                                      |
| Lpthrou  | Length dependence of pthrou                                                     |
| Lvdiffj  | Length dependence of vdiffj                                                     |
| Libpc1   | Length dependence of ibpc1                                                      |
| Libpc2   | Length dependence of ibpc2                                                      |
| Wvmax    | Width dependence of vmax                                                        |
| Wbgtmp1  | Width dependence of bgtmp1                                                      |
| Wbgtmp2  | Width dependence of bgtmp2                                                      |
| Weg0     | Width dependence of eg0                                                         |
| Wvfbover | Width dependence of vfbover                                                     |
| Wnover   | Width dependence of nover                                                       |
| Wnovers  | Width dependence of novers on source size                                       |
| Wwl2     | Width dependence of wl2                                                         |
| Wvfbc    | Width dependence of vfbc                                                        |
| Wnsubc   | Width dependence of nsubc                                                       |
| Wnsubp   | Width dependence of nsubp                                                       |
| Wscp1    | Width dependence of scp1                                                        |
| Wscp2    | Width dependence of scp2                                                        |
| Wscp3    | Width dependence of scp3                                                        |
| Wsc1     | Width dependence of sc1                                                         |
| Wsc2     | Width dependence of sc2                                                         |
| Wsc3     | Width dependence of sc3                                                         |
| Wpgd1    | Width dependence of pgd1                                                        |
| Wpgd3    | Width dependence of pgd3                                                        |
| Wndep    | Width dependence of ndep                                                        |
| Wninv    | Width dependence of ninv                                                        |
| Wmuecb0  | Width dependence of muecb0                                                      |
| Wmuecb1  | Width dependence of muecb1                                                      |
| Wmueph1  | Width dependence of mueph1                                                      |
| Wvtmp    | Width dependence of vtmp                                                        |
| Wwvth0   | Width dependence of wvth0                                                       |
| Wmuesr1  | Width dependence of muesr1                                                      |
| Wmuetmp  | Width dependence of muetmp                                                      |
| 4        |                                                                                 |

| Wsub1        | Advanced Design System 2011.01 - Nonlinear Devices<br>Width dependence of sub1 |
|--------------|--------------------------------------------------------------------------------|
| Wsub2        | Width dependence of sub2                                                       |
| Wsvds        | Width dependence of svds                                                       |
| Wsvbs        | Width dependence of svbs                                                       |
| Wsvgs        | Width dependence of svgs                                                       |
| Wfn1         | Width dependence of fn1                                                        |
| Wfn2         | Width dependence of fn2                                                        |
| Wfn3         | Width dependence of fn3                                                        |
| Wfvbs        | Width dependence of fvbs                                                       |
| Wnsti        | Width dependence of nsti                                                       |
| Wwsti        | Width dependence of wsti                                                       |
| Wscsti1      | Width dependence of scsti1                                                     |
| Wscsti2      | Width dependence of scsti2                                                     |
| W∨thsti      | Width dependence of vthsti                                                     |
| Wmuesti1     | Width dependence of muesti1                                                    |
| Wmuesti2     | Width dependence of muesti2                                                    |
| Wmuesti3     | Width dependence of muesti3                                                    |
| Wnsubpsti1   | Width dependence of nsubpsti1                                                  |
| Wnsubpsti2   | Width dependence of nsubpsti2                                                  |
| Wnsubpsti3   | Width dependence of nsubpsti3                                                  |
| Wcgso        | Width dependence of cgso                                                       |
| Wcgdo        | Width dependence of cgdo                                                       |
| Wjs0         | Width dependence of js0                                                        |
| Wjs0sw       | Width dependence of js0sw                                                      |
| Wnj          | Width dependence of nj                                                         |
| Wcisbk       | Width dependence of cisbk                                                      |
| Wclm1        | Width dependence of clm1                                                       |
| Wclm2        | Width dependence of clm2                                                       |
| Wclm3        | Width dependence of clm3                                                       |
| Wwfc         | Width dependence of wfc                                                        |
| Wgidl1       | Width dependence of gidl1                                                      |
| Wgidl2       | Width dependence of gidl2                                                      |
| Wgleak1      | Width dependence of gleak1                                                     |
| Wgleak2      | Width dependence of gleak2                                                     |
| Wgleak3      | Width dependence of gleak3                                                     |
| Wgleak6      | Width dependence of gleak6                                                     |
| -<br>Wglksd1 | Width dependence of glksd1                                                     |
| Wglksd2      | Width dependence of glksd2                                                     |
| Wglkb1       | Width dependence of glkb1                                                      |
| Wglkb2       | Width dependence of glkb2                                                      |
| Wnftrp       | Width dependence of nftrp                                                      |
| Wnfalp       | Width dependence of nfalp                                                      |
| Wpthrou      | Width dependence of pthrou                                                     |
| Wvdiffj      | Width dependence of vdiffj                                                     |
| Wibpc1       | Width dependence of ibpc1                                                      |
| Wibpc2       | Width dependence of ibpc2                                                      |
| Pvmax        | Cross-term dependence of vmax                                                  |
|              | 512                                                                            |

| Pbgtmp1    | Advanced Design System 2011.01 - Nonlinear Devices<br>Cross-term dependence of bgtmp1 |
|------------|---------------------------------------------------------------------------------------|
| Pbgtmp2    | Cross-term dependence of bgtmp2                                                       |
| Peg0       | Cross-term dependence of eg0                                                          |
| Pvfbover   | Cross-term dependence of vfbover                                                      |
| Pnover     | Cross-term dependence of nover                                                        |
| Pnovers    | Cross-term dependence of nover on source size                                         |
| Pwl2       | Cross-term dependence of wI2                                                          |
| Pvfbc      | Cross-term dependence of vfbc                                                         |
| Pnsubc     | Cross-term dependence of nsubc                                                        |
| Pnsubp     | Cross-term dependence of nsubp                                                        |
| Pscp1      | Cross-term dependence of scp1                                                         |
| Pscp2      | Cross-term dependence of scp2                                                         |
| Pscp3      | Cross-term dependence of scp3                                                         |
| Psc1       | Cross-term dependence of sc1                                                          |
| Psc2       | Cross-term dependence of sc2                                                          |
| Psc3       | Cross-term dependence of sc3                                                          |
| Ppgd1      | Cross-term dependence of pgd1                                                         |
| Ppgd3      | Cross-term dependence of pgd3                                                         |
| Pndep      | Cross-term dependence of ndep                                                         |
| Pninv      | Cross-term dependence of ninv                                                         |
| Pmuecb0    | Cross-term dependence of muecb0                                                       |
| Pmuecb1    | Cross-term dependence of muecb1                                                       |
| Pmueph1    | Cross-term dependence of mueph1                                                       |
| Pvtmp      | Cross-term dependence of vtmp                                                         |
| Pwvth0     | Cross-term dependence of wvth0                                                        |
| Pmuesr1    | Cross-term dependence of muesr1                                                       |
| Pmuetmp    | Cross-term dependence of muetmp                                                       |
| Psub1      | Cross-term dependence of sub1                                                         |
| Psub2      | Cross-term dependence of sub2                                                         |
| Psvds      | Cross-term dependence of svds                                                         |
| Psvbs      | Cross-term dependence of svbs                                                         |
| Psvgs      | Cross-term dependence of svgs                                                         |
| Pfn1       | Cross-term dependence of fn1                                                          |
| Pfn2       | Cross-term dependence of fn2                                                          |
| Pfn3       | Cross-term dependence of fn3                                                          |
| Pfvbs      | Cross-term dependence of fvbs                                                         |
| Pnsti      | Cross-term dependence of nsti                                                         |
| Pwsti      | Cross-term dependence of wsti                                                         |
| Pscsti1    | Cross-term dependence of scsti1                                                       |
| Pscsti2    | Cross-term dependence of scsti2                                                       |
| Pvthsti    | Cross-term dependence of vthsti                                                       |
| Pmuesti1   | Cross-term dependence of muesti1                                                      |
| Pmuesti2   | Cross-term dependence of muesti2                                                      |
| Pmuesti3   | Cross-term dependence of muesti3                                                      |
| Pnsubpsti1 | Cross-term dependence of nsubpsti1                                                    |
| Pnsubpsti2 | Cross-term dependence of nsubpsti2                                                    |
| Pnsubpsti3 | Cross-term dependence of nsubpsti3                                                    |
|            |                                                                                       |

| Pcgso   | Advanced Design System 2011.01 - Nonlinear Devices<br>Cross-term dependence of cgso |
|---------|-------------------------------------------------------------------------------------|
| Pcgdo   | Cross-term dependence of cgdo                                                       |
| Pjs0    | Cross-term dependence of js0                                                        |
| Pjs0sw  | Cross-term dependence of js0sw                                                      |
| Pnj     | Cross-term dependence of nj                                                         |
| Pcisbk  | Cross-term dependence of cisbk                                                      |
| Pclm1   | Cross-term dependence of clm1                                                       |
| Pclm2   | Cross-term dependence of clm2                                                       |
| Pclm3   | Cross-term dependence of clm3                                                       |
| Pwfc    | Cross-term dependence of wfc                                                        |
| Pgidl1  | Cross-term dependence of gidl1                                                      |
| Pgidl2  | Cross-term dependence of gidl2                                                      |
| Pgleak1 | Cross-term dependence of gleak1                                                     |
| Pgleak2 | Cross-term dependence of gleak2                                                     |
| Pgleak3 | Cross-term dependence of gleak3                                                     |
| Pgleak6 | Cross-term dependence of gleak6                                                     |
| Pglksd1 | Cross-term dependence of glksd1                                                     |
| Pglksd2 | Cross-term dependence of glksd2                                                     |
| Pglkb1  | Cross-term dependence of glkb1                                                      |
| Pglkb2  | Cross-term dependence of glkb2                                                      |
| Pnftrp  | Cross-term dependence of nftrp                                                      |
| Pnfalp  | Cross-term dependence of nfalp                                                      |
| Ppthrou | Cross-term dependence of pthrou                                                     |
| Pvdiffj | Cross-term dependence of vdiffj                                                     |
| Pibpc1  | Cross-term dependence of ibpc1                                                      |
| Pibpc2  | Cross-term dependence of ibpc2                                                      |

**Instance Netlist Format** 

modelName [:Name] d g s b

Example

Nch7:M1 2 1 0 0 W=10u L=0.9u

## **Instance Parameters**

| Name (Alias)   | Description                                                                    |  |
|----------------|--------------------------------------------------------------------------------|--|
| Temp           | Device operating temperature                                                   |  |
| Trise (Dtemp ) | Temperature rise over ambient                                                  |  |
| Mode           | Nonlinear spectral model on/off                                                |  |
| Noise          | Noise generation on/off                                                        |  |
| L              | Length                                                                         |  |
| W              | Width                                                                          |  |
| Ad             | Drain area                                                                     |  |
| As             | Source area                                                                    |  |
| Pd             | Drain perimeter                                                                |  |
| Ps             | Source perimeter                                                               |  |
| Nrd            | Number of squares in drain                                                     |  |
| Nrs            | Number of squares in source                                                    |  |
| Off            | Device is initially off                                                        |  |
| Corbnet        | Activate body resistance (1) or not (0)                                        |  |
| Rbpb           |                                                                                |  |
| Rbpd           |                                                                                |  |
| Rbps           |                                                                                |  |
| Rbdb           |                                                                                |  |
| Rbsb           |                                                                                |  |
| Corg           | Activate gate resistance (1) or not (0)                                        |  |
| Ngcon          | Number of gate contacts                                                        |  |
| Xgw            | Distance from gate contact to channel edge                                     |  |
| Xgl            | Offset of gate length due to variation in patterning                           |  |
| Nf             | Number of fingers                                                              |  |
| Sa             | Distance from STI edge to Gate edge [m]                                        |  |
| Sb             | Distance from STI edge to Gate edge \m]                                        |  |
| Sd             | Distance from Gate edge to Gate edge \m]                                       |  |
| Nsubcdfm       | Constant part of Nsub for DFM \1/cm^3]                                         |  |
| М              | Multiplication factor [-]                                                      |  |
| Subld1         | Parameter for impact-ionization current in the drift region [-]                |  |
| Subld2         | Parameter for impact-ionization current in the drift region $[m^{-1}*V^{3/2}]$ |  |
| Lover          | Overlap length on source side [m]                                              |  |
| Lovers         | Overlap length on source side [m]                                              |  |
| Loverld        | Overlap length on drain side [m]                                               |  |
| Ldrift1        | Parameter for drift region length-1 [m]                                        |  |
| Ldrift2        | Parameter for drift region length-2 [m]                                        |  |
| Ldrift1s       | Parameter for drift region length-1 on souce side[m]                           |  |
| Ldrift2s       | Parameter for drift region length-2 on souce side[m]                           |  |
|                |                                                                                |  |

DC Operating Point Information

| Name  | Description  | Units |
|-------|--------------|-------|
| Vds   | Vds          | V     |
| Vgs   | Vgs          | V     |
| Vbs   | Vbs          | V     |
| Ids   | Ids          | A     |
| Isub  | Isub         | A     |
| Igidl | Igidl        | А     |
| Igisl | Igisl        | A     |
| Igd   | Igd          | A     |
| Igs   | Igs          | A     |
| Igb   | Igb          | A     |
| Ibs   | Ibs          | A     |
| Ibd   | Ibd          | A     |
| Gm    | dIds_dVgsi   | S     |
| Gmt   | dIds_dTi     | S     |
| Gds   | dIds_dVdsi   | S     |
| Gmbs  | dIds_dVbsi   | S     |
| Gbd   | Gbd          | S     |
| Gbd   | Gbs          | S     |
| Q     | Qb           | С     |
| Qg    | Qg           | С     |
| Qd    | Qd           | С     |
| Cgg   | Cgg          | F     |
| Cgd   | Cgd          | F     |
| Cgs   | Cgs          | F     |
| Cdg   | Cdg          | F     |
| Cdd   | Cdd          | F     |
| Cds   | Cds          | F     |
| Cbg   | Cbg          | F     |
| Cbdb  | Cbdb         | F     |
| Csbs  | Csbs         | F     |
| Cgdo  | Cgdo         | F     |
| Cgso  | Cgso         | F     |
| Cgbo  | Cgbo         | F     |
| CAPBD | CAPBD        | F     |
| CAPBS | CAPBS        | F     |
| Von   | Von          | V     |
| VDSAT | VDSAT        | V     |
| Qbs   | Qbs          | С     |
| Qbd   | Qbd          | С     |
| m     | multiplicity |       |

# HiSIM\_HV\_1\_2 (HiSIM\_HV Version 1.2 Model and Instance)

0 Note

For detailed information please refer to the HiSIM\_HV manual provided by the Hiroshima university.

## **Model Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to Design Kit Development.

model modelName HiSIM\_HV [parm=value]\*

## Example:

model Nch HiSIM\_HV\_1\_2 Tox=2.15e-9

## **Model Parameters**

| Name (Alias) | Description                                                 |  |
|--------------|-------------------------------------------------------------|--|
| Gender       | +1=N-type, -1=P-type                                        |  |
| Tnom         | Parameter measurement temperature                           |  |
| Secured      | Secured model parameters                                    |  |
| Info         | Information level (for debug, etc.)                         |  |
| Noise        | Noise model selector                                        |  |
| Version      | Model version                                               |  |
| Show         | Show physical value                                         |  |
| Corsrd       | Handling of Rs and Rd                                       |  |
| Corg         | Activate gate resistance (1) or not (0)                     |  |
| Coiprv       | Use ids_prv as initial guess of Ids (internal flag)         |  |
| Copprv       | Use ps{0/l}_prv as initial guess of Ps{0/l} (internal flag) |  |
| Coadov       | Add overlap to intrisic                                     |  |
| Coisub       | Calculate isub                                              |  |
| Coiigs       | Calculate igate                                             |  |
| Cogidl       | Calculate igidl                                             |  |
| Coovlp       | Calculate overlap charge on the drain side                  |  |
| Coovlps      | Calculate overlap charge on the source side                 |  |
| Coflick      | Calculate 1/f noise                                         |  |
| Coisti       | Calculate STI                                               |  |
| Conqs        | Calculate in nqs mode or qs mode                            |  |
| Corbnet      |                                                             |  |
| Cothrml      | Calculate thermal noise                                     |  |
| Coign        | Calculate induced gate noise                                |  |
| Codfm        | Calculation of model for DFM                                |  |
| Coselfheat   | Calculation of self heating model                           |  |
| Cosym        | Model selector for symmetry device                          |  |
| Vbsmin       | Minimum back bias voltage to be treated in hsmhveval [V]    |  |
| Vmax         | Saturation velocity [cm/s]                                  |  |

Advanced Design System 2011.01 - Nonlinear Devices

| Bigtmp2         Second order temp. coeff. for band gap [V/K^2]           Eg0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bgtmp1  | First order temp. coeff. for band gap [V/K]                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------|
| Eg0       Oxide thickness [m]         Kid       Lateral diffusion of S/D under the gate [m]         Kidd       Lateral diffusion of S/D under the gate [m]         Lover       Overlap length on source side [m], allas for lovers         Overlap length on source side [m], allas for lovers       Overlap length on source side [m]         Rdov11       Dependence coeff. for overlap length         Rdov12       Dependence of resistance for CORSRD=1,3         Rdip1       LDRIFT1 dependence of resistance for CORSRD=1,3         Rdict1       LDRIFT2 dependence or resistance for CORSRD=1,3         Rdict2       LDRIFT2 dependence or resistance for CORSRD=1,3         Coverd       Overlap length on the drain side[m]         Ldrift1       Drift region length-1 on the drain side[m]         Ldrift2       Drift region length-1 on the source side[m]         Ldrift2       Drift region length-2 on the source side[m]         Ldrift2       Drift region length-2 on the source side[m]         Ldrift3       Drift region length-2 on the source side[m]         Ldrift4       Impact-ionization current in the drift region [m^{-1}*V^{3}/2}]         Ddltmax       Detate ald iffusion along the width dir. [m]         Kw       Gate length offset due to mask/etch effect [m]         Saref       Reference distance from STI edge to Gate edge [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                |
| Tox     Oxide thickness [m]       Kid     Lateral diffusion of S/D under the gate [m]       Lateral diffusion of Drain under the gate [m]       Lover     Overlap length on source side [m], alias for lovers       Overlap length on source side [m]       Rdov11     Dependence coeff. for overlap length       Rdov12     Dependence coeff. for overlap length       Rdov13     Dependence of resistance for CORSD=1,3       Rdsl1     LDRIFT1 dependence of resistance for CORSD=1,3       Rdsl2     LDRIFT2 dependence of resistance for CORSD=1,3       Rdsl2     LDRIFT2 dependence of resistance for CORSD=1,3       Loverd     Overlap length on the drain side       Ldrift1     Drift region length-1 on the drain side[m]       Ldrift2     Drift region length-2 on the drain side[m]       Ldrift2     Drift region length-2 on the source side[m]       Subld1     Impact-ionization current in the drift region [r-]       Subld2     Impact-ionization current in the drift region [m^{-1}*V^{3/2}]       Dolthat     Dolthat       Poltsip     State all diffusion along the width dir. [m]       Kv     Gate length parameter       Kvd     Gate length parameter       Ld     Gate length parameter       Kvd     Gate length parameter       Kvd     Gate length parameter       Wi1     Gate width parameter <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                |
| Xild       Lateral diffusion of S/D under the gate [m]         Kild       Lateral diffusion of Drain under the gate [m]         Lover       Overlap length on source side [m]         Rdov11       Dependence coeff. for overlap length         Rdov12       Dependence coeff. for overlap length         Rdov13       Dependence coeff. for overlap length         Rdov14       LDRIFT1 dependence of resistance for CORSRD=1,3         Rdslp1       LDRIFT2 dependence of resistance for CORSRD=1,3         Rdslp2       LDRIFT2 dependence of resistance for CORSRD=1,3         Rdslp2       LDRIFT2 dependence of resistance for CORSRD=1,3         Ldrift1       Drift region length-1 on the drain side[m]         Ldrift2       Drift region length-2 on the source side[m]         Ldrift2       D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                                |
| xidid       Lateral diffusion of Drain under the gate [m]         Lover       Overlap length on source side [m], alias for lovers         Lovers       Overlap length on source side [m]         Kdov11       Dependence coeff. for overlap length         Rdov12       Dependence coeff. for overlap length         Rdov13       Dependence coeff. for overlap length         Rdsp1       LDRIFT1 dependence of resistance for CORSRD=1,3         Rdsp2       LDRIFT2 dependence of resistance for CORSRD=1,3         Rdsp2       LDRIFT2 dependence of resistance for CORSRD=1,3         Ldrift1       Drift region length-1 on the drain side         Ldrift2       Drift region length-2 on the drain side[m]         Ldrift2       Drift region length-2 on the source side[m]         Ldrift1       Impact-ionization current in the drift region [-]         SubId2       Impact-ionization current in the drift region [m^{-1}*V^{3/2}]         DdIttsip       Deteral diffusion along the width dir. [m]         KM       Gate length offset due to mask/etch effect [m]         Saref       Reference distance from STI edge to Gate edge [m]         Saref       Reference distance from STI edge to Gate edge [m]         Saref       Reference distance from STI edge to Gate edge [m]         Saref       Reference distance from STI edge to Gate edge [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                                                |
| Lover         Overlap length on source side [m], allas for lovers           Lovers         Overlap length on source side [m]           Rdov11         Dependence coeff. for overlap length           Rdov13         Dependence coeff. for overlap length           Rdov14         LDRIFT1 dependence of resistance for CORSRD=1,3           Rdslp1         LDRIFT1 dependence of resistance for CORSRD=1,3           Rdslp2         LDRIFT2 dependence of resistance for CORSRD=1,3           Loverld         Overlap length on the drain side           Loverld         Overlap length-1 on the drain side[m]           Ldrift1         Drift region length-1 on the source side[m]           Ldrift2         Drift region length-1 on the source side[m]           Ldrift2         Drift region length-2 on the source side[m]           Ldrift2         Drift region length-2 on the source side[m]           Subld1         Impact-ionization current in the drift region [-] *V^(3/2)]           Ddltmax         Mover           Doltsp         Mover           Nover         Mover           Subld2         Impact-ionization along the width dir. [m]           Kit         Gate length offset due to mask/etch effect [m]           Swed         Lateral diffusion along the width dir. [m]           Kit         Gate length parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                                                |
| Lovers         Overlap length on source side [m]           Rdov11         Dependence coeff. for overlap length           Rdov12         Dependence coeff. for overlap length           Rdov13         Dependence coeff. for overlap length           Rdov11         LDRIFT1 dependence of resistance for CORSRD=1,3           Rdslp1         LDRIFT2 dependence of resistance for CORSRD=1,3           Rdslp2         LDRIFT2 dependence of resistance for CORSRD=1,3           Loverld         Overlap length on the drain side           Loverld         Overlap length-1 on the drain side[m]           Ldrift1         Drift region length-1 on the source side[m]           Ldrift2         Drift region length-2 on the source side[m]           Ddltsp         Impact-ionization current in the drift region [m^{-1}*V^{(3/2)}]           Ddltmax         Movers           Novers         Movers           Novers         Movers           Saref         Reference distance from STI edge to Gate edge [m]           Saref         Reference distance from STI edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                |
| Rdov11       Dependence coeff. for overlap length         Rdov13       Dependence coeff. for overlap length         Rdov13       Dependence coeff. for overlap length         Rdslp1       LDRIFT1 dependence of resistance for CORSRD=1,3         Rdict1       LDRIFT2 dependence of resistance for CORSRD=1,3         Rdict2       LDRIFT2 dependence of resistance for CORSRD=1,3         Loverld       Overlap length on the drain side         Loverld       Overlap length on the drain side[m]         Ldrift1       Drift region length-1 on the drain side[m]         Ldrift2       Drift region length-2 on the source side[m]         Ldrift2       Drift region length-2 on the source side[m]         SubId1       Impact-ionization current in the drift region [-1]         SubId2       Impact-ionization current in the drift region [-1]*V^{3/2}]         Doltstp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                                |
| Rdov12       Dependence coeff. for overlap length         Rdv13       Dependence coeff. for overlap length         Rdslp1       LDRIFT1 dependence of resistance for CORSRD=1,3         Rdslp2       LDRIFT2 dependence of resistance for CORSRD=1,3         Rdslp2       LDRIFT2 dependence of resistance for CORSRD=1,3         Loverld       Overlap length on the drain side[m]         Ldrift1       Drift region length-1 on the drain side[m]         Ldrift2       Drift region length-2 on the source side[m]         Ldrift2       Drift region length-2 on the source side[m]         Ldrift2       Drift region length-2 on the source side[m]         Subld1       Impact-ionization current in the drift region [-]         Subld2       Impact-ionization current in the drift region [mact]         Vfbover       Impact-ionization current in the drift region [mact]         VKw       Gate length offset due to mask/etch effect [m]         Saref       Reference distance from STI edge to Gate edge [m]         Sbref       Reference distance from STI edg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                |
| Rdov13       Dependence coeff. for overlap length         Rdslp1       LDRIFT1 dependence of resistance for CORSRD=1,3         Rdict1       LDRIFT2 dependence of resistance for CORSRD=1,3         Rdslp2       LDRIFT2 dependence of resistance for CORSRD=1,3         Loverld       Overlap length on the drain side         Loverld       Overlap length-1 on the drain side[m]         Ldrift2       Drift region length-2 on the drain side[m]         Ldrift2s       Drift region length-2 on the source side[m]         Ldrift2s       Drift region length-2 on the source side[m]         Subld1       Impact-ionization current in the drift region [-]         Subld2       Impact-ionization current in the drift region [m^{-1)*V^{3/2}]         Dolttrax       Doltslp         Dolttrat       Encored the comask/etch effect [m]         Kwd       Lateral diffusion along the width dir. [m]         KW       Gate length parameter         LM       Gate length parameter         LM       Gate length parameter         LM       Gate width parameter         WI       Gate width parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                |
| Rdsip1       LDRIFT1 dependence of resistance for CORSRD=1,3         Rdict1       LDRIFT2 dependence of resistance for CORSRD=1,3         Rdsip2       LDRIFT2 dependence of resistance for CORSRD=1,3         Rdict2       LDRIFT2 dependence of resistance for CORSRD=1,3         Loverld       Overlap length on the drain side         Ldrift1       Drift region length-1 on the drain side[m]         Ldrift2       Drift region length-2 on the drain side[m]         Ldrift2       Drift region length-2 on the source side[m]         Subld1       Impact-ionization current in the drift region [-]         Subld2       Impact-ionization current in the drift region [m^{-1}*V^{3/2}]         Dditsp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·       |                                                                |
| Rdict1LDRIFT1 dependence of resistance for CORSRD=1,3Rdislp2LDRIFT2 dependence of resistance for CORSRD=1,3Addet2LDRIFT2 dependence of resistance for CORSRD=1,3LoverldOverlap length on the drain sideLoverldDrift region length-1 on the drain side[m]Ldrift1Drift region length-2 on the drain side[m]Ldrift2Drift region length-1 on the source side[m]Ldrift2Drift region length-2 on the drain side[m]Ldrift2Drift region length-2 on the source side[m]SubId1Impact-ionization current in the drift region [-]SubId2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DdItmaxImpact-ionization current in the drift region [m_{-1}*V^{3/2}]DdItmaxImpact-ionization current in the drift region [m_{-1}*V^{3/2}]NoverImpact-ionization current in the drift region [m_{-1}*V^{-1}*V^{-1}*V^{-1}*V^{-1}*V^{-1}*V^{-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                                |
| Rdsip2LDRIFT2 dependence of resistance for CORSRD=1,3Rdict2LDRIFT2 dependence of resistance for CORSRD=1,3LoverIdOverlap length on the drain sideLdrift1Drift region length-1 on the drain side[m]Ldrift2Drift region length-2 on the drain side[m]Ldrift2Drift region length-2 on the source side[m]Ldrift2sDrift region length-2 on the source side[m]SubId1Impact-ionization current in the drift region [-]SubId2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DoltmaxDoltsipDoltsipImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DoltictImpact-ionization current in the drift region [m^{-1}*V^{3/2}]NoversImpact-ionization current in the drift region [m^{-1}*V^{3/2}]SubId2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DoltintImpact-ionization current in the drift region [m^{-1}*V^{3/2}]SubId3Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DoltmaxImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DoltmaxImpact-ionization current in the drift region [m^{-1}*V^{3/2}]SubId3Impact-ionization current in the drift region [m_{-1}*V^{3/2}]DoltmaxImpact-ionization current in the drift region [m_{-1}*V^{3/2}]SubId4Impact-ionization current in the drift region [m_{-1}*V^{3/2}]SubId5Impact-ionization current in the drift region [m_{-1}*V^{3/2}]SubId5Impact-ionization current in the drift region [m_{-1}*V^{3/2}]KwdLateral diffusion along th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                |
| Rdict2       LDRIFT2 dependence of resistance for CORSRD=1,3         Loverld       Overlap length on the drain side         Loverld       Drift region length-1 on the drain side[m]         Ldrift1       Drift region length-2 on the drain side[m]         Ldrift2       Drift region length-1 on the source side[m]         Ldrift2       Drift region length-2 on the source side[m]         Subld1       Impact-ionization current in the drift region [-]*V^{3/2}]         Doltmax       Impact-ionization current in the drift region [m^{-1}*V^{3/2}]         Doltsip       Impact-ionization current in the drift region [m^{-1}*V^{3/2}]         Stref       Reference distance from STI edge to Gate edge [m] <td< td=""><td>·</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·       |                                                                |
| LoverldOverlap length on the drain sideLdrift1Drift region length-1 on the drain side[m]Ldrift2Drift region length-2 on the drain side[m]Ldrift2Drift region length-1 on the source side[m]Ldrift2sDrift region length-2 on the source side[m]Subld1Impact-ionization current in the drift region [-]Subld2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltmaxImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltsipImpact-ionization current in the drift region [m^{-1}*V^{3/2}]NoverImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltictImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltixtImpact-ionization current in the drift region [m_{-1}*V^{3/2}]DdltxtImpact-ionization current in the drift region [m_{-1}*V^{3/2}]XwdGate length offset due to mask/etch effect [m]XwdGate length parameterUldGate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -       |                                                                |
| Ldrift1Drift region length-1 on the drain side[m]Ldrift2Drift region length-2 on the drain side[m]Ldrift2sDrift region length-1 on the source side[m]SubId1Impact-ionization current in the drift region [-]SubId2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DoltmaxDoltmaxDoltspImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DoltspImpact-ionization current in the drift region [m^{-1}*V^{3/2}]SafefReference distance from STI edge to Gate edge [m]SafefReference distance from STI edge to Gate edge [m]LlGate length parameterWIGate width parameter <td>1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1       |                                                                |
| Ldrift2Drift region length-2 on the drain side[m]Ldrift1sDrift region length-1 on the source side[m]Ldrift2sDrift region length-2 on the source side[m]Subld1Impact-ionization current in the drift region [-]Subld2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltmaxDoltsipDoltsipImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltmaxImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltsipImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltsipImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltsipImpact-ionization current in the drift region [m^{-1}*V^{3/2}]NoverImpact-ionization current in the drift region [m^{-1}*V^{3/2}]NoverImpact-ionization current in the drift region [m^{-1}*V^{3/2}]SarefReference distance from STI edge to Gate edge [m]SarefReference distance from STI edge to Gate edge [m]LlGate length parameterWinGate width param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                |
| Ldrift1sDrift region length-1 on the source side[m]Ldrift2sDrift region length-2 on the source side[m]Subld1Impact-ionization current in the drift region [-]Subld2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltsapDdltsapDdltsapImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltsapImpact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltsapImpact - Impact - Im                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                |
| Ldrift2sDrift region length-2 on the source side[m]Subld1Impact-ionization current in the drift region [-]Subld2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]Ddltmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                |
| Subbld1Impact-ionization current in the drift region [-]Subbld2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltmaxDdltslpDdltictPdltictVfboverNoversKwdLateral diffusion along the width dir. [m]KlGate length offset due to mask/etch effect [m]SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]LlGate length parameterLldGate length parameterLldGate width parameterWIGate width parameterWI1Gate width parameterWI2Gate width parameterWI1Gate width parameterWI2Gate width parameterWI1Gate width parameterWI2Gate width parameterWI1Gate width parameterWI2Gate width parameterWI3Gate width parameterWI4Gate width parameterWI5Gate width parameterWI6Gate width parameterXqu[m]Xqu[m]Xqu2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                |
| Subid2Impact-ionization current in the drift region [m^{-1}*V^{3/2}]DdltmaxDdltslpDdltictVfboverNoverNoversKwdLateral diffusion along the width dir. [m]XkGate length offset due to mask/etch effect [m]SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]LlGate length parameterLldGate length parameterWilGate width parameterWil2Gate width parameterWil2Gate width parameterWil4Gate width parameterWil5Gate width parameterWil6Gate width parameterWil7Gate width parameterWil8Gate width parameterWil9Gate width parameterWil1Gate width parameterWil2Gate width parameterW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                                |
| Ddltmax         Ddltslp         Ddltict         Vfbover         Novers         Kwd         Lateral diffusion along the width dir. [m]         XW         Gate length offset due to mask/etch effect [m]         Xw         Gate width offset due to mask/etch effect [m]         Saref         Reference distance from STI edge to Gate edge [m]         Sbref         Reference distance from STI edge to Gate edge [m]         Ll         Gate length parameter         Lld         Gate length parameter         Lld         Gate length parameter         WI         Gate width parameter         WI1         Gate width parameter         WI2         Gate width parameter         WI2         Gate width parameter         WI4         Gate width parameter         WI2         Gate width parameter         WI4         Gate width parameter         WI4         Gate width parameter         WI4         Gate width parameter         WI4         Gate width parameter <t< td=""><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                |
| DditsipImage: style sty | ·       | Impact-ionization current in the drift region [m^{-1}*V^{3/2}] |
| DdltictVoterNoverNoversXwdLateral diffusion along the width dir. [m]XIGate length offset due to mask/etch effect [m]XwGate width offset due to mask/etch effect [m]SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]LlGate length parameterLldGate length parameterWIGate width parameterWI1Gate width parameterWI2Gate width parameterWI2Gate width parameterWI2Gate width parameterWI4Gate width parameterWI5Gate width parameterWI6Gate width parameterWI7Gate width parameterWI8Gate width parameterWI9Gate width parameterWI2Gate width parameterWI3Gate width parameterWI4Gate width parameterWI7Gate width parameterWI8Gate width parameterKqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ddltmax |                                                                |
| VfboverNoverNoversKwdLateral diffusion along the width dir. [m]KIGate length offset due to mask/etch effect [m]XwGate width offset due to mask/etch effect [m]SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]LlGate length parameterLldGate length parameterLlnGate length parameterWl1Gate width parameterWl1Gate width parameterWl2Gate width parameterWl2Gate width parameterWl2Gate width parameterWl2Gate width parameterWl2Gate width parameterWl4Gate width parameterWl4Gate width parameterWl4Gate width parameterKyq[m]Kqy1[F m^{XQY2}]Kqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                |
| NoverNoversXwdLateral diffusion along the width dir. [m]XwdLateral diffusion along the width dir. [m]XlGate length offset due to mask/etch effect [m]XwGate width offset due to mask/etch effect [m]SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]LlGate length parameterLldGate length parameterLldGate length parameterW1Gate width parameterW11Gate width parameterW12Gate width parameterW12Gate width parameterW14Gate width parameterW12Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterW17Gate width parameterW18Gate width parameterW19Gate width parameterW10Gate width parameterW11Gate width parameterW12Gate width parameterW13Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterW17Gate width parameterW18Gate width parameterW19Gate width parameterW10Gate width parameterW11Gate width parameterW12Gate width parameterW13Gate width parameterW14Gate width parameterW15Gate width para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                |
| NoversNoversXwdLateral diffusion along the width dir. [m]XIGate length offset due to mask/etch effect [m]XwGate width offset due to mask/etch effect [m]SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]LlGate length parameterLlGate length parameterLlGate length parameterWIGate width parameterWI1Gate width parameterWI2Gate width parameterWI3Gate width parameterWI4Gate width parameterXqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                                                |
| XwdLateral diffusion along the width dir. [m]XIGate length offset due to mask/etch effect [m]XwGate width offset due to mask/etch effect [m]SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]LlGate length parameterLlGate length parameterLlGate length parameterWIGate width parameterWIGate width parameterWI1Gate width parameterWI2Gate width parameterWI2Gate width parameterWI2Gate width parameterWI3Gate width parameterWI4Gate width parameterWI2Gate width parameterWI2Gate width parameterWI3Gate width parameterWI4Gate width parameterWI5Gate width parameterWI6Gate width parameterWI7Gate width parameterWI8Gate width parameterXqy[m]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                |
| XIGate length offset due to mask/etch effect [m]XwGate width offset due to mask/etch effect [m]SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]LlGate length parameterLldGate length parameterLldGate width parameterWIGate width parameterWI1Gate width parameterWI2Gate width parameterWI2Gate width parameterWI2Gate width parameterWI2Gate width parameterWI4Gate width parameterWI2Gate width parameterWI2Gate width parameterWI2Gate width parameterWI2Gate width parameterWI2Gate width parameterWI4Gate width parameterXqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Novers  |                                                                |
| XwGate width offset due to mask/etch effect [m]SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]LlGate length parameterLlGate length parameterLlGate length parameterWIGate width parameterWIGate width parameterWI1Gate width parameterW12Gate width parameterW12Gate width parameterW12Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterW17Gate width parameterW18Gate width parameterW19Gate width parameterW12Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterXqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Xwd     |                                                                |
| SarefReference distance from STI edge to Gate edge [m]SbrefReference distance from STI edge to Gate edge [m]L1Gate length parameterL1Gate length parameterL1Gate length parameterL1Gate length parameterW1Gate width parameterW1Gate width parameterW11Gate width parameterW12Gate width parameterW12Gate width parameterW12Gate width parameterW14Gate width parameterW12Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterW17Gate width parameterW18Gate width parameterW19Gate width parameterW10Gate width parameterW11Gate width parameterW12Gate width parameterW13Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterXqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XI      |                                                                |
| SbrefReference distance from STI edge to Gate edge [m]L1Gate length parameterL1dGate length parameterL1nGate length parameterW1Gate width parameterW11Gate width parameterW12Gate width parameterW12Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterW17Gate width parameterW18Gate width parameterW19Gate width parameterW10Gate width parameterW11Gate width parameterW12Gate width parameterW13Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterW17[F m^{XQY2}]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Xw      |                                                                |
| LlGate length parameterLldGate length parameterLlnGate length parameterWIGate width parameterWI1Gate width parameterW12Gate width parameterW12Gate width parameterW12Gate width parameterW14Gate width parameterW12Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterW17Gate width parameterW18Gate width parameterW19Gate width parameterW10Gate width parameterW11Gate width parameterW12Gate width parameterW13Gate width parameterW14Gate width parameterW15Gate width parameterW16Gate width parameterXqy[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Saref   |                                                                |
| LldGate length parameterLlnGate length parameterWIGate width parameterWI1Gate width parameterWI1pGate width parameterWI2Gate width parameterWI4Gate width parameterWInGate width parameterXqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sbref   |                                                                |
| LinGate length parameterWIGate width parameterWI1Gate width parameterWI1pGate width parameterWI2Gate width parameterWI4Gate width parameterWInGate width parameterXqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LI      |                                                                |
| WIGate width parameterWI1Gate width parameterWI1pGate width parameterWI2Gate width parameterWI2pGate width parameterWIdGate width parameterWInGate width parameterXqy[m]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lld     |                                                                |
| WI1Gate width parameterWI1pGate width parameterWI2Gate width parameterWI2pGate width parameterWIdGate width parameterWInGate width parameterXqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lln     |                                                                |
| Wl1pGate width parameterWl2Gate width parameterWl2pGate width parameterWldGate width parameterWlnGate width parameterXqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WI      |                                                                |
| W12Gate width parameterW12pGate width parameterW1dGate width parameterW1nGate width parameterXqy[m]Xqy1[F m^{XQY2}]Xqy2[-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WI1     |                                                                |
| Wl2p       Gate width parameter         Wld       Gate width parameter         Wln       Gate width parameter         Xqy       [m]         Xqy1       [F m^{XQY2}]         Xqy2       [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WI1p    |                                                                |
| WId     Gate width parameter       WIn     Gate width parameter       Xqy     [m]       Xqy1     [F m^{XQY2}]       Xqy2     [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WI2     |                                                                |
| WIn     Gate width parameter       Xqy     [m]       Xqy1     [F m^{XQY2}]       Xqy2     [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WI2p    |                                                                |
| Xqy     [m]       Xqy1     [F m^{XQY2}]       Xqy2     [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wld     |                                                                |
| Xqy1 [F m^{XQY2}]<br>Xqy2 [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WIn     | Gate width parameter                                           |
| Xqy2 [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Хqу     | [m]                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Xqy1    | [F m^{XQY2}]                                                   |
| Rs Source contact resistance [ohm m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Xqy2    | [-]                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rs      | Source contact resistance [ohm m]                              |

| Advanced Design System 2011.01 - Nonlinear Devices |
|----------------------------------------------------|
|----------------------------------------------------|

| Rd           | Advanced Design System 2011.01 - Nonlinear Devices<br>Drain contact resistance [ohm m] |
|--------------|----------------------------------------------------------------------------------------|
| Rsh          | Source/drain diffusion sheet resistance [ohm]                                          |
| Rshg         | Gate-elecrode sheet resistance                                                         |
| Vfbc         | Constant part of Vfb [V]                                                               |
| Vbi          | Built-in potential [V]                                                                 |
| Nsubc        | Constant part of Nsub [1/cm^3]                                                         |
| Parl2        | Under diffusion [m]                                                                    |
| Lp           | Length of pocket potential [m]                                                         |
| Nsubp        | [1/cm^3]                                                                               |
| Nsubp0       | Pocket implant parameter                                                               |
| Nsubwp       | Pocket implant parameter                                                               |
| Scp1         | Parameter for pocket [-]                                                               |
| Scp2         | Parameter for pocket [1/V]                                                             |
| Scp2<br>Scp3 | Parameter for pocket [m/V]                                                             |
| Sc1          |                                                                                        |
| Sc2          | Parameter for SCE [-] Parameter for SCE [1/V]                                          |
| Sc2<br>Sc3   | Parameter for SCE [n/V]                                                                |
| Sc4          | Parameter for SCE [1/V]                                                                |
| Pgd1         | Parameter for gate-poly depletion [V]                                                  |
| Pgd2         | Parameter for gate-poly depletion [V]                                                  |
| Pgd3         | Parameter for gate-poly depletion [-]                                                  |
| Pgd4         | Parameter for gate-poly depletion [-]                                                  |
| Ndep         | Coeff. of Qbm for Eeff [-]                                                             |
| Ndepl        | Coeff. of Qbm for Eeff [-]                                                             |
| Ndeplp       | Coeff. of Qbm for Eeff [-]                                                             |
| Ninv         | Coeff. of Qnm for Eeff [-]                                                             |
| Ninvd        | Modification of Vdse dependence on Eeff [1/V]                                          |
| Muecb0       | Const. part of coulomb scattering [cm^2/Vs]                                            |
| Muecb1       | Coeff. for coulomb scattering [cm^2/Vs]                                                |
| Mueph0       | Power of Eeff for phonon scattering [-]                                                |
| Mueph1       |                                                                                        |
| Muephw       |                                                                                        |
| Миерwp       | Phonon scattering parameter                                                            |
| Muephl       | Phonon scattering parameter                                                            |
| Mueplp       | Phonon scattering parameter                                                            |
| Muephs       |                                                                                        |
| Muepsp       |                                                                                        |
| Vtmp         |                                                                                        |
| Wvth0        |                                                                                        |
| Muesr0       | Power of Eeff for S.R. scattering [-]                                                  |
| Muesr1       | Coeff. for S.R. scattering [-]                                                         |
| Muesrl       | Surface roughness parameter                                                            |
| Muesrw       | Change of surface roughness related mobility                                           |
| Mueswp       | Change of surface roughness related mobility                                           |
| Mueslp       | Surface roughness parameter                                                            |
| Muetmp       | Parameter for mobility [-]                                                             |
| Bb           | Empirical mobility model coefficient [-]                                               |
| -            |                                                                                        |

| Sub1      | Advanced Design System 2011.01 - Nonlinear Devices<br>Parameter for Isub [1/V] |
|-----------|--------------------------------------------------------------------------------|
| Sub2      | Parameter for Isub [V]                                                         |
| Svgs      | Coefficient for Vg of Psislsat                                                 |
| Svbs      | Coefficient for Vbs of Psislsat                                                |
| Svbsl     |                                                                                |
| Svds      |                                                                                |
| Slg       |                                                                                |
| Sub1l     |                                                                                |
| Sub2l     |                                                                                |
| Fn1       |                                                                                |
| Fn2       |                                                                                |
| Fn3       |                                                                                |
| Fvbs      |                                                                                |
| Svgsl     |                                                                                |
| Svgslp    |                                                                                |
| Svgswp    |                                                                                |
| Svgswp    |                                                                                |
| Svbslp    |                                                                                |
| Sigi      |                                                                                |
| Slglp     |                                                                                |
| Sub1lp    |                                                                                |
| Nsti      | Parameter for STI [1/cm^3]                                                     |
| Wsti      | Parameter for STI [m]                                                          |
| Wstil     | Parameter for STI [?]                                                          |
| Wstilp    | Parameter for STI [?]                                                          |
| Wstiw     | Parameter for STI [?]                                                          |
| Wstiwp    | Parameter for STI [?]                                                          |
| Scsti1    | Parameter for STI [-]                                                          |
| Scsti2    | Parameter for STI [1/V]                                                        |
| Vthsti    | Parameter for STI                                                              |
| Vdsti     | Parameter for STI [-]                                                          |
| Muesti1   | STI Stress mobility parameter                                                  |
| Muesti2   | STI Stress mobility parameter                                                  |
| Muesti3   | STI Stress mobility parameter                                                  |
| Nsubpsti1 | STI Stress pocket implant parameter                                            |
| Nsubpsti2 | STI Stress pocket implant parameter                                            |
| Nsubpsti3 | STI Stress pocket implant parameter                                            |
| Lpext     | Pocket extension                                                               |
| Npext     | Pocket extension                                                               |
| Scp22     |                                                                                |
| Scp21     |                                                                                |
| Bs1       |                                                                                |
| Bs2       |                                                                                |
| Cgso      | G-S overlap capacitance per unit W [F/m]                                       |
| Cgdo      | G-D overlap capacitance per unit W [F/m]                                       |
| Cgbo      | G-B overlap capacitance per unit L [F/m]                                       |
| Tpoly     | Height of poly gate on the source side[m]                                      |
|           |                                                                                |

| ]s0sw            | Saturation current density [A/m^2] Side wall saturation current density [A/m]                                           |
|------------------|-------------------------------------------------------------------------------------------------------------------------|
| Nj               | Emission coefficient [-]                                                                                                |
| Njsw             | Sidewall emission coefficient                                                                                           |
| Xti              |                                                                                                                         |
|                  | Junction current temparature exponent coefficient [-]<br>Bottom junction capacitance per unit area at zero bias [F/m^2] |
| Cj               | Source/drain sidewall junction capacitance grading coefficient per unit length at zero                                  |
| Cjsw             | bias [F/m]                                                                                                              |
| Cjswg            | Source/drain gate sidewall junction capacitance per unit length at zero bias [F/m]                                      |
| Mj               | Bottom junction capacitance grading coefficient                                                                         |
| Mjsw             | Source/drain sidewall junction capacitance grading coefficient                                                          |
| Mjswg            | Source/drain gate sidewall junction capacitance grading coefficient                                                     |
| Pb               | Bottom junction build-in potential [V]                                                                                  |
| Pbsw             | Source/drain sidewall junction build-in potential [V]                                                                   |
| Pbswg            | Source/drain gate sidewall junction build-in potential [V]                                                              |
| Xti2             | Temperature coefficient [-]                                                                                             |
| Cisb             | Reverse bias saturation current [-]                                                                                     |
| Cvb              | Bias dependence coefficient of cisb [-]                                                                                 |
| Ctemp            | Temperature coefficient [-]                                                                                             |
| Cisbk            | Reverse bias saturation current [A]                                                                                     |
| Cvbk             | Bias dependence coefficient of cisb [-]                                                                                 |
| Divx             | [1/V]                                                                                                                   |
| Clm1             | Parameter for CLM [-]                                                                                                   |
| Clm2             | Parameter for CLM [1/m]                                                                                                 |
| Clm3             | Parameter for CLM [-]                                                                                                   |
| Clm5             | Parameter for CLM [-]                                                                                                   |
| Clm6             | Parameter for CLM [um^{-clm5}]                                                                                          |
| Vover            | Parameter for overshoot [m^{voverp}]                                                                                    |
| Voverp           | Parameter for overshoot [-]                                                                                             |
| Vovers           | Parameter for overshoot [-]                                                                                             |
| Voversp          | Parameter for overshoot [-]                                                                                             |
| Wfc              | Parameter for narrow channel effect [m*F/(cm^2)]                                                                        |
| Nsubcw           | Parameter for narrow channel effect                                                                                     |
| Nsubcwp          | Parameter for narrow channel effect                                                                                     |
| Qme1             | Parameter for quantum effect [mV]                                                                                       |
| Qme2             | Parameter for quantum effect [V]                                                                                        |
| Qme3             | Parameter for quantum effect [m]                                                                                        |
| Gidl1            | Parameter for GIDL [?]                                                                                                  |
| Gidl2            | Parameter for GIDL [?]                                                                                                  |
| Gidl3            | Parameter for GIDL [?]                                                                                                  |
| Gidl4            | Parameter for GIDL [?]                                                                                                  |
| Gidl5            | Parameter for GIDL [?]                                                                                                  |
| Glpart1          | Parameter for gate current [-]                                                                                          |
| Gleak1           | Parameter for gate current [A*V^(-3/2)/C]                                                                               |
| Gleak1           | Parameter for gate current [V^(-1/2)/m ]                                                                                |
| Gleak2<br>Gleak3 | Parameter for gate current [-]                                                                                          |
| JIEaKJ           | protoniece for gate current [-]                                                                                         |

| Gleak5   | Advanced Design System 2011.01 - Nonlinear Devices<br>Parameter for gate current [V/m] |
|----------|----------------------------------------------------------------------------------------|
| Gleak6   | Parameter for gate current [V]                                                         |
| Gleak7   | Parameter for gate current [m^2]                                                       |
| Glksd1   | Parameter for gate current [A*m/V^2]                                                   |
| Glksd2   | Parameter for gate current [1/(V*m)]                                                   |
| Glksd3   | Parameter for gate current [1/m]                                                       |
| Glkb1    | Parameter for gate current [A/V^2]                                                     |
| Glkb2    | Parameter for gate current [m/V]                                                       |
| Glkb3    | Parameter for gate current [V]                                                         |
| Egig     | Parameter for gate current [V]                                                         |
| Igtemp2  | Parameter for gate current [V*k]                                                       |
| Igtemp3  | Parameter for gate current [V*k^2]                                                     |
| Vzadd0   | Vzadd at Vds=0 [V]                                                                     |
| Pzadd0   | Pzadd at Vds=0 [V]                                                                     |
| Nftrp    |                                                                                        |
| Nfalp    |                                                                                        |
| Cit      |                                                                                        |
| Falph    | Parameter for 1/f noise                                                                |
| Карра    | Dielectric constant for high-k stacked gate                                            |
| Pthrou   | Modify subthreshold slope [-]                                                          |
| Vdiffj   | Threshold voltage for S/D junction diode [V]                                           |
| Dly1     | Parameter for transit time [-]                                                         |
| Dly2     | Parameter for transit time [-]                                                         |
| Dly3     | Parameter for transforming bulk charge [s/F]                                           |
| Dlyov    | Parameter for transforming overlap charge [s/F]                                        |
| Ovslp    |                                                                                        |
| Ovmag    |                                                                                        |
| Gbmin    |                                                                                        |
| Rbpb     |                                                                                        |
| Rbpd     |                                                                                        |
| Rbps     |                                                                                        |
| Rbdb     |                                                                                        |
| Rbsb     |                                                                                        |
| Ibpc1    | Parameter for impact-ionization induced bulk potential change                          |
| Ibpc2    | Parameter for impact-ionization induced bulk potential change                          |
| Mphdfm   | NSUBCDFM dependence of phonon scattering for DFM                                       |
| Rdvg11   |                                                                                        |
| Rdvg12   |                                                                                        |
| Rth0     | Thermal resistance                                                                     |
| Cth0     | Thermal capacitance                                                                    |
| Powrat   |                                                                                        |
| Tcjbd    | Temperature dependence of cjbd                                                         |
| Tcjbs    | Temperature dependence of cjbs                                                         |
| Tcjbdsw  | Temperature dependence of cjbdsw                                                       |
| Tcjbssw  | Temperature dependence of cjbssw                                                       |
| Tcjbdswg | Temperature dependence of cjbdswg                                                      |
| Tcjbsswg | Temperature dependence of cjbsswg                                                      |

| Qdftvd    | Advanced Design System 2011.01 - Nonlinear Devices<br>Qdrift Vd dependence |
|-----------|----------------------------------------------------------------------------|
| Rdvd      |                                                                            |
| Rdvb      |                                                                            |
| Rd20      |                                                                            |
| Rd21      |                                                                            |
| Rd22      |                                                                            |
| Rd22d     |                                                                            |
| Rd23      |                                                                            |
| Rd24      |                                                                            |
| Rd25      |                                                                            |
| Rd26      | alias for qovsm                                                            |
| Rdvdl     |                                                                            |
| Rdvdlp    |                                                                            |
| Rdvds     |                                                                            |
| Rdvdsp    |                                                                            |
| Rd23I     |                                                                            |
| Rd23lp    |                                                                            |
| Rd23s     |                                                                            |
| Rd23sp    |                                                                            |
| Rds       |                                                                            |
| Rdsp      |                                                                            |
| Qovsm     | Smoothing Qover at depletion/inversion transition                          |
| Ldrift    | alias for ldrift2                                                          |
| Rdtemp1   | Temperature-dependence of Rd                                               |
| Rdtemp2   | Temperature-dependence of Rd                                               |
| Rth0r     | Heat radiation for SHE                                                     |
| Rdvdtemp1 | Temperature-dependence of RDVD                                             |
| Rdvdtemp2 | Temperature-dependence of RDVD                                             |
| Rth0w     | Width-dependence of RTH0                                                   |
| Rth0wp    | Width-dependence of RTH0                                                   |
| Rth0nf    | nf-dependence of RTH0                                                      |
| Cvdsover  | vds drop along the overlap                                                 |
| Lmin      | Minimum length for the model                                               |
| Lmax      | Maximum length for the model                                               |
| Wmin      | Minimum width for the model                                                |
| Wmax      | Maximum width for the model                                                |
| Lbinn     | L modulation coefficient for binning                                       |
| Wbinn     | W modulation coefficient for binning                                       |
| Lvmax     | Length dependence of vmax                                                  |
| Lbgtmp1   | Length dependence of bgtmp1                                                |
| Lbgtmp2   | Length dependence of bgtmp2                                                |
| Leg0      | Length dependence of eg0                                                   |
| Lvfbover  | Length dependence of vfbover                                               |
| Lnover    | Length dependence of nover                                                 |
| Lnovers   | Length dependence of nover on source size                                  |
| LwI2      | Length dependence of wl2                                                   |
| Lvfbc     | Length dependence of vfbc                                                  |
|           |                                                                            |

| Lnsubc     | Advanced Design System 2011.01 - Nonlinear Devices<br>Length dependence of nsubc |
|------------|----------------------------------------------------------------------------------|
| Lnsubp     | Length dependence of nsubp                                                       |
| Lscp1      | Length dependence of scp1                                                        |
| Lscp2      | Length dependence of scp2                                                        |
| Lscp3      | Length dependence of scp3                                                        |
| Lsc1       | Length dependence of sc1                                                         |
| Lsc2       | Length dependence of sc2                                                         |
| Lsc3       | Length dependence of sc3                                                         |
| Lpgd1      | Length dependence of pgd1                                                        |
| Lpgd3      | Length dependence of pgd3                                                        |
| Lndep      | Length dependence of ndep                                                        |
| Lninv      | Length dependence of ninv                                                        |
| Lmuecb0    | Length dependence of muecb0                                                      |
| Lmuecb1    | Length dependence of muecb1                                                      |
| Lmueph1    | Length dependence of mueph1                                                      |
| Lvtmp      | Length dependence of vtmp                                                        |
| Lwvth0     | Length dependence of wvth0                                                       |
| Lmuesr1    | Length dependence of muesr1                                                      |
| Lmuetmp    | Length dependence of muetmp                                                      |
| Lsub1      | Length dependence of sub1                                                        |
| Lsub2      | Length dependence of sub2                                                        |
| Lsvds      | Length dependence of svds                                                        |
| Lsvbs      | Length dependence of svbs                                                        |
| Lsvgs      | Length dependence of svgs                                                        |
| Lfn1       | Length dependence of fn1                                                         |
| Lfn2       | Length dependence of fn2                                                         |
| Lfn3       | Length dependence of fn3                                                         |
| Lfvbs      | Length dependence of fvbs                                                        |
| Lnsti      | Length dependence of nsti                                                        |
| Lwsti      | Length dependence of wsti                                                        |
| Lscsti1    | Length dependence of scsti1                                                      |
| Lscsti2    | Length dependence of scsti2                                                      |
| Lvthsti    | Length dependence of vthsti                                                      |
| Lmuesti1   | Length dependence of muesti1                                                     |
| Lmuesti2   | Length dependence of muesti2                                                     |
| Lmuesti3   | Length dependence of muesti3                                                     |
| Lnsubpsti1 | Length dependence of nsubpsti1                                                   |
| Lnsubpsti2 | Length dependence of nsubpsti2                                                   |
| Lnsubpsti3 | Length dependence of nsubpsti3                                                   |
| Lcgso      | Length dependence of cgso                                                        |
| Lcgdo      | Length dependence of cgdo                                                        |
| Ljs0       | Length dependence of js0                                                         |
| Ljs0sw     | Length dependence of js0sw                                                       |
| Lnj        | Length dependence of nj                                                          |
| Lcisbk     | Length dependence of cisbk                                                       |
| Lclm1      | Length dependence of clm1                                                        |
| Lclm2      | Length dependence of clm2                                                        |
|            |                                                                                  |

| Lclm3    | Advanced Design System 2011.01 - Nonlinear Devices<br>Length dependence of clm3 |
|----------|---------------------------------------------------------------------------------|
| Lwfc     | Length dependence of wfc                                                        |
| Lgidl1   | Length dependence of gidl1                                                      |
| Lgidl2   | Length dependence of gidl2                                                      |
| Lgleak1  | Length dependence of gleak1                                                     |
| Lgleak2  | Length dependence of gleak2                                                     |
| Lgleak3  | Length dependence of gleak3                                                     |
| Lgleak6  | Length dependence of gleak6                                                     |
| Lglksd1  | Length dependence of glksd1                                                     |
| Lglksd2  | Length dependence of glksd2                                                     |
| Lglkb1   | Length dependence of glkb1                                                      |
| Lglkb2   | Length dependence of glkb2                                                      |
| Lnftrp   | Length dependence of nftrp                                                      |
| Lnfalp   | Length dependence of nfalp                                                      |
| Lpthrou  | Length dependence of pthrou                                                     |
| Lvdiffj  | Length dependence of vdiffj                                                     |
| Libpc1   | Length dependence of ibpc1                                                      |
| Libpc2   | Length dependence of ibpc2                                                      |
| Wvmax    | Width dependence of vmax                                                        |
| Wbgtmp1  | Width dependence of bgtmp1                                                      |
| Wbgtmp2  | Width dependence of bgtmp2                                                      |
| Weg0     | Width dependence of eg0                                                         |
| Wvfbover | Width dependence of vfbover                                                     |
| Wnover   | Width dependence of nover                                                       |
| Wnovers  | Width dependence of novers on source size                                       |
| Wwl2     | Width dependence of wl2                                                         |
| Wvfbc    | Width dependence of vfbc                                                        |
| Wnsubc   | Width dependence of nsubc                                                       |
| Wnsubp   | Width dependence of nsubp                                                       |
| Wscp1    | Width dependence of scp1                                                        |
| Wscp2    | Width dependence of scp2                                                        |
| Wscp3    | Width dependence of scp3                                                        |
| Wsc1     | Width dependence of sc1                                                         |
| Wsc2     | Width dependence of sc2                                                         |
| Wsc3     | Width dependence of sc3                                                         |
| Wpgd1    | Width dependence of pgd1                                                        |
| Wpgd3    | Width dependence of pgd3                                                        |
| Wndep    | Width dependence of ndep                                                        |
| Wninv    | Width dependence of ninv                                                        |
| Wmuecb0  | Width dependence of muecb0                                                      |
| Wmuecb1  | Width dependence of muecb1                                                      |
| Wmueph1  | Width dependence of mueph1                                                      |
| W∨tmp    | Width dependence of vtmp                                                        |
| Wwvth0   | Width dependence of wvth0                                                       |
| Wmuesr1  | Width dependence of muesr1                                                      |
| Wmuetmp  | Width dependence of muetmp                                                      |
| Wsub1    | Width dependence of sub1                                                        |

| Wsub2      | Advanced Design System 2011.01 - Nonlinear Devices<br>Width dependence of sub2 |
|------------|--------------------------------------------------------------------------------|
| Wsvds      | Width dependence of svds                                                       |
| Wsvbs      | Width dependence of svbs                                                       |
| Wsvgs      | Width dependence of svgs                                                       |
| Wfn1       | Width dependence of fn1                                                        |
| Wfn2       | Width dependence of fn2                                                        |
| Wfn3       | Width dependence of fn3                                                        |
| Wfvbs      | Width dependence of fvbs                                                       |
| Wnsti      | Width dependence of nsti                                                       |
| Wwsti      | Width dependence of wsti                                                       |
| Wscsti1    | Width dependence of scsti1                                                     |
| Wscsti2    | Width dependence of scsti2                                                     |
| Wvthsti    | Width dependence of vthsti                                                     |
| Wmuesti1   | Width dependence of muesti1                                                    |
| Wmuesti2   | Width dependence of muesti2                                                    |
| Wmuesti3   | Width dependence of muesti3                                                    |
| Wnsubpsti1 | Width dependence of nsubpsti1                                                  |
| Wnsubpsti2 | Width dependence of nsubpsti2                                                  |
| Wnsubpsti3 | Width dependence of nsubpsti3                                                  |
| Wcgso      | Width dependence of cgso                                                       |
| Wcgdo      | Width dependence of cgdo                                                       |
| Wjs0       | Width dependence of js0                                                        |
| Wjs0sw     | Width dependence of js0sw                                                      |
| Wnj        | Width dependence of nj                                                         |
| Wcisbk     | Width dependence of cisbk                                                      |
| Wclm1      | Width dependence of clm1                                                       |
| Wclm2      | Width dependence of clm2                                                       |
| Wclm3      | Width dependence of clm3                                                       |
| Wwfc       | Width dependence of wfc                                                        |
| Wgidl1     | Width dependence of gidl1                                                      |
| Wgidl2     | Width dependence of gidl2                                                      |
| Wgleak1    | Width dependence of gleak1                                                     |
| Wgleak2    | Width dependence of gleak2                                                     |
| Wgleak3    | Width dependence of gleak3                                                     |
| Wgleak6    | Width dependence of gleak6                                                     |
| Wglksd1    | Width dependence of glksd1                                                     |
| Wglksd2    | Width dependence of glksd2                                                     |
| Wglkb1     | Width dependence of glkb1                                                      |
| Wglkb2     | Width dependence of glkb2                                                      |
| Wnftrp     | Width dependence of nftrp                                                      |
| Wnfalp     | Width dependence of nfalp                                                      |
| Wpthrou    | Width dependence of pthrou                                                     |
| Wvdiffj    | Width dependence of vdiffj                                                     |
| Wibpc1     | Width dependence of ibpc1                                                      |
| Wibpc2     | Width dependence of ibpc2                                                      |
| Pvmax      | Cross-term dependence of vmax                                                  |
| Pbgtmp1    | Cross-term dependence of bgtmp1                                                |
| Pbgtmp1    | Cross-term dependence of bgtmp1                                                |

| Pbgtmp2                  | Advanced Design System 2011.01 - Nonlinear Devices<br>Cross-term dependence of bgtmp2 |
|--------------------------|---------------------------------------------------------------------------------------|
| Peg0                     | Cross-term dependence of eg0                                                          |
| Pvfbover                 | Cross-term dependence of vfbover                                                      |
| Pnover                   | Cross-term dependence of nover                                                        |
| Pnovers                  | Cross-term dependence of nover on source size                                         |
| Pwl2                     |                                                                                       |
|                          | Cross-term dependence of wl2                                                          |
| Pvfbc<br>Drawka          | Cross-term dependence of vfbc                                                         |
| Pnsubc                   | Cross-term dependence of nsubc                                                        |
| Pnsubp                   | Cross-term dependence of nsubp                                                        |
| Pscp1                    | Cross-term dependence of scp1                                                         |
| Pscp2                    | Cross-term dependence of scp2                                                         |
| Pscp3                    | Cross-term dependence of scp3                                                         |
| Psc1                     | Cross-term dependence of sc1                                                          |
| Psc2                     | Cross-term dependence of sc2                                                          |
| Psc3                     | Cross-term dependence of sc3                                                          |
| Ppgd1                    | Cross-term dependence of pgd1                                                         |
| Ppgd3                    | Cross-term dependence of pgd3                                                         |
| Pndep                    | Cross-term dependence of ndep                                                         |
| Pninv                    | Cross-term dependence of ninv                                                         |
| Pmuecb0                  | Cross-term dependence of muecb0                                                       |
| Pmuecb1                  | Cross-term dependence of muecb1                                                       |
| Pmueph1                  | Cross-term dependence of mueph1                                                       |
| Pvtmp                    | Cross-term dependence of vtmp                                                         |
| Pwvth0                   | Cross-term dependence of wvth0                                                        |
| Pmuesr1                  | Cross-term dependence of muesr1                                                       |
| Pmuetmp                  | Cross-term dependence of muetmp                                                       |
| Psub1                    | Cross-term dependence of sub1                                                         |
| Psub2                    | Cross-term dependence of sub2                                                         |
| Psvds                    | Cross-term dependence of svds                                                         |
| Psvbs                    | Cross-term dependence of svbs                                                         |
| Psvgs                    | Cross-term dependence of svgs                                                         |
| Pfn1                     | Cross-term dependence of fn1                                                          |
| Pfn2                     | Cross-term dependence of fn2                                                          |
| Pfn3                     | Cross-term dependence of fn3                                                          |
| Pfvbs                    | Cross-term dependence of fvbs                                                         |
| Pnsti                    | Cross-term dependence of nsti                                                         |
| Pwsti                    | Cross-term dependence of wsti                                                         |
| Pscsti1                  | Cross-term dependence of scsti1                                                       |
| Pscsti2                  | Cross-term dependence of scsti2                                                       |
| Pvthsti                  | Cross-term dependence of vthsti                                                       |
| Pmuesti1                 | Cross-term dependence of muesti1                                                      |
| Pmuesti2                 | Cross-term dependence of muesti2                                                      |
| Pmuesti3                 | Cross-term dependence of muesti2                                                      |
| Pnsubpsti1               | Cross-term dependence of nsubpsti1                                                    |
| Phsubpsti2               | Cross-term dependence of nsubpstil                                                    |
| Phsubpsti2<br>Pnsubpsti3 | Cross-term dependence of nsubpsti2                                                    |
|                          |                                                                                       |
| Pcgso                    | Cross-term dependence of cgso                                                         |

| Pcgdo                 | Advanced Design System 2011.01 - Nonlinear Devices<br>Cross-term dependence of cgdo |
|-----------------------|-------------------------------------------------------------------------------------|
| Pjs0                  | Cross-term dependence of js0                                                        |
| Pjs0sw                | Cross-term dependence of js0sw                                                      |
| Pnj                   | Cross-term dependence of nj                                                         |
| Pcisbk                | Cross-term dependence of cisbk                                                      |
| Pclm1                 | Cross-term dependence of clm1                                                       |
| Pclm2                 | Cross-term dependence of clm2                                                       |
| Pclm3                 | Cross-term dependence of clm3                                                       |
| Pwfc                  | Cross-term dependence of wfc                                                        |
| Pgidl1                | Cross-term dependence of gidl1                                                      |
| Pgidl2                | Cross-term dependence of gidl2                                                      |
| Pgleak1               | Cross-term dependence of gleak1                                                     |
| Pgleak2               | Cross-term dependence of gleak2                                                     |
| Pgleak3               | Cross-term dependence of gleak3                                                     |
| Pgleak6               | Cross-term dependence of gleak6                                                     |
| Pglksd1               | Cross-term dependence of glksd1                                                     |
| Pglksd2               | Cross-term dependence of glksd2                                                     |
| Pglkb1                | Cross-term dependence of glkb1                                                      |
| Pglkb2                | Cross-term dependence of glkb2                                                      |
| Pnftrp                | Cross-term dependence of nftrp                                                      |
| Pnfalp                | Cross-term dependence of nfalp                                                      |
| Ppthrou               | Cross-term dependence of pthrou                                                     |
| Pvdiffj               | Cross-term dependence of vdiffj                                                     |
| Pibpc1                | Cross-term dependence of ibpc1                                                      |
| Pibpc2                | Cross-term dependence of ibpc2                                                      |
| Cosubnode<br>(Cotemp) | Switch tempNode to subNode                                                          |
| Coldrift              | selector for Ldrift parameter                                                       |
| Vmaxt1                | Saturation velocity coeff. [-]                                                      |
| Vmaxt2                | Saturation velocity coeff. [-]                                                      |
| Xwdld                 | Xwdld                                                                               |
| Xwdc                  | Lateral diffusion along the width dir. for capacitance [m]                          |
| Ninvdw                | Coeff of modification of Vdse dependence on Eeff [-]                                |
| Ninvdwp               | Coeff of modification of Vdse dependence on Eeff [-]                                |
| Ninvdt1               | Coeff of modification of Vdse dependence on Eeff [-]                                |
| Ninvdt2               | Coeff of modification of Vdse dependence on Eeff [-]                                |
| Rthtemp1              | Thermal Resistance                                                                  |
| Rthtemp2              | Thermal Resistance                                                                  |
| Prattemp1             | Prattemp1                                                                           |
| Prattemp2             | Prattemp2                                                                           |
| Rdvsub                | model parameter for the substrate effect                                            |
| Rdvdsub               | model parameter for the substrate effect                                            |
| Ddrift                | model parameter for the substrate effect                                            |
| Vbisub                | model parameter for the substrate effect                                            |
| Nsubsub               | model parameter for the substrate effect                                            |
| Lcgbo                 | Length dependence of cgbo                                                           |
| - 3                   |                                                                                     |

| Advanced Design System 2011.01 - Nonlinear Devices<br>Length dependence of falph |
|----------------------------------------------------------------------------------|
| Length dependence of npext                                                       |
| Length dependence of powrat                                                      |
| Length dependence of rd                                                          |
| Length dependence of rd22                                                        |
| Length dependence of rd23                                                        |
| Length dependence of rd24                                                        |
| Length dependence of rdict1                                                      |
| Length dependence of rdov13                                                      |
| Length dependence of rdslp1                                                      |
| Length dependence of rdvb                                                        |
| Length dependence of rdvd                                                        |
| Length dependence of rdvg11                                                      |
| Length dependence of rs                                                          |
| Length dependence of rth0                                                        |
| Length dependence of vover                                                       |
| Width dependence of cgbo                                                         |
| Width dependence of cvdsover                                                     |
| Width dependence of falph                                                        |
| Width dependence of npext                                                        |
| Width dependence of powrat                                                       |
| Width dependence of rd                                                           |
| Width dependence of rd22v                                                        |
| Width dependence of rd23                                                         |
| Width dependence of rd24                                                         |
| Width dependence of rdict1                                                       |
| Width dependence of rdov13                                                       |
| Width dependence of rdslp1                                                       |
| Width dependence of rdvb                                                         |
| Width dependence of rdvd                                                         |
| Width dependence of rdvg11                                                       |
| Width dependence of rs                                                           |
| Width dependence of rth0                                                         |
| Width dependence of vover                                                        |
| Cross-term dependence of cgbo                                                    |
| Cross-term dependence of cvdsover                                                |
| Cross-term dependence of falph                                                   |
| Cross-term dependence of npext                                                   |
| Cross-term dependence of powrat                                                  |
| Cross-term dependence of rd                                                      |
| Cross-term dependence of rd22                                                    |
| Cross-term dependence of rd23                                                    |
| Cross-term dependence of rd24                                                    |
| Cross-term dependence of rdict1                                                  |
| Cross-term dependence of rdov13                                                  |
| Cross-term dependence of rdslp1                                                  |
|                                                                                  |
|                                                                                  |

| Prdvd   | Cross-term dependence of rdvd                      |
|---------|----------------------------------------------------|
| Prdvg11 | Cross-term dependence of rdvg11                    |
| Prs     | Cross-term dependence of rs                        |
| Prth0   | Cross-term dependence of rth0                      |
| Pvover  | Cross-term dependence of vover                     |
| Vgs_max | Maximum gate to source voltage (TSMC SOA warning)  |
| Vgd_max | Maximum gate to drain voltage (TSMC SOA warning)   |
| Vds_max | Maximum drain to source voltage (TSMC SOA warning) |
| Vbd_max | Maximum bulk to drain voltage (TSMC SOA warning)   |

**Instance Netlist Format** 

modelName [:Name] d g s b

## Example

## Nch7:M1 2 1 0 0 W=10u L=0.9u

## **Instance Parameters**

| Name (Alias)  | Description                                          |
|---------------|------------------------------------------------------|
| Temp          | Device operating temperature                         |
| Trise (Dtemp) | Temperature rise over ambient                        |
| Mode          | Nonlinear spectral model on/off                      |
| Noise         | Noise generation on/off                              |
| L             | Length                                               |
| W             | Width                                                |
| Ad            | Drain area                                           |
| As            | Source area                                          |
| Pd            | Drain perimeter                                      |
| Ps            | Source perimeter                                     |
| Nrd           | Number of squares in drain                           |
| Nrs           | Number of squares in source                          |
| Off           | Device is initially off                              |
| Corbnet       | Activate body resistance (1) or not (0)              |
| Rbpb          |                                                      |
| Rbpd          |                                                      |
| Rbps          |                                                      |
| Rbdb          |                                                      |
| Rbsb          |                                                      |
| Corg          | Activate gate resistance (1) or not (0)              |
| Ngcon         | Number of gate contacts                              |
| Xgw           | Distance from gate contact to channel edge           |
| Xgl           | Offset of gate length due to variation in patterning |
| Nf            | Number of fingers                                    |
| Sa            | Distance from STI edge to Gate edge [m]              |
| Sb            | Distance from STI edge to Gate edge [m]              |
| Sd            | Distance from Gate edge to Gate edge [m]             |
| Nsubcdfm      | Constant part of Nsub for DFM [1/cm^3]               |
| М             | Multiplication factor [-]                            |
|               | 530                                                  |

| Subld1           | Parameter for impact-ionization current in the drift region [-]                |
|------------------|--------------------------------------------------------------------------------|
| Subld1<br>Subld2 | Parameter for impact-ionization current in the drift region $[m^{-1}*V^{3/2}]$ |
| Lover            | Overlap length on source side [m]                                              |
| Lovers           | Overlap length on source side [m]                                              |
| Loverld          | Overlap length on drain side [m]                                               |
| Ldrift1          | Parameter for drift region length-1 [m]                                        |
| Ldrift2          | Parameter for drift region length-2 [m]                                        |
| Ldrift1s         | Parameter for drift region length-1 on source side[m]                          |
| Ldrift2s         | Parameter for drift region length-2 on source side[m]                          |
| Coselfheat       | Calculation of self heating model                                              |
| Cosubnode        | Switch tempNode to subNode                                                     |
| Vds              | Vds                                                                            |
| Vgs              | Vgs                                                                            |
| Vbs              | Vbs                                                                            |
| Ids              | Ids                                                                            |
| Isub             | Isub                                                                           |
|                  |                                                                                |
| Igidl<br>Igisl   | Igidl<br>Igisl                                                                 |
|                  | Igd                                                                            |
| Igd              |                                                                                |
| Igs              | Igs                                                                            |
| Igb              | Igb                                                                            |
| Ibs              | Ibs                                                                            |
| Ibd<br>Cm        |                                                                                |
| Gm               | dIds_dVgsi                                                                     |
| Gmt<br>Gds       | dIds_dTi<br>dIds_dVdsi                                                         |
| Gus<br>Gmbs      | dIds_dVdsi<br>dIds_dVbsi                                                       |
| Ghd              | Gbd                                                                            |
| Gbd              | Gbs                                                                            |
|                  |                                                                                |
| Qb               | Qb                                                                             |
| Qg               | Qg                                                                             |
| Qd               | Qd                                                                             |
| Cgg              |                                                                                |
| Cgd              | Cgd                                                                            |
| Cgs              | Cgs                                                                            |
| Cdg<br>Cdd       | Cdg<br>Cdd                                                                     |
| Cds              | Cds                                                                            |
|                  |                                                                                |
| Cbg              | Cbg                                                                            |
| Cbdb<br>Csbs     | Cbdb<br>Csbs                                                                   |
|                  |                                                                                |
| Cgdo             | Cgdo                                                                           |
| Cgso<br>Cabo     | Cgso                                                                           |
| Cgbo             | Cgbo                                                                           |
| CAPBD            | CAPBD                                                                          |
| CAPBS            | CAPBS                                                                          |
| Von              | Von                                                                            |

| VDSAT | VDSAT        |
|-------|--------------|
| Qbs   | Qbs          |
| Qbd   | Qbd          |
| m     | multiplicity |

**DC Operating Point Information** 

| Name  | Description  | Units |
|-------|--------------|-------|
| Vds   | Vds          | V     |
| Vgs   | Vgs          | V     |
| Vbs   | Vbs          | V     |
| Ids   | Ids          | A     |
| Isub  | Isub         | A     |
| Igidl | Igidl        | A     |
| Igisl | Igisl        | A     |
| Igd   | Igd          | A     |
| Igs   | Igs          | Α     |
| Igb   | Igb          | A     |
| Ibs   | Ibs          | A     |
| Ibd   | Ibd          | A     |
| Gm    | dIds_dVgsi   | S     |
| Gmt   | dIds_dTi     | S     |
| Gds   | dIds_dVdsi   | S     |
| Gmbs  | dIds_dVbsi   | S     |
| Gbd   | Gbd          | S     |
| Gbd   | Gbs          | S     |
| Qb    | Qb           | С     |
| Qg    | Qg           | С     |
| Qd    | Qd           | С     |
| Cgg   | Cgg          | F     |
| Cgd   | Cgd          | F     |
| Cgs   | Cgs          | F     |
| Cdg   | Cdg          | F     |
| Cdd   | Cdd          | F     |
| Cds   | Cds          | F     |
| Cbg   | Cbg          | F     |
| Cbdb  | Cbdb         | F     |
| Csbs  | Csbs         | F     |
| Cgdo  | Cgdo         | F     |
| Cgso  | Cgso         | F     |
| Cgbo  | Cgbo         | F     |
| CAPBD | CAPBD        | F     |
| CAPBS | CAPBS        | F     |
| Von   | Von          | V     |
| VDSAT | VDSAT        | V     |
| Qbs   | Qbs          | С     |
| Qbd   | Qbd          | С     |
| m     | multiplicity |       |

## hisim (HiSIM MOSFET Model and Instance)

## **Model Parameters**

| Name    | Description                                           | Units                | Default              |
|---------|-------------------------------------------------------|----------------------|----------------------|
| Version | model version                                         |                      | 231                  |
| Gender  | transistor type: 1 (N-type) and -1 (P-type)           |                      | 1                    |
| Тох     | physical oxide thickness                              | m                    | 3n                   |
| Xld     | gate-overlap length                                   | m                    | 0                    |
| Xwd     | gate-overlap width                                    | m                    | 0                    |
| Tpoly   | height of the gate poly-Si for fringing capacitance   | m                    | $200 \times 10^{-9}$ |
| LI      | coefficient of gate length modification               |                      | 0                    |
| Lld     | coefficient of gate length modification               | m                    | 0                    |
| Lln     | coefficient of gate length modification               |                      | 0                    |
| WI      | coefficient of gate width modification                |                      | 0                    |
| Wld     | coefficient of gate width modification                | m                    | 0                    |
| Wln     | coefficient of gate width modification                |                      | 0                    |
| Nsubc   | substrate-impurity concentration                      | cm <sup>-3</sup>     | $5 \times 10^{17}$   |
| Nsubp   | maximum pocket concentration                          | cm <sup>-3</sup>     | $1 \times 10^{18}$   |
| Lp      | pocket penetration length                             | m                    | 15n                  |
| Npext   | maximum concentration of pocket tail                  | cm <sup>-3</sup>     | $5 \times 10^{17}$   |
| Lpext   | extension length of pocket tail                       | m                    | $1 \times 10^{-50}$  |
| Vfbc    | flat-band voltage                                     | V                    | -1.0                 |
| Vbi     | built-in potential                                    | V                    | 1.0                  |
| Карра   | dielectric constant for gate dielectric               | _                    | 3.9                  |
| Eg0     | bandgap                                               | eV                   | 1.1785               |
| Bgtmp1  | temperature dependence of bandgap                     | eV K <sup>-1</sup>   | 90.25µ               |
| Bgtmp2  | temperature dependence of bandgap                     | eV K <sup>-2</sup>   | 0.1µ                 |
| Tnom    | temperature selected as a nominal temperature value   | °C                   | 27                   |
| Vmax    | saturation velocity                                   | cm s <sup>-1</sup>   | 10MEG                |
| Vover   | velocity overshoot effect                             | cm <sup>Voverp</sup> | 0.3                  |
| Voverp  | L <sub>eff</sub> dependence of velocity overshoot     | -                    | 0.3                  |
| Vtmp    | temperature dependence of the saturation velocity     | cm s <sup>-1</sup>   | 0                    |
| Qme1    | $V_{gs}$ dependence of quantum mechanical effect      | V <sup>-2</sup> m    | 0                    |
| Qme2    | $V_{gs}$ dependence of quantum mechanical effect      | V                    | 1.0                  |
| Qme3    | minimum T <sub>ox</sub> modification                  | m                    | 0                    |
| Pgd1    | strength of poly-depletion effect                     | V                    | 1.0e-4               |
| Pgd2    | threshold voltage of poly-depletion effect            | V                    | 1.0                  |
| Pgd3    | V <sub>ds</sub> dependence of poly-depletion effect   | -                    | 0.8                  |
| Pgd4    | L <sub>gate</sub> dependence of poly-depletion effect | _                    | 0                    |

Advanced Design System 2011.01 - Nonlinear Devices

| 1      | Advanced Design System 2011.01 - No                       |                                                                                            | 1                       |
|--------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------|
| Parl2  | depletion width of channel/contact junction               | m                                                                                          | 10n                     |
| Sc1    | magnitude of short-channel effect                         |                                                                                            | 1.0                     |
| Sc2    | V <sub>bs</sub> dependence of short-channel effect        | V <sup>-1</sup>                                                                            | 1.0                     |
| Sc3    | V <sub>bs</sub> dependence of short-channel effect        | V <sup>-1</sup> m                                                                          | 0                       |
| Scp1   | magnitude of short-channel effect due to pocket           | —                                                                                          | 1.0                     |
| Scp2   | V <sub>ds</sub> dependence of short-channel due to pocket | V <sup>-1</sup>                                                                            | 0.1                     |
| Scp3   | $V_{bs}$ dependence of short-channel effect due to pocket | V <sup>-1</sup> m                                                                          | 0                       |
| Scp21  | short-channel-effect modification for small $V_{ds}$      | V                                                                                          | 0                       |
| Scp22  | short-channel-effect modification for small $V_{ds}$      | V <sup>4</sup>                                                                             | 0                       |
| Bs1    | body-coeffcient modifcation by impurity profile           | V <sup>2</sup>                                                                             | 0                       |
| Bs2    | body-coeffcient modifcation by impurity profile           | V                                                                                          | 0.9                     |
| Muecb0 | Coulomb scattering                                        | cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup>                                            | 1K                      |
| Muecb1 | Coulomb scattering                                        | cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup>                                            | 100                     |
| Mueph0 | phonon scattering                                         | _                                                                                          | 0.3                     |
| Mueph1 | phonon scattering                                         | $cm^2V^{-1}s^{-1}(V cm^{-1})$<br>Mueph0                                                    | 25K(nMOS),<br>9K(pMOS)  |
| Muetmp | temperature dependence of phonon scattering               | —                                                                                          | 1.5                     |
| Muephl | length dependence of phonon mobility reduction            | —                                                                                          | 0                       |
| Mueplp | length dependence of phonon mobility reduction            | -                                                                                          | 1.0                     |
| Muesr0 | surface-roughness scattering                              | —                                                                                          | 2.0                     |
| Muesr1 | surface-roughness scattering                              | cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> (V cm <sup>-1</sup> )<br><sub>Muesr0</sub> | 1×10 <sup>15</sup>      |
| Muesrl | length dependence of surface roughness mobility reduction |                                                                                            | 0                       |
| Mueslp | length dependence of surface roughness mobility reduction |                                                                                            | 1.0                     |
| Ndep   | depletion charge contribution on effective-electric field | -                                                                                          | 1.0                     |
| Ninv   | inversion charge contribution on effective-electric field | -                                                                                          | 0.5                     |
| Bb     | high-field-mobility degradation                           | -                                                                                          | 2.0(nMOS),<br>1.0(pMOS) |
| Wfc    | threshold voltage change due to capacitance change        | F cm <sup>-2</sup> m <sup>-1</sup>                                                         | 0                       |
| Wvth0  | threshold voltage shift                                   |                                                                                            | 0                       |
| Nsubp0 | modification of pocket concentration for narrow width     | cm <sup>-3</sup>                                                                           | 0                       |
| Nsubwp | modification of pocket concentration for narrow width     |                                                                                            | 1.0                     |
| Muephw | phonon related mobility reduction                         |                                                                                            | 0                       |
| Muepwp | phonon related mobility reduction                         |                                                                                            | 1.0                     |
| Muesrw | change of surface roughness related mobility              |                                                                                            | 0                       |
| Mueswp | change of surface roughness related mobility              |                                                                                            | 1.0                     |
| Vthst1 | threshold voltage shift due to Sti                        |                                                                                            | 0                       |
| Scsti1 | the same effect as Sc1 but at Sti edge                    |                                                                                            | 0                       |
| Scsti2 | the same effect as Sc2 but at Sti edge                    |                                                                                            | 0                       |
| Scsti3 | the same effect as Sc3 but at Sti edge                    |                                                                                            | 0                       |
| Nsti   | substrate-impurity concentration at the Sti edge          | cm <sup>-3</sup>                                                                           | 1×10 <sup>17</sup>      |
| Wsti   | width of the high-field region at Sti edge                | m                                                                                          | 0                       |
| Wstil  | channel-length dependence of Wsti                         |                                                                                            | 0                       |
| Wstilp | channel-length dependence of Wsti                         |                                                                                            | 1.0                     |

|           | Advanced Design System 2011.01 - No                                             | nlinear Devices     |                      |
|-----------|---------------------------------------------------------------------------------|---------------------|----------------------|
| WI1       | threshold volatge shift of Sti leakage due to small size effect                 |                     | 0                    |
| WI2       | threshold volatge shift of Sti leakage due to small size effect                 |                     | 1.0                  |
| Nsubpsti1 | pocket concentration change due to diffusion-region length between gate and Sti | m                   | 0                    |
| Nsubpsti2 | pocket concentration change due to diffusion-region length between gate and Sti | m                   | 0                    |
| Nsubpsti3 | pocket concentration change due to diffusion-region length between gate and Sti | m                   | 1.0                  |
| Muesti1   | mobility change due to diffusion-region length between<br>gate and Sti          |                     | 0                    |
| Muesti2   | mobility change due to diffusion-region length between<br>gate and Sti          |                     | 0                    |
| Muesti3   | mobility change due to diffusion-region length between<br>gate and Sti          |                     | 1.0                  |
| WI2       | threshold volatge shift due to small size effect                                |                     | 0                    |
| WI2p      | threshold volatge shift due to small size effect                                |                     | 1.0                  |
| Muephs    | mobility modification due to small size                                         |                     | 0                    |
| Muepsp    | mobility modification due to small size                                         |                     | 1.0                  |
| Vovers    | modification of maximum velocity due to small size                              | _                   | 0                    |
| Voversp   | modification of maximum velocity due to small size                              | _                   | 0                    |
| Clm1      | hardness coeffcient of channel/contact junction                                 | _                   | 0.7                  |
| Clm2      | coeffcient for Q <sub>B</sub> contribution                                      | _                   | 2.0                  |
| Clm3      | coeffcient for $Q_{I}$ contribution                                             | _                   | 1.0                  |
| Clm4      | smoothing coeffcient for g <sub>ds</sub>                                        | V                   | 500×10 <sup>-6</sup> |
| Clm5      | effect of pocket implantation                                                   | _                   | 1.0                  |
| Clm6      | effect of pocket implantation                                                   |                     | 0                    |
| Sub1      | substrate current coeffcient of magnitude                                       | V <sup>-1</sup>     | 10                   |
| Sub1l     | L <sub>gate</sub> dependence Sub1                                               | m                   | 2.5×10 <sup>-3</sup> |
| Sub1lp    | L <sub>gate</sub> dependence Sub1                                               | -                   | 1.0                  |
| Sub2      | substrate current coeffcient of exponential term                                | V                   | 25.0                 |
| Sub2l     | L <sub>gate</sub> dependence of Sub2                                            | m                   | 2×10 <sup>-6</sup>   |
| Svds      | substrate current dependence on V <sub>ds</sub>                                 |                     | 0.8                  |
| Slg       | substrate current dependence on L <sub>gate</sub>                               | m                   | 3×10 <sup>-8</sup>   |
| SIgl      | substrate current dependence on L <sub>gate</sub>                               | m <sup>Slglp</sup>  | 0                    |
| Slglp     | substrate current dependence on L <sub>gate</sub>                               | -                   | 1.0                  |
| Svbs      | substrate current dependence on V <sub>bs</sub>                                 | -                   | 0.5                  |
| Svbsl     | L <sub>gate</sub> dependence of Svbs                                            | m <sup>Svbslp</sup> | 0                    |
| Svbslp    | L <sub>gate</sub> dependence of Svbs                                            |                     | 1.0                  |
| Svgs      | substrate current dependence on $V_{gs}$                                        | <u> </u>            | 0.8                  |
| Svgsl     | L <sub>gate</sub> dependence of Svgs                                            | m <sup>Svgslp</sup> | 0                    |
| Svgslp    | L <sub>gate</sub> dependence of Svgs                                            | -                   | 1.0                  |
|           | -gate                                                                           |                     |                      |

| Svgsw   | Advanced Design System 2011.01 - No $W_{gate}$ dependence of Svgs                   | m <sup>Svgswp</sup>                               | 0                    |
|---------|-------------------------------------------------------------------------------------|---------------------------------------------------|----------------------|
| Svgswp  | W <sub>gate</sub> dependence of Svgs                                                | _                                                 | 1.0                  |
| Ibpc1   | impact-ionization induced bulk potential change                                     | V A <sup>-1</sup>                                 | 0                    |
| Ibpc2   | impact-ionization induced bulk potential change                                     | V <sup>-1</sup>                                   | 0                    |
| Gleak1  | gate to channel current coefficient                                                 | A V <sup>-3/2</sup> C <sup>-1</sup>               | 50                   |
| Gleak2  | gate to channel current coefficient                                                 | $V^{-1/2} m^{-1}$                                 | 10MEG                |
| Gleak3  | gate to channel current coefficient                                                 |                                                   | 60×10 <sup>-3</sup>  |
| Gleak4  | gate to channel current coefficient                                                 | m <sup>-1</sup>                                   | 4.0                  |
| Gleak5  | gate to channel current coefficient ( short channel                                 | V m <sup>-1</sup>                                 | 7.5×10 <sup>3</sup>  |
|         | correction )                                                                        |                                                   |                      |
| Gleak6  | gate to channel current coefficient (V <sub>ds</sub> dependence                     | V                                                 | 250×10 <sup>-3</sup> |
| Clask7  | correction )                                                                        | 2                                                 | 4 4 9-6              |
| Gleak7  | gate to channel current coefficient ( gate length and width dependence correction ) | m <sup>2</sup>                                    | 1×10 <sup>-6</sup>   |
| Igtemp1 | temperature dependence of gate leakage                                              | V                                                 | 0                    |
| Igtemp2 | temperature dependence of gate leakage                                              | VK                                                | 0                    |
| Igtemp3 | temperature dependence of gate leakage                                              | VK <sup>2</sup>                                   | 0                    |
| Glksd1  | gate to source/drain current coefficient                                            | AmV <sup>-2</sup>                                 | lf                   |
| Glksd2  | gate to source/drain current coefficient                                            | V <sup>-1</sup> m <sup>-1</sup>                   | 5MEG                 |
| Glksd3  | gate to source/drain current coefficient                                            | m <sup>-1</sup>                                   | -5MEG                |
| Glkb1   | gate to bulk current coefficient                                                    | A V <sup>-2</sup>                                 | 5×10 <sup>-16</sup>  |
| Glkb2   | gate to bulk current coefficient                                                    | M V <sup>-1</sup>                                 | 1.0                  |
| Glpart1 | partitioning ratio of gate leakage current                                          | _                                                 | 0.5                  |
| Fn1     | coefficient of Fowler-Nordheim current contribution                                 | V <sup>-1.5</sup> ×m <sup>2</sup>                 | 50                   |
| Fn2     | coefficient of Fowler-Nordheim current contribution                                 | V <sup>-0.5</sup> ×m <sup>-1</sup>                | 170×10 <sup>-6</sup> |
| Fn3     | coefficient of Fowler-Nordheim current contribution                                 | V                                                 | 0                    |
| Fvbs    | V <sub>bs</sub> dependence of Fowler-Nordheim current                               | _                                                 | 12×10 <sup>-3</sup>  |
| Gidl1   | magnitude of Gidl                                                                   | A V <sup>-3/2</sup> C <sup>-1</sup> m             | 2.0                  |
| Gidl2   | Field dependence of Gidl                                                            | V <sup>-2</sup> m <sup>-1</sup> F <sup>-3/2</sup> | 3×10 <sup>7</sup>    |
| Gidl3   | V <sub>ds</sub> dependence of Gidl                                                  | -                                                 | 0.9                  |
| Gidl4   | threshold of V <sub>ds</sub> dependence                                             | V                                                 | 0.9                  |
| Gidl5   | correction of high-field contribution                                               | -                                                 | 0.2                  |
| Vzadd0  | symmetry conservation coefficient                                                   | V                                                 | 10m                  |
| Pzadd0  | symmetry conservation coefficient                                                   | V                                                 | 5m                   |
| Js0     | saturation current density                                                          | A m <sup>-2</sup>                                 | 0.5×10 <sup>-6</sup> |
| Js0sw   | sidewall saturation current density                                                 | A m <sup>-2</sup>                                 | 0                    |
| Nj      | emission coefficient                                                                | _                                                 | 1.0                  |
| Njsw    | sidewall emission coefficient                                                       | -                                                 | 1.0                  |
| Xti     | temperature coefficient for forward current densities                               | <u> </u>                                          | 2.0                  |
| Xti2    | temperature coefficient for reverse current densities                               | <u> -</u>                                         | 0                    |
| Divx    | reverse current coefficient                                                         | V <sup>-1</sup>                                   | 0                    |
| Ctemp   | temperature coefficient of reverse currents                                         | <u> </u>                                          | 0                    |
| Cisb    | reverse biased saturation current                                                   | -                                                 | 0                    |

Advanced Design System 2011.01 - Nonlinear Devices

| Cisbk  | Advanced Design System 2011.01 - No<br>reverse biased saturation current ( at low temperature ) | onlinear Devices                 | 0                     |
|--------|-------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|
| Cvb    | bias dependence coefficient of Cisb                                                             |                                  | 0                     |
| Cvbk   | bias dependence coefficient of Cisb ( at low temperature )                                      | _                                | 0                     |
| Cj     | bottom junction capacitance per unit area at zero bias                                          | F m <sup>-2</sup>                | 5×10 <sup>-4</sup>    |
| Cjsw   | source/drain sidewall junction cap. grading coefficient per<br>unit length at zero bias         | F m <sup>-1</sup>                | 5×10 <sup>-10</sup>   |
| Cjswg  | source/drain sidewall junction capacitance per unit length at zero bias                         | F m <sup>-1</sup>                | 5×10 <sup>-10</sup>   |
| Mj     | bottom junction capacitance grading coefficient                                                 | _                                | 0.5                   |
| Mjsw   | source/drain sidewall junction capacitance grading coefficient                                  | _                                | 0.33                  |
| Mjswg  | source/drain gate sidewall junction capacitance grading coefficient                             | -                                | 0.33                  |
| Pb     | bottom junction build-in potential                                                              | V                                | 1.0                   |
| Pbsw   | source/drain sidewall junction build-in potential                                               | V                                | 1.0                   |
| Pbswg  | source/drain gate sidewall junction build-in potential                                          | V                                | 1.0                   |
| Vdiffj | diode threshold voltage between source/drain and substrate                                      | V                                | 0.6×10 <sup>-3</sup>  |
| Nfalp  | contribution of the mobility fluctuation                                                        | cm s                             | 1×10 <sup>-19</sup>   |
| Nftrp  | ratio of trap density to attenuation coefficient                                                | V <sup>-1</sup> cm <sup>-2</sup> | 10G                   |
| Cit    | capacitance caused by the interface trapped carriers                                            | F cm <sup>-2</sup>               | 0                     |
| Pthrou | correction for subthreshold swing                                                               | —                                | 0                     |
| Dly1   | coefficient for delay due to diffusion of carriers                                              | S                                | 100×10 <sup>-12</sup> |
| Dly2   | coefficient for delay due to conduction of carriers                                             | —                                | 0.7                   |
| Dly3   | coefficient for RC delay of bulk carriers                                                       | Ω                                | 0.8×10 <sup>-6</sup>  |
| Хqу    | distance from drain junction to maximum electric field point                                    | m                                | 0                     |
| Lover  | overlap length                                                                                  | m                                | 50n                   |
| Ovslp  | coefficient for overlap capacitance                                                             | —                                | 2.1×10 <sup>-7</sup>  |
| Ovmag  | coefficient for overlap capacitance                                                             | V                                | 0.6                   |
| Cgso   | gate-to-source overlap capacitance                                                              | F m <sup>-1</sup>                |                       |
| Cgdo   | gate-to-drain overlap capacitance                                                               | F m <sup>-1</sup>                |                       |
| Cgbo   | gate-to-bulk overlap capacitance                                                                | F m <sup>-1</sup>                | 0                     |
| Rs     | source-contact resistance in Ldd region                                                         | V A <sup>-1m</sup>               | 0                     |
| Rd     | drain-contact resistance in Ldd region                                                          | V A <sup>-1m</sup>               | 0                     |
| Rsh    | source/drain sheet resistance                                                                   | V A <sup>-1square</sup>          | 0                     |
| Rshg   | gate sheet resistance                                                                           | V A <sup>-1square</sup>          | 0                     |
| Gbmin  | substrate resistance network                                                                    | _                                | 1×10 <sup>-12</sup>   |
| Rbpb   | substrate resistance network                                                                    | Ω                                | 50                    |
| Rbpd   | substrate resistance network                                                                    | Ω                                | 50                    |
| Rbps   | substrate resistance network                                                                    | Ω                                | 50                    |
| Rbdb   | substrate resistance network                                                                    | Ω                                | 50                    |
| Rbsb   | substrate resistance network                                                                    | Ω                                | 50                    |

#### **Model Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelName hisim [parm=value]\*

The model statement starts with the required keyword model. It is followed by the modelName that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is hisim. Use the parameter gender to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

## Example:

model Nch7 hisim Gender=1 Version=231 Tox=2.15e-9

## **Instance Parameters**

| Name    | Description                                        | Units          | Default |
|---------|----------------------------------------------------|----------------|---------|
| L       | gate length (L <sub>gate</sub> )                   | m              | 5µ      |
| W       | gate width (W <sub>gate</sub> )                    | m              | 5µ      |
| Ad      | area of drain junction                             | m²             | 0       |
| As      | area of source junction                            | m <sup>2</sup> | 0       |
| Pd      | perimeter of drain junction                        | m              | 0       |
| Ps      | perimeter of source junction                       | m              | 0       |
| Nrs     | number of source squares                           | m              | 1       |
| Nrd     | number of drain squares                            | m              | 1       |
| Xgw     | distance from the gate contact to the channel edge | m              | 0       |
| Xgl     | offset of the gate length                          | m              | 0       |
| Nf      | number of gate fingers                             | m              | 1       |
| Ngcon   | number of gate contacts                            | m              | 1       |
| Corg    | gate-contact resistance included                   |                | 0       |
| Lod     | length of diffusion between gate and STI           | m              | 10µ     |
| Temp    | device temperature (T)                             | °C             | 27      |
| Trise   | temperature rise over ambient                      | °C             | 0       |
| Corbnet | substrate resistance network invoked               |                | 0       |
| Rbpb    | substrate resistance network                       | Ω              | 50      |
| Rbpd    | substrate resistance network                       | Ω              | 50      |
| Rbps    | substrate resistance network                       | Ω              | 50      |
| Rbdb    | substrate resistance network                       | Ω              | 50      |
| Rbsb    | substrate resistance network                       | Ω              | 50      |

**Instance Netlist Format** 

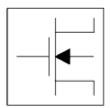
modelName:instanceName D G S B [parm=value]

where D is the drain node, G is the gate node, S is the source node, B is the body (substrate) node.

Example:

Nch7:M1 2 1 0 0 W=10u L=0.9u

## Notes/Equations


- 1. HiSIM model is developed jointly by Hiroshima University and STARC, Copyright 2006. Complete HiSIM user's documentation can be requested from STARC.
- 2. This hisim model is based on SPICE source code of HiSIM version 2.3.1 provided by STARC. Only version 2.3.1 is available. The Non-Quasi-Static mode is not implemented currently. HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights in and to the source code in its entirety, is owned by Hiroshima University and STARC.
- 3. The following table lists the DC operating point parameters that can be sent to the dataset:

## **DC Operating Point Parameters**

| Name  | Description                                 | Units |
|-------|---------------------------------------------|-------|
| Id    | Drain current                               | A     |
| Ig    | Gate current                                | A     |
| Is    | Source current                              | A     |
| Ib    | Body current                                | A     |
| Power | Total dissipated power                      | W     |
| Vds   | External drain-source voltage               | V     |
| Vgs   | External gate-source voltage                | V     |
| Vbs   | External body-source voltage                | V     |
| Ids   | Internal drain-source current               | A     |
| Ibd   | Internal body-drain diode current           | A     |
| Ibs   | Internal body-source diode current          | A     |
| Isub  | Internal substrate current                  | A     |
| Igidl | Internal Gate-Induced Drain Leakage current | A     |
| Igs   | Internal gate-source current                | A     |
| Igd   | Internal gate-drain current                 | A     |
| Igb   | Internal gate-body current                  | A     |
| Vdsat | Drain-source saturation voltage             | V     |
| Vth   | Threshold voltage                           | V     |
| Qg    | Internal gate charge                        | С     |
| Qb    | Internal body charge                        | С     |
| Qd    | Internal drain charge                       | С     |
| Qs    | Internal source charge                      | С     |
| Gmbs  | Body effect transconductance                | S     |
| Gm    | Forward transconductance                    | S     |
| Gmids | Gm/Ids                                      | 1/V   |
| Gds   | Channel conductance                         | S     |
| Cgg   | dQg/dVgb                                    | F     |
| Cgd   | dQg/dVdb                                    | F     |
| Cgs   | dQg/dVsb                                    | F     |
| Cbg   | dQb/dVgb                                    | F     |
| Cbd   | dQb/dVdb                                    | F     |
| Cbs   | dQb/dVsb                                    | F     |
| Cdg   | dQd/dVgb                                    | F     |
| Cdd   | dQd/dVdb                                    | F     |
| Cds   | dQd/dVsb                                    | F     |

## LEVEL1\_Model (MOSFET Level-1 Model)

#### Symbol



#### **Parameters**

### Model parameters must be specified in SI units.

| Name              | Description                                                                  | Units              | Default      |
|-------------------|------------------------------------------------------------------------------|--------------------|--------------|
| NMOS              | Model type: yes or no                                                        | None               | yes          |
| PMOS              | Model type: yes or no                                                        | None               | no           |
| Idsmod            | IDS model: 1=LEVEL1 2=LEVEL2 3=LEVEL3 4=BSIM1 5=BSIM2<br>6=NMOD 8=BSIM3      | None               | 1            |
| Capmod            | capacitance model selector: 0=NO CAP 1=CMEYER/WARD 2=SMOOTH 3=QMEYER         | None               | 1            |
| Vto <sup>†</sup>  | zero-bias threshold voltage                                                  | V                  | 0.0          |
| Kp <sup>†</sup>   | transconductance coefficient                                                 | A/V <sup>2</sup>   | 2.0e-5       |
| Gamma             | bulk threshold                                                               | V <sup>(1/2)</sup> | 0.0          |
| Phi <sup>+</sup>  | surface potential                                                            | V                  | 0.6          |
| Lambda            | channel-length modulation                                                    | 1/V                | 0.0          |
| Rd                | Drain Resistance                                                             | Ohm                | fixed at 0.0 |
| Rs                | Source Resistance                                                            | Ohm                | fixed at 0.0 |
| Cbd <sup>+</sup>  | Bulk-Drain Zero-bias Junction Capacitance                                    | F                  | 0.0          |
| Cbs <sup>†</sup>  | Bulk-Source Zero-bias zero-bias Junction Capacitance                         | F                  | 0.0          |
| Is <sup>†</sup>   | Gate Saturation Current                                                      | A                  | 1.0e-14      |
| Pb <sup>†</sup>   | bulk junction potential                                                      | V                  | 0.8          |
| Cgso              | gate-source overlap capacitance per meter of channel width                   | F/m                | 0.0          |
| Cgdo              | gate-drain overlap capacitance per meter of channel width                    | F/m                | 0.0          |
| Cgbo              | gate-bulk overlap capacitance per meter of channel length                    | F/m                | 0.0          |
| Rsh               | drain and source diffusion sheet resistance                                  | Ohm/sq             | 0.0          |
| Cj <sup>†</sup>   | zero-bias bulk junction bottom capacitance per square meter of junction area | F/m <sup>2</sup>   | 0.0          |
| Mj                | bulk junction bottom grading coefficient                                     | None               | 0.5          |
| Cjsw <sup>†</sup> | zero-bias bulk junction periphery capacitance per meter of junction          | F/m                | 0.0          |

|                 | Advanced Design System 2011.01 - Nonlinear Devic                       | es                       | 1                   |
|-----------------|------------------------------------------------------------------------|--------------------------|---------------------|
| Mjsw            | bulk junction periphery grading coefficient                            | None                     | 1/3                 |
| Js <sup>†</sup> | bulk junction saturation current per square meter of junction area     | A/m <sup>2</sup>         | 0.0                 |
| Тох             | oxide thickness                                                        | m                        | 1.0e-7              |
| Nsub            | substrate (bulk) doping density                                        | cm <sup>-3</sup>         | 0.0                 |
| Nss             | surface state density                                                  | cm <sup>-2</sup>         | 0.0                 |
| Трд             | Type of Gate Material: 1=opposite to bulk, 1=same as bulk,             | None                     | 1                   |
| rpg             | 0=aluminum                                                             | None                     | 1                   |
| Ld              | lateral diffusion length                                               | m                        | 0.0                 |
| Uo <sup>†</sup> | surface mobility                                                       | cm <sup>2</sup><br>/(Vs) | 600.0               |
| Nlev            | noise model level                                                      | None                     | -1                  |
| Gdsnoi          | drain noise parameters for Nlev=3                                      | None                     | 1                   |
| Kf              | flicker-noise coefficient                                              | None                     | 0.0                 |
| Af              | flicker-noise exponent                                                 | None                     | 1.0                 |
| Fc              | bulk junction forward-bias depletion capacitance coefficient           | None                     | 0.5                 |
| Rg              | gate resistance                                                        | Ohm                      | fixed at 0.0        |
| Rds             | drain-source shunt resistance                                          | Ohm                      | fixed at infinity   |
| Tnom            | Nominal ambient temperature                                            | °C                       | 25                  |
| Trise           | temperature rise above ambient                                         | °C                       | 0                   |
| N               | bulk P-N emission coefficient                                          | None                     | 1.0                 |
| Tt              | bulk P-N transit time                                                  |                          | 0.0                 |
| Ffe (Ef)        | flicker noise frequency exponent                                       | None                     | 1.0                 |
| Imax            | explosion current                                                      | A                        | 10.0                |
| Imelt           | explosion current similar to Imax; defaults to Imax (refer to Note 10) | A                        | defaults to<br>Imax |
| wVsubfwd        | substrate junction forward bias (warning)                              | V                        | None                |
| wBvsub          | substrate junction reverse breakdown voltage (warning)                 | V                        | None                |
| wBvg            | gate oxide breakdown voltage (warning)                                 | V                        | None                |
| wBvds           | drain-source breakdown voltage (warning)                               | V                        | None                |
| wIdsmax         | maximum drain-source current (warning)                                 | A                        | None                |
| wPmax           | maximum power dissipation (warning)                                    | W                        | None                |
| Acm             | area calculation method                                                | None                     | 0                   |
| Hdif            | length of heavily doped diffusion (Acm=2, 3 only)                      | m                        | 0.0                 |
| Ldif            | length of lightly doped diffusion adjacent to gate (Acm=1, 2 only)     | m                        | 0.0                 |
| Wmlt            | width diffusion layer shrink reduction factor                          | None                     | 1.0                 |
| Lmlt            | Gate length shrink factor                                              | None                     | 1.0                 |
| Xw              | accounts for masking and etching effects                               | m                        | 0.0                 |
| Rdc             | additional drain resistance due to contact resistance                  | Ohm                      | 0.0                 |
| Rsc             | additional source resistance due to contact resistance                 | Ohm                      | 0.0                 |
| Wmin            | Binning minimum width (parsed but not used, use BinModel)              | m                        | 0.0                 |
| Wmax            | Binning maximum width (parsed but not used, use BinModel)              | m                        | 1.0                 |
| Lmin            | Binning minimum length (parsed but not used, use BinModel)             | m                        | 0.0                 |

|           | Advanced Design System 2011.01 - Nonlinear I                                      | Devices                  |              |
|-----------|-----------------------------------------------------------------------------------|--------------------------|--------------|
| Lmax      | Binning maximum length (parsed but not used, use BinModel)                        | m                        | 1.0          |
| AllParams | Data Access Component (DAC) Based Parameters                                      | None                     | None         |
|           | er value varies with temperature based on model Tnom and device $$ d as infinity. | Temp. <sup>++</sup> Valu | ie of 0.0 is |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

model modelname MOSFET Idsmod=1 [parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOSFET*. Idsmod=1 is a required parameter that is used to tell the simulator to use the Spice level 1 equations. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

Example:

```
model Nch1 MOSFET Idsmod=1 \
Kp=4e-5 Vto=0.7 NMOS=yes
```

#### **Notes/Equations**

- 1. The simulator provides three MOSFET device models that differ in formulation of I-V characteristics. MOSFET Level1\_Model is Shichman-Hodges model derived from [1].
- 2. Vto, Kp, Gamma, Phi, and Lambda determine the DC characteristics of a MOSFET device. ADS will calculate these parameters (except Lambda) if instead of specifying them, you specify the process parameters Tox, Uo, Nsub, and Nss.
- 3. Vto is positive (negative) for enhancement mode and negative (positive) for depletion mode N-channel (P-channel) devices.
- 4. P-N junctions between the bulk and the drain and the bulk and the source are modeled by parasitic diodes. Each bottom junction is modeled by a diode and each periphery junction is modeled by a depletion capacitance.
- Diode parameters for the bottom junctions can be specified as absolute values (Is, Cbd and Cbs) or as per unit junction area values (Js and Cj).
   If Cbd = 0.0 and Cbs = 0.0, then Cbd and Cbs will be calculated:

If Cbd = 0.0 and Cbs = 0.0, then Cbd and Cbs will be calculated:

Cbd = Cj Ad, Cbs = Cj As

If Js > 0.0 and Ad > 0.0 and As > 0.0, then Is for drain and source will be calculated:

Is(drain) = Js Ad, Is(source) = Js As

6. Drain and source ohmic resistances can be specified as absolute values (Rd, Rs) or as per unit square value (Rsh).

If Nrd 0.0 or Nrs 0.0, Rd and Rs will be calculated: Rd = Rsh Nrd, Rs = Rsh Nrs

7. Charge storage in the MOSFET consists of capacitances associated with parasitics and intrinsic device.

Parasitic capacitances consist of three constant overlap capacitances (Cgdo, Cgso, Cgbo) and the depletion layer capacitances for both substrate junctions (divided into bottom and periphery), that vary as Mj and Mjsw power of junction voltage, respectively, and are determined by the parameters Cbd, Cbs, Cj, Cjsw, Mj, Mjsw, Pb and Fc.

The intrinsic capacitances consist of the nonlinear thin-oxide capacitance, which is distributed among the gate, drain, source, and bulk regions.

- 8. Charge storage is modeled by fixed and nonlinear gate and junction capacitances. MOS gate capacitances, as a nonlinear function of terminal voltages, are modeled by Meyer's piece-wise linear model for levels 1, 2, and 3. The Ward charge conservation model is also available for levels 2 and 3, by specifying the XQC parameter to a value smaller than or equal to 0.5. For Level 1, the model parameter TOX must be specified to invoke the Meyer model when Capmod is equal to 1 (default value). If Capmod = 0, no gate capacitances will be calculated. If Capmod = 2, a smooth version of the Meyer model is used. If Capmod =3, the charge conserving first-order MOS charge model [2] that was used in Libra is used.
- 9. To include the thin-oxide charge storage effect, model parameter Tox must be > 0.0.
- 10. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

11. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

#### **Temperature Scaling**

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The depletion capacitances Cbd, Cbs, Cj, and Cjsw vary as:

$$Cbd^{NEW} = Cbd \left[ \frac{1 + Mj[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mj[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

$$Cbs^{NEW} = Cbs \left[ \frac{1 + Mj[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mj[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

$$Cj^{NEW} = Cj \left[ \frac{1 + Mj[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mj[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

$$Cjsw^{NEW} = Cjsw \left[ \frac{1 + Mjsw[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mjsw[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]} \right]$$

where  $\boldsymbol{\gamma}$  is a function of the junction potential and the energy gap variation with temperature.

The surface potential Phi and the bulk junction potential Pb vary as:

$$Phi^{NEW} = \frac{Temp}{Tnom} \times Phi + \frac{2k \times Temp}{q} \ln \left( \frac{n_i^{Tnom}}{n_i^{Temp}} \right)$$
$$Pb^{NEW} = \frac{Temp}{Tnom} \times Pb + \frac{2k \times Temp}{q} \ln \left( \frac{n_i^{Tnom}}{n_i^{Temp}} \right)$$

The transconductance Kp and mobility Uo vary as:

$$Kp^{NEW} = Kp \left(\frac{Temp}{Tnom}\right)^{3/2}$$
$$Uo^{NEW} = Uo \left(\frac{Temp}{Tnom}\right)^{3/2}$$

The source and drain to substrate leakage currents Is and Js vary as:

$$Is^{NEW} = Is \times exp\left(\frac{q \times E_G^{Tnom}}{k \times Tnom} - \frac{q \times E_G^{Temp}}{k \times Temp}\right)$$
$$Js^{NEW} = Js \times exp\left(\frac{q \times E_G^{Tnom}}{k \times Tnom} - \frac{q \times E_G^{Temp}}{k \times Temp}\right)$$

where  $\mathsf{E}_\mathsf{G}$  is the silicon bandgap energy as a function of temperature.

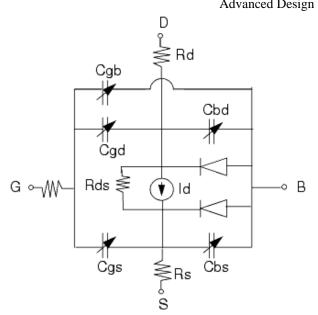
$$Vto^{NEW} = Vto + \gamma \left(\sqrt{Phi^{NEW}} - \sqrt{Phi}\right) + \frac{Phi^{NEW} - Phi}{2} - \frac{E_G^{Temp} - E_G^{Tnom}}{2}$$

#### Noise Model

Thermal noise generated by resistor Rg, Rs, Rd, and Rds is characterized by the following spectral density:

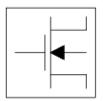
$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

Channel and flicker noise (Kf, Af, Ffe) generated by DC transconductance  $g_m$  and current flow from drain to source is characterized by spectral density:


$$\frac{\langle i_{ds}^2 \rangle}{\Delta f} = \frac{8kTg_m}{3} + k_f \frac{I_{DS}^{a_f}}{f_{fe}}$$

In the preceding expressions, k is Boltzmann's constant,  $\top$  is operating temperature in Kelvin, q is electron charge, kf, a f, and f fe are model parameters, f is simulation frequency, and  $\Delta f$  is noise bandwidth.

#### References


- 1. H. Shichman and D. A. Hodges. "Modeling and simulation of insulated-gate fieldeffect transistor switching circuits," *IEEE Journal of Solid-State Circuits,* SC-3, 285, Sept. 1968.
- Karen A. Sakallah, Yao-tsung Yen, and Steve S. Greenberg. "The Meyer Model Revisited: Explaining and Correcting the Charge Non-Conservation Problem," *ICCAD*, 1987.
- 3. P. Antognetti and G. Massobrio. *Semiconductor device modeling with SPICE*, New York: McGraw-Hill, Second Edition 1993.

#### **Equivalent Circuit**



## LEVEL2\_Model (MOSFET Level-2 Model)

#### Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name              | Description                                                                   | Units              | Default      |
|-------------------|-------------------------------------------------------------------------------|--------------------|--------------|
| NMOS              | Model type: yes or no                                                         | None               | yes          |
| PMOS              | Model type: yes or no                                                         | None               | no           |
| Idsmod            | IDS model: 1=LEVEL1 2=LEVEL2 3=LEVEL3 4=BSIM1 5=BSIM2<br>6=NMOD 8=BSIM3       | None               | 2            |
| Capmod            | capacitance model selector: 0=NO CAP 1=CMEYER/WARD<br>2=SMOOTH 3=QMEYER       | None               | 1            |
| Vto <sup>†</sup>  | zero-bias threshold voltage                                                   | V                  | 0.0          |
| Kp <sup>†</sup>   | Transconductance                                                              | A/V <sup>2</sup>   | 2.0e-5       |
| Gamma             | bulk threshold                                                                | V <sup>(1/2)</sup> | 0.0          |
| Phi <sup>†</sup>  | surface potential                                                             | V                  | 0.6          |
| Lambda            | channel-length modulation                                                     | 1/V                | 0.0          |
| Rd                | drain resistance                                                              | Ohm                | fixed at 0.0 |
| Rs                | source resistance                                                             | Ohm                | fixed at 0.0 |
| Cbd <sup>+</sup>  | bulk-drain zero-bias junction capacitance                                     | F                  | 0.0          |
| Cbs <sup>†</sup>  | bulk-source zero-bias junction capacitance                                    | F                  | 0.0          |
| Is                | Gate Saturation Current                                                       | А                  | 1.0e-14      |
| Pb <sup>†</sup>   | bulk junction potential                                                       | V                  | 0.8          |
| Cgso              | gate-source overlap capacitance per meter of channel width                    | F/m                | 0.0          |
| Cgdo              | gate-drain overlap capacitance per meter of channel width                     | F/m                | 0.0          |
| Cgbo              | gate-bulk overlap capacitance per meter of channel length                     | F/m                | 0.0          |
| Rsh               | drain and source diffusion sheet resistance                                   | Ohm/sq             | 0.0          |
| Cj <sup>†</sup>   | zero-bias bulk junction bottom capacitance per square meter of junction area  | F/m <sup>2</sup>   | 0.0 ++       |
| Mj                | bulk junction bottom grading coefficient                                      | None               | 0.5          |
| Cjsw <sup>†</sup> | zero-bias bulk junction periphery capacitance per meter of junction perimeter | F/m                | 0.0          |

|                 | Advanced Design System 2011.01 - Nonlinear Dev                           | ices                      |                     |
|-----------------|--------------------------------------------------------------------------|---------------------------|---------------------|
| Mjsw            | bulk junction periphery grading coefficient                              | None                      | 1/3                 |
| Js <sup>†</sup> | Gate Saturation Current per square meter of junction area                | A/m <sup>2</sup>          | 0.0                 |
| Тох             | oxide thickness                                                          | m                         | 1.0e-7              |
| Nsub            | substrate (bulk) doping density                                          | cm <sup>-3</sup>          | 0.0                 |
| Nss             | surface state density                                                    | cm <sup>-2</sup>          | 0.0                 |
| Nfs             | fast surface state density                                               | cm <sup>-2</sup>          | 0.0                 |
| Трд             | Type of Gate Material: 1=opposite to bulk, 1=same as bulk, 0=aluminum    | None                      | 1                   |
| Xj              | metallurgical junction depth                                             | m                         | 0.0                 |
| Ld              | lateral diffusion length                                                 | m                         | 0.0                 |
| Uo <sup>†</sup> | surface mobility                                                         | cm <sup>2</sup><br>/(V×s) | 600.0               |
| Ucrit           | critical field for mobility degradation                                  | V/cm                      | 1.0e4               |
| Uexp            | critical field exponent in mobility degradation                          | None                      | 0.0                 |
| Vmax            | Maximum Drift Velocity of Carriers                                       | m/s                       | 0.0                 |
| Neff            | total channel charge coefficient                                         | None                      | 1.0                 |
| Xqc (Xpart)     | fraction of channel charge attributed to drain                           | None                      | 1.0                 |
| Nlev            | noise model level                                                        | None                      | -1                  |
| Gdsnoi          | drain noise parameters for Nlev=3                                        | None                      | 1                   |
| Kf              | flicker noise coefficient                                                | None                      | 0.0                 |
| Af              | flicker noise exponent                                                   | None                      | 1.0                 |
| Fc              | bulk junction forward-bias depletion capacitance coefficient             | None                      | 0.5                 |
| Delta           | width effect on threshold voltage                                        | None                      | 0.0                 |
| Rg              | gate ohmic resistance                                                    | Ohm                       | fixed at 0.0        |
| Rds             | drain-source shunt resistance                                            | Ohm                       | fixed at infinity   |
| Tnom            | nominal ambient temperature at which these model parameters were derived | °C                        | 25                  |
| Trise           | temperature rise above ambient                                           | °C                        | 0                   |
| N               | bulk P-N emission coefficient                                            | None                      | 1.0                 |
| Tt              | bulk P-N transit time                                                    |                           | 0.0                 |
| Ffe (Ef)        | flicker noise frequency exponent                                         | None                      | 1.0                 |
| Imax            | explosion current                                                        | A                         | 10.0                |
| Imelt           | explosion current similar to Imax; defaults to Imax (refer to Note 10)   | A                         | defaults to<br>Imax |
| wVsubfwd        | substrate junction forward bias (warning)                                | V                         | None                |
| wBvsub          | substrate junction reverse breakdown voltage (warning)                   | V                         | None                |
| wBvg            | gate oxide breakdown voltage (warning)                                   | V                         | None                |
| wBvds           | drain-source breakdown voltage (warning)                                 | V                         | None                |
| wIdsmax         | maximum drain-source current (warning)                                   | A                         | None                |
| wPmax           | maximum power dissipation (warning)                                      | W                         | None                |
| Acm             | area calculation method                                                  | None                      | 0                   |
| Hdif            | length of heavily doped diffusion (Acm=2, 3 only)                        | m                         | 0.0                 |
| Ldif            | length of lightly doped diffusion adjacent to gate (Acm=1, 2 only)       | m                         | 0.0                 |

| Wmlt      | width diffusion layer shrink reduction factor                                       | None             | 1.0                          |
|-----------|-------------------------------------------------------------------------------------|------------------|------------------------------|
| Lmlt      | Gate length shrink factor                                                           | None             | 1.0                          |
| Xw        | accounts for masking and etching effects                                            | m                | 0.0                          |
| Rdc       | additional drain resistance due to contact resistance                               | Ohm              | 0.0                          |
| Rsc       | additional source resistance due to contact resistance                              | Ohm              | 0.0                          |
| AllParams | Data Access Component (DAC) Based Parameters                                        | None             | None                         |
|           | r value varies with temperature based on Tnom of the model ar erpreted as infinity. | nd Temp of the d | evice. <sup>++</sup> A value |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname MOSFET Idsmod=2 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOSFET*. Idsmod=2 is a required parameter that is used to tell the simulator to use the Spice level 2 equations. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

Example:

```
model Nch2 MOSFET Idsmod=2 \
Kp=4e-5 Vto=0.7 NMOS=yes
```

#### **Notes/Equations**

- The simulator provides three MOSFET device models that differ in formulation of I-V characteristics. LEVEL2\_Model is a geometry-based, analytical model derived from [1].
- LEVEL2\_Model includes second order effects such as threshold voltage shift, mobility reduction, velocity saturation, channel length modulation, and subthreshold conduction.
- Parameters Vto, Kp, Gamma, Phi, and Lambda determine the DC characteristics of a MOSFET device. The program will calculate these parameters (except Lambda) if, instead of specifying them, you specify the process parameters Tox, Uo, Nsub, and Nss.
- 4. Vto is positive (negative) for enhancement mode and negative (positive) for depletion mode N-channel (P-channel) devices.

- 5. The P-N junctions between the bulk and the drain and the bulk and the source are modeled by parasitic diodes. Each bottom junction is modeled by a diode and each periphery junction is modeled by a depletion capacitance.
- The diode parameters for the bottom junctions can be specified as absolute values (Is, Cbd and Cbs) or as per unit junction area values (Js and Cj).
   If Cbd = 0.0 and Cbs = 0.0, then Cbd and Cbs will be calculated:

 $Cbd = Ci \times Ad$ ,  $Cbs = Ci \times As$ 

If Js > 0.0 and Ad > 0.0 and As > 0.0, then Is for drain and source will be calculated:

 $Is(drain) = Js \times Ad, Is(source) = Js \times As$ 

7. Drain and source ohmic resistances can be specified as absolute values (Rd, Rs) or as per unit square value (Rsh).

If Nrd  $\neq$  0.0 or Nrs  $\neq$  0.0, Rd and Rs will be calculated:

 $Rd = Rsh \times Nrd, Rs = Rsh \times Nrs$ 

- 8. Charge storage is modeled by fixed and nonlinear gate and junction capacitances. MOS gate capacitances, as a nonlinear function of terminal voltages, are modeled by Meyer's piece-wise linear model for levels 1, 2, and 3. The Ward charge conservation model is also available for levels 2 and 3, by specifying the XQC parameter to a value smaller than or equal to 0.5. For Level 1, the model parameter TOX must be specified to invoke the Meyer model when Capmod is equal to 1 (default value). If Capmod = 0, no gate capacitances will be calculated. If Capmod = 2, a smooth version of the Meyer model is used. If Capmod =3, the charge conserving first-order MOS charge model [2] that was used in Libra is used.
- 9. The simulator uses Ward and Dutton [2] charge-controlled capacitance model if Xqc  $\leq$  0.5. If Xqc > 0.5, the charge-conserving first-order MOS charge model is used.
- 10. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

11. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

#### **Temperature Scaling**

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The depletion capacitances Cbd, Cbs, Cj, and Cjsw vary as:

$$Cbd^{NEW} = Cbd \left[ \frac{1 + Mj[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mj[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

$$Cbs^{NEW} = Cbs \left[ \frac{1 + Mj[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mj[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

$$Cj^{NEW} = Cj \left[ \frac{1 + Mj[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mj[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

$$Cjsw^{NEW} = Cjsw \left[ \frac{1 + Mjsw[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mjsw[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

where  $\boldsymbol{\gamma}$  is a function of the junction potential and the energy gap variation with temperature.

The surface potential Phi and the bulk junction potential Pb vary as:

$$Phi^{NEW} = \frac{Temp}{Tnom} \times Phi + \frac{2k \times Temp}{q} \ln \left( \frac{n_i^{Tnom}}{n_i^{Temp}} \right)$$

$$Pb^{NEW} = \frac{Temp}{Tnom} \times Pb + \frac{2k \times Temp}{q} \ln \left( \frac{n_i^{Tnom}}{n_i^{Temp}} \right)$$

The transconductance Kp and mobility Uo vary as:

$$Kp^{NEW} = Kp \left(\frac{Temp}{Tnom}\right)^{3/2}$$
$$Uo^{NEW} = Uo \left(\frac{Temp}{Tnom}\right)^{3/2}$$

The source and drain to substrate leakage currents Is and Js vary as:

$$Is^{NEW} = Is \times exp\left(\frac{q \times E_G^{Tnom}}{k \times Tnom} - \frac{q \times E_G^{Temp}}{k \times Temp}\right)$$

$$Js^{NEW} = Js \times exp\left(\frac{q \times E_G^{Tnom}}{k \times Tnom} - \frac{q \times E_G^{Temp}}{k \times Temp}\right)$$

where  $E_{G}$  is the silicon bandgap energy as a function of temperature.

The MOSFET threshold voltage variation with temperature is given by:

$$Vto^{NEW} = Vto + \gamma \left(\sqrt{Phi^{NEW}} - \sqrt{Phi}\right) + \frac{Phi^{NEW} - Phi}{2} - \frac{E_G^{Temp} - E_G^{Tnom}}{2}$$

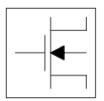
#### Noise Model

Thermal noise generated by resistor Rg, Rs, Rd, and Rds is characterized by the following spectral density:

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

Channel noise and flicker noise (Kf, Af, Ffe) generated by the DC transconductance  $g_m$  and current flow from drain to source is characterized by the following spectral density:

$$\frac{\langle i_{ds}^2 \rangle}{\Delta f} = \frac{8kTg_m}{3} + k_f \frac{I_{DS}^{a_f}}{f_{fe}}$$


In the preceding expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge, kf, af, and ffe are model parameters, f is the simulation frequency, and  $\Delta f$  is the noise bandwidth.

#### References

- 1. 1Vladimirescu and S. Liu. The Simulation of MOS Integrated Circuits Using SPICE2, Memorandum No. M80/7, February 1980.
- 2. D. E. Ward, and R. W. Dutton. "A Charge-Oriented Model for MOS Transistors Capacitances," *IEEE Journal on Solid-State Circuits*, SC-13, 1978.
- 3. P. Antognetti and G. Massobrio . *Semiconductor device modeling with SPICE* , New York: McGraw-Hill, Second Edition 1993.

## LEVEL3\_Model (MOSFET Level-3 Model)

#### Symbol



#### **Parameters**

### Model parameters must be specified in SI units.

| Name              | Description                                                                  | Units            | Default    |
|-------------------|------------------------------------------------------------------------------|------------------|------------|
| NMOS              | Model type: yes or no                                                        | None             | yes        |
| PMOS              | Model type: yes or no                                                        | None             | no         |
| Idsmod            | IDS model: 1=LEVEL1 2=LEVEL2 3=LEVEL3 4=BSIM1 5=BSIM2<br>6=NMOD 8=BSIM3      | None             | 3          |
| Capmod            | capacitance model selector: 0=NO CAP 1=CMEYER/WARD 2=SMOOTH 3=QMEYER         | None             | 1          |
| Vto <sup>†</sup>  | zero-bias threshold voltage                                                  | V                | 0.0        |
| Kp <sup>†</sup>   | transconductance                                                             | A/V <sup>2</sup> | 2.0e-5     |
| Gamma             | bulk threshold                                                               | V (1/2)          | 0.0        |
| Phi <sup>†</sup>  | surface potential                                                            | V                | 0.6        |
| Rd                | drain resistance                                                             | Ohm              | fixed at 0 |
| Rs                | source resistance                                                            | Ohm              | fixed at 0 |
| Cbd <sup>†</sup>  | bulk-drain zero-bias junction capacitance                                    | F                | 0.0        |
| Cbs <sup>+</sup>  | bulk-source zero-bias junction capacitance                                   | F                | 0.0        |
| Is <sup>†</sup>   | Gate Saturation Current                                                      | A                | 1.0e-14    |
| Pb <sup>†</sup>   | bulk junction potential                                                      | V                | 0.8        |
| Cgso              | gate-source overlap capacitance per meter of channel width                   | F/m              | 0.0        |
| Cgdo              | gate-drain overlap capacitance per meter of channel width                    | F/m              | 0.0        |
| Cgbo              | gate-bulk overlap capacitance per meter of channel length                    | F/m              | 0.0        |
| Rsh               | drain and source diffusion sheet resistance                                  | Ohm/sq           | 0.0        |
| Cj <sup>†</sup>   | zero-bias bulk junction bottom capacitance per square meter of junction area | F/m <sup>2</sup> | 0.0        |
| Mj                | bulk junction bottom grading coefficient                                     | None             | 0.5        |
| Cjsw <sup>†</sup> | Zero-bias Bulk Junction Sidewall Capacitance per meter of junction perimeter | F/m              | 0.0        |
| Mjsw              | Junction Sidewall grading coefficient                                        | None             | 1/3        |

|                 | Advanced Design System 2011.01 - Nonlinear Devi                           |                           |                     |
|-----------------|---------------------------------------------------------------------------|---------------------------|---------------------|
| Js <sup>+</sup> | bulk junction saturation current per square meter of junction area        | A/m <sup>2</sup>          | 0.0                 |
| Тох             | oxide thickness                                                           | m                         | 1.0e-7              |
| Nsub            | substrate (bulk) doping density                                           | cm <sup>-3</sup>          | 0.0                 |
| Nss             | surface state density                                                     | cm <sup>-2</sup>          | 0.0                 |
| Nfs             | fast surface state density                                                | cm <sup>-2</sup>          | 0.0                 |
| Трд             | gate material type: 1=opposite substrate, 1=same as substrate, 0=aluminum | None                      | 1                   |
| Xj              | metallurgical junction depth                                              | m                         | 0.0                 |
| Ld              | lateral diffusion length                                                  | m                         | 0.0                 |
| Uo <sup>†</sup> | surface mobility                                                          | cm <sup>2</sup><br>/(V×s) | 600.0               |
| Vmax            | Maximum Drift Velocity of Carriers                                        | m/s                       | 0.0                 |
| Xqc<br>(Xpart)  | coefficient of channel charge share                                       | None                      | 1.0                 |
| Nlev            | noise model level                                                         | None                      | -1                  |
| Gdsnoi          | drain noise parameters for Nlev=3                                         | None                      | 1                   |
| Kf              | flicker noise coefficient                                                 | None                      | 0.0                 |
| Af              | flicker noise exponent                                                    | None                      | 1.0                 |
| Fc              | bulk junction forward-bias depletion capacitance coefficient              | None                      | 0.5                 |
| Delta           | width effect on threshold voltage                                         | None                      | 0.0                 |
| Theta           | mobility modulation                                                       | 1/V                       | 0.0                 |
| Eta             | static feedback                                                           | None                      | 0.0                 |
| Карра           | saturation field factor                                                   | None                      | 0.2                 |
| Rg              | gate resistance                                                           | Ohm                       | fixed at 0          |
| Rds             | drain-source shunt resistance                                             | Ohm                       | fixed at infinity   |
| Tnom            | nominal ambient temperature at which these model parameters were derived  | °C                        | 25                  |
| Trise           | temperature rise above ambient                                            | °C                        | 0                   |
| N               | bulk P-N emission coefficient                                             | None                      | 1.0                 |
| Tt              | bulk P-N transit time                                                     |                           | 0.0                 |
| Ffe (Ef)        | flicker noise frequency exponent                                          | None                      | 1.0                 |
| Imax            | explosion current                                                         | A                         | 10.0                |
| Imelt           | explosion current similar to Imax; defaults to Imax (refer to Note 8)     | A                         | defaults to<br>Imax |
| wVsubfwd        | substrate junction forward bias (warning)                                 | V                         | None                |
| wBvsub          | substrate junction reverse breakdown voltage (warning)                    | V                         | None                |
| wBvg            | gate oxide breakdown voltage (warning)                                    | V                         | None                |
| wBvds           | drain-source breakdown voltage (warning)                                  | V                         | None                |
| wIdsmax         | maximum drain-source current (warning)                                    | A                         | None                |
| wPmax           | maximum power dissipation (warning)                                       | W                         | None                |
| Acm             | area calculation method                                                   | None                      | 0                   |
| Hdif            | length of heavily doped diffusion (Acm=2, 3 only)                         | m                         | 0.0                 |
| Ldif            | length of lightly doped diffusion adjacent to gate (Acm=1, 2 only)        | m                         | 0.0                 |

| Wmlt      | width diffusion layer shrink reduction factor                                  | None                | 1.0                          |
|-----------|--------------------------------------------------------------------------------|---------------------|------------------------------|
| Lmlt      | Gate length shrink factor                                                      | None                | 1.0                          |
| Xw        | accounts for masking and etching effects                                       | m                   | 0.0                          |
| Rdc       | additional drain resistance due to contact resistance                          | Ohm                 | 0.0                          |
| Rsc       | additional source resistance due to contact resistance                         | Ohm                 | 0.0                          |
| AllParams | Data Access Component (DAC) Based Parameters                                   | None                | None                         |
|           | er value varies with temperature based on Tnom of model and To<br>as infinity. | emp of device. $^+$ | <sup>†</sup> Value of 0.0 is |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname MOSFET Idsmod=3 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOSFET*. Idsmod=3 is a required parameter that is used to tell the simulator to use the Spice level 3 equations. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

#### Example:

```
model Nch3 MOSFET Idsmod=3 \
Kp=4e-5 Vto=0.7 NMOS=yes
```

#### **Notes/Equations**

- The simulator provides three MOSFET device models that differ in formulation of I-V characteristics. LEVEL3\_Model is a semi-empirical model derived from [1]. LEVEL3\_Model includes second order effects such as threshold voltage shift, mobility reduction, velocity saturation, channel length modulation, and subthreshold conduction.
- Parameters Vto, Kp, Gamma, Phi, and Lambda determine the DC characteristics of a MOSFET device. ADS will calculate these parameters (except Lambda) if, instead of specifying them, you specify the process parameters Tox, Uo, Nsub, and Nss.
- 3. Vto is positive (negative) for enhancement mode and negative (positive) for depletion mode N-channel (P-channel) devices.
- 4. P-N junctions between the bulk and the drain and the bulk and the source are modeled by parasitic diodes. Each bottom junction is modeled by a diode and each

periphery junction is modeled by a depletion capacitance.

5. Diode parameters for the bottom junctions can be specified as absolute values (Is, Cbd and Cbs) or as per unit junction area values (Js and Cj). If Cbd=0.0 and Cbs=0.0, Cbd and Cbs will be calculated:

 $Cbd = Cj \times Ad Cbs = Cj \times As$ 

If Js>0.0 and Ad>0.0 and As>0.0, Is for drain and source will be calculated:

 $Is(drain) = Js \times Ad Is(source) = Js \times As$ 

Drain and source ohmic resistances can be specified as absolute values (Rd, Rs) or as per unit square value (Rsh).

If Nrd $\neq$ 0.0 or Nrs $\neq$ 0.0, Rd and Rs will be calculated:

 $Rd = Rsh \times Nrd Rs = Rsh \times Nrs$ 

6. Charge storage in the MOSFET consists of capacitances associated with parasitics and intrinsic device.

The parasitic capacitances consist of three constant overlap capacitances (Cgdo, Cgso, Cgbo) and the depletion layer capacitances for both substrate junctions (divided into bottom and periphery) that vary as Mj and Mjsw power of junction voltage, respectively, and are determined by the parameters Cbd, Cbs, Cj, Cjsw, Mj, Mjsw, Pb and Fc.

The intrinsic capacitances consist of the nonlinear thin-oxide capacitance, which is distributed among the gate, drain, source, and bulk regions.

- 7. Charge storage is modeled by fixed and nonlinear gate and junction capacitances. MOS gate capacitances, as a nonlinear function of terminal voltages, are modeled by Meyer's piece-wise linear model for levels 1, 2, and 3. The Ward charge conservation model is also available for levels 2 and 3, by specifying the XQC parameter to a value smaller than or equal to 0.5. For Level 1, the model parameter TOX must be specified to invoke the Meyer model when Capmod is equal to 1 (default value). If Capmod = 0, no gate capacitances will be calculated. If Capmod = 2, a smooth version of the Meyer model is used. If Capmod =3, the charge conserving first-order MOS charge model [2] that was used in Libra is used.
- 8. Imax and Imelt Parameters

Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be specified in the device model or in the Options component; the device model value takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).

9. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

The model specifies Tnom, the nominal temperature at which the model parameters were calculated or extracted. To simulate the device at temperatures other than Tnom, several model parameters must be scaled with temperature. The temperature at which the device is simulated is specified by the device item Temp parameter. (Temperatures in the following equations are in Kelvin.)

The depletion capacitances Cbd, Cbs, Cj, and Cjsw vary as:

$$Cbd^{NEW} = Cbd \left[ \frac{1 + Mj[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mj[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

$$Cbs^{NEW} = Cbs \left[ \frac{1 + Mj[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mj[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

$$Cj^{NEW} = Cj \left[ \frac{1 + Mj[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mj[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

$$Cjsw^{NEW} = Cjsw \left[ \frac{1 + Mjsw[4 \times 10^{-4}(Temp - T_{REF}) - \gamma^{Temp}]}{1 + Mjsw[4 \times 10^{-4}(Tnom - T_{REF}) - \gamma^{Temp}]} \right]$$

where  $\gamma$  is a function of the junction potential and the energy gap variation with temperature.

The surface potential Phi and the bulk junction potential Pb vary as:

$$Phi^{NEW} = \frac{Temp}{Tnom} \times Phi + \frac{2k \times Temp}{q} \ln \left( \frac{n_i^{Tnom}}{n_i^{Temp}} \right)$$

$$Pb^{NEW} = \frac{Temp}{Tnom} \times Pb + \frac{2k \times Temp}{q} \ln \left( \frac{n_i^{Tnom}}{n_i^{Temp}} \right)$$

The transconductance Kp and mobility Uo vary as:

$$Kp^{NEW} = Kp \left(\frac{Temp}{Tnom}\right)^{3/2}$$
$$Uo^{NEW} = Uo \left(\frac{Temp}{Tnom}\right)^{3/2}$$

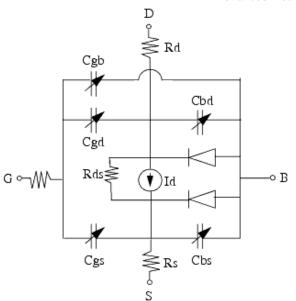
$$Is^{NEW} = Is \times exp\left(\frac{q \times E_G^{Tnom}}{k \times Tnom} - \frac{q \times E_G^{Temp}}{k \times Temp}\right)$$
$$Js^{NEW} = Js \times exp\left(\frac{q \times E_G^{Tnom}}{k \times Tnom} - \frac{q \times E_G^{Temp}}{k \times Temp}\right)$$

where  $E_G$  is the silicon bandgap energy as a function of temperature. The MOSFET threshold voltage variation with temperature is given by:

$$Vto^{NEW} = Vto + \gamma \left(\sqrt{Phi^{NEW}} - \sqrt{Phi}\right) + \frac{Phi^{NEW} - Phi}{2} - \frac{E_G^{Temp} - E_G^{Tnom}}{2}$$

#### **Noise Model**

Thermal noise generated by resistor Rg, Rs, Rd, and Rds is characterized by the following spectral density:

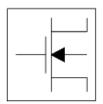

$$\frac{\langle i^2 \rangle}{\Delta f} = \frac{4kT}{R}$$

Channel noise and flicker noise (Kf, Af, Ffe) generated by DC transconductance g  $_{\rm m}$  and current flow from drain to source is characterized by the spectral density:

$$\frac{\langle i_{ds}^2 \rangle}{\Delta f} = \frac{8kTg_m}{3} + k_f \frac{I_{DS}^{a_f}}{f_{fe}}$$

In the preceding expressions, k is Boltzmann's constant, T is the operating temperature in Kelvin, q is the electron charge, kf, af, and ffe are model parameters, f is the simulation frequency, and  $\Delta f$  is the noise bandwidth.

#### **Equivalent Circuit**




#### References

- 1. Vladimirescu, and S. Liu. The Simulation of MOS Integrated Circuits Using SPICE2, Memorandum No. M80/7, February 1980.
- Karen A. Sakallah, Yao-tsung Yen, and Steve S. Greenberg. "The Meyer Model Revisited: Explaining and Correcting the Charge Non-Conservation Problem," *ICCAD*, 1987.
- 3. P. Antognetti and G. Massobrio . *Semiconductor device modeling with SPICE* , New York: McGraw-Hill, Second Edition 1993.

## LEVEL3\_MOD\_Model (Level-3 NMOD MOSFET Model)

Symbol



#### **Parameters**

Model parameters must be specified in SI units.

| Name             | Description                                                                  | Units              | Default      |
|------------------|------------------------------------------------------------------------------|--------------------|--------------|
| NMOS             | Model type: yes or no                                                        | None               | yes          |
| PMOS             | Model type: yes or no                                                        | None               | no           |
| Idsmod           | IDS model type: 1=LEVEL1 2=LEVEL2 3=LEVEL3 4=BSIM1 5=BSIM2 6=NMOD 8=BSIM3    | None               | 6            |
| Capmod           | capacitance model selector: 0=NO CAP 1=CMEYER/WARD<br>2=SMOOTH 3=QMEYER      | None               | 1            |
| Vto <sup>+</sup> | zero-bias threshold voltage                                                  | V                  | 0.0          |
| Kp <sup>†</sup>  | transconductance                                                             | A/V <sup>2</sup>   | 2.0e-5       |
| Gamma            | bulk threshold                                                               | V <sup>(1/2)</sup> | 0.0          |
| Gamma2           | bulk threshold parameter deep in substrate                                   | V <sup>(1/2)</sup> | 0.0          |
| Zeta             | mobility modulation with substrate bias                                      | None               | 0.0          |
| Phi <sup>†</sup> | surface potential                                                            | V                  | 0.6          |
| Rd               | drain resistance                                                             | Ohm                | fixed at 0.0 |
| Rs               | source resistance                                                            | Ohm                | fixed at 0.0 |
| Cbd <sup>+</sup> | zero-bias bulk-drain junction capacitance                                    | F                  | 0.0          |
| Cbs <sup>†</sup> | zero-bias bulk-source junction capacitance                                   | F                  | 0.0          |
| Is <sup>†</sup>  | bulk junction saturation current                                             | A                  | 1.0e-14      |
| Pb <sup>†</sup>  | bulk junction potential                                                      | V                  | 0.8          |
| Cgso             | gate-source overlap cap. per meter of channel width                          | F/m                | 0.0          |
| Cgdo             | gate-drain overlap cap. per meter of channel width                           | F/m                | 0.0          |
| Cgbo             | gate-bulk overlap cap. per meter of channel length                           | F/m                | 0.0          |
| Rsh              | drain and source diffusion sheet resistance                                  | Ohm/sq.            | 0.0          |
| Cj <sup>†</sup>  | zero-bias bulk junction bottom capacitance per square meter of junction area | F/m <sup>2</sup>   | 0.0          |
| Mj               | bulk junction bottom grading coefficient                                     | None               | 0.5          |

#### . . 2011.01 NI. .1: Б D a

| Cjsw <sup>†</sup> | Advanced Design System 2011.01 - Nonlinear Devic<br>zero-bias bulk junction periphery capacitance perimeter of junction<br>perimeter | F/m                       | 0.0               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|
| Mjsw              | bulk junction periphery grading coefficient                                                                                          | None                      | 1/3               |
| Js <sup>†</sup>   | bulk junction saturation current per square meter of junction area                                                                   | A/m <sup>2</sup>          | 0.0               |
| Тох               | oxide thickness                                                                                                                      | m                         | 1.0e-7            |
| Nsub              | substrate (bulk) doping density                                                                                                      | cm <sup>-3</sup>          | 0.0               |
| Nss               | surface state density                                                                                                                | cm <sup>-2</sup>          | 0.0               |
| Nfs               | fast surface state density                                                                                                           | cm <sup>-2</sup>          | 0.0               |
| Трд               | Type of Gate Material: 1=opposite substrate, 1=same as substrate, 0=aluminum                                                         | None                      | 1                 |
| Xj                | metallurgical junction depth                                                                                                         | m                         | 0.0               |
| Ld                | lateral diffusion length                                                                                                             | m                         | 0.0               |
| Uo <sup>†</sup>   | surface mobility                                                                                                                     | cm <sup>2</sup><br>/(V×S) | 600.0             |
| Ucrit             | critical field for mobility degradation                                                                                              | V/cm                      | 1.0e4             |
| Uexp              | field exponent in mobility degradation                                                                                               | None                      | 0.0               |
| Vmax              | carriers maximum drift velocity                                                                                                      | m/s                       | 0.0               |
| Xqc<br>(Xpart)    | coefficient of channel charge share                                                                                                  | None                      | 1.0               |
| Nlev              | Noise model level                                                                                                                    | None                      | -1                |
| Gdsnoi            | Drain noise parameter for Nlev=3                                                                                                     | None                      | 1                 |
| Kf                | flicker noise coefficient                                                                                                            | None                      | 0.0               |
| Af                | flicker noise exponent                                                                                                               | None                      | 1.0               |
| Fc                | bulk junction forward-bias depletion cap. coefficient                                                                                | None                      | 0.5               |
| Delta             | width effect on threshold voltage                                                                                                    | None                      | 0.0               |
| Theta             | mobility modulation                                                                                                                  | 1/V                       | 0.0               |
| Eta               | static feedback                                                                                                                      | None                      | 0.0               |
| Карра             | saturation field factor                                                                                                              | None                      | 0.2               |
| Каррад            | field correction factor gate drive dependence                                                                                        | None                      | 0.0               |
| Xmu               | subthreshold fitting model parameter for NMOD                                                                                        | None                      | 1.0               |
| Rg                | gate resistance                                                                                                                      | Ohm                       | fixed at 0.0      |
| Rds               | drain-source shunt resistance                                                                                                        | Ohm                       | fixed at infinity |
| Tnom              | nominal ambient temperature at which these model parameters were derived                                                             | °C                        | 25                |
| Trise             | temperature rise above ambient                                                                                                       | °C                        | 0                 |
| N                 | bulk P-N emission coefficient                                                                                                        | None                      | 1.0               |
| Tt                | bulk P-N transit time                                                                                                                |                           | 0.0               |
| Ffe (Ef)          | flicker noise frequency exponent                                                                                                     | None                      | 1.0               |
| Imax              | explosion current                                                                                                                    | A                         | 10.0              |
| Imelt             | explosion current similar to Imax; defaults to Imax (refer to Note 2)                                                                | A                         | 10.0              |
| wVsubfwd          | substrate junction forward bias (warning)                                                                                            | V                         | None              |
| wBvsub            | substrate junction reverse breakdown voltage (warning)                                                                               | V                         | None              |
| wBvg              | gate oxide breakdown voltage (warning)                                                                                               | V                         | None              |

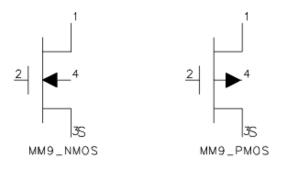
| wBvds     | Advanced Design System 2011.01 - Nonlinear Dev<br>drain-source breakdown voltage (warning) | V    | None |
|-----------|--------------------------------------------------------------------------------------------|------|------|
| wIdsmax   | maximum drain-source current (warning)                                                     | A    | None |
| wPmax     | maximum power dissipation (warning)                                                        | W    | None |
| Acm       | Area Calculation Method                                                                    | None | 0    |
| Hdif      | Length of heavily doped diffusion (ACM=2,3 only)                                           | m    | 0.0  |
| Ldif      | Length of lightly doped diffusion adjacent to gate (ACM=1,2 only)                          | m    | 0.0  |
| Wmlt      | Width diffusion layer shrink reduction factor                                              | None | 1.0  |
| Lmlt      | Gate length shrink factor                                                                  | None | 1.0  |
| Xw        | Accounts for masking and etching effects                                                   | m    | 0.0  |
| Rdc       | Additional drain resistance due to contact resistance                                      | Ohm  | 0.0  |
| Rsc       | Additional source resistance due to contact resistance                                     | Ohm  | 0.0  |
| AllParams | DataAccessComponent-based parameters                                                       | None | None |

#### Notes/Equations

- 1. LEVEL3\_MOD\_Model is an enhanced version of the SPICE level 3 model. It exhibits smooth and continuous transitions in the weak to strong inversion region, and in the region between linear and saturation modes of device operation.
- Imax and Imelt Parameters
   Imax and Imelt specify the P-N junction explosion current. Imax and Imelt can be
   specified in the device model or in the Options component; the device model value
   takes precedence over the Options value.

If the Imelt value is less than the Imax value, the Imelt value is increased to the Imax value.

If Imelt is specified (in the model or in Options) junction explosion current = Imelt; otherwise, if Imax is specified (in the model or in Options) junction explosion current = Imax; otherwise, junction explosion current = model Imelt default value (which is the same as the model Imax default value).


3. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent (Data Access Component)* (ccsim)). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

#### References

1. J. A. Power and W. A. Lane, "An Enhanced Spice MOSFET Model Suitable for Analog Applications," IEEE Transactions on CAD, Vol 11, No. 11, November 1992.

## MM9\_NMOS, MM9\_PMOS (Philips MOS Model 9, NMOS, PMOS)

#### **Symbol**



#### **Parameters**

| Name                | Description                                                 | Units | Default   |
|---------------------|-------------------------------------------------------------|-------|-----------|
| Model               | Model instance name                                         | None  | MOSFETM1  |
| Length <sup>†</sup> | channel length                                              | m     | 1.0e-4    |
| Width <sup>+</sup>  | channel width                                               | m     | 1.0e-4    |
| Ab <sup>†</sup>     | diffusion area                                              | m2    | 1.0e-12   |
| Ls <sup>†</sup>     | length of sidewall not under gate                           | m     | 1.0e-4    |
| Lg <sup>†</sup>     | length of sidewall under gate                               | m     | 1.0e-4    |
| Region              | dc operating region: 0=off, 1=on, 2=rev, 3=sat              | None  | on        |
| Temp (Ta)           | device operating temperature                                | °C    | 25        |
| Trise               | temperature rise above ambient                              | °C    | 0         |
| Mult                | number of devices in parallel                               | None  | 1         |
| Mode                | device simulation mode: nonlinear, linear (refer to note 3) | None  | nonlinear |
| Noise               | Noise generation option; yes=1, no=0                        | None  | yes       |
| _M                  | number of devices in parallel                               | None  | 1         |

<sup>+</sup> Each instance parameter whose dimension contains a power of meter will be multiplied by the Scale to the same power. For example, a parameter with a dimension of *m* will be multiplied by *scale*<sup>1</sup> and a parameter with a dimension of  $m^2$  will be multiplied by *scale*<sup>2</sup>. Note that only parameters whose dimensions contain meter are scaled. For example, a parameter whose dimension contains *cm* instead of meter is not scaled.

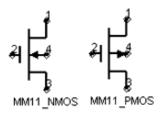
#### **Notes/Equations**

1. MOS Model 9 (version 903) is a compact MOS-transistor model intended for the simulation of circuit behavior with emphasis on analog applications. The model gives a complete description of all transistor action related quantities: nodal currents and

charges, noise-power spectral densities and weak-avalanche currents. The equations describing these quantities are based on the gradual-channel approximation with a number of first-order corrections for small-size effects. The consistency is maintained by using the same carrier-density and electrical-field expressions in the calculation of all model quantities. The Philips JUNCAP model is implemented with the MM9 model to describe junction charges and leakage currents.

2. More information about the model can be obtained from:

#### http://www.nxp.com/models/mos\_models/model9/


- 3. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 4. The following table lists the DC operating point parameters that can be sent to the dataset.

| Name   | Description          | Units   |
|--------|----------------------|---------|
| Id     | Drain current        | amperes |
| Ig     | Gate current         | amperes |
| Is     | Source current       | amperes |
| Ib     | Bulk current         | amperes |
| Power  | DC power dissipated  | watts   |
| Gid_ds | (dId/dVds)           | siemens |
| Gid_gs | (dId/dVgs)           | siemens |
| Gid_sb | (dId/dVsb)           | siemens |
| Gib_ds | (dIb/dVds)           | siemens |
| Gib_gs | (dIb/dVgs)           | siemens |
| Gib_sb | (dIb/dVsb)           | siemens |
| Gis_ds | (dIs/dVds)           | siemens |
| Gis_gs | (dIs/dVgs)           | siemens |
| Gis_sb | (dIs/dVsb)           | siemens |
| Cg_ds  | (dQg/dVds)           | farads  |
| Cg_gs  | (dQg/dVgs)           | farads  |
| Cg_sb  | (dQg/dVsb)           | farads  |
| Cb_ds  | (dQb/dVds)           | farads  |
| Cb_gs  | (dQb/dVgs)           | farads  |
| Cb_sb  | (dQb/dVsb)           | farads  |
| Cs_ds  | (dQs/dVds)           | farads  |
| Cs_gs  | (dQs/dVgs)           | farads  |
| Cs_sb  | (dQs/dVsb)           | farads  |
| Cd_ds  | (dQd/dVds)           | farads  |
| Cd_gs  | (dQd/dVgs)           | farads  |
| Cd_sb  | (dQd/dVsb)           | farads  |
| Vgs    | Gate-source voltage  | volts   |
| Vds    | Drain-source voltage | volts   |
| Vbs    | Bulk-source voltage  | volts   |

#### **DC Operating Point Information**

### MM11\_NMOS, MM11\_PMOS (Philips MOS Model 11 NMOS, PMOS)

#### Symbol



#### **Parameters**

| Name           | Description                                           | Units | Default   |
|----------------|-------------------------------------------------------|-------|-----------|
| Model          | Model instance name                                   | None  | MOSFETM1  |
| L <sup>†</sup> | channel length                                        | m     | 2.0e-6    |
| W <sup>+</sup> | channel width                                         | m     | 1.0e-5    |
| Temp (Ta)      | device operating temperature                          | °C    | 25        |
| Dta (Trise)    | temperature offset of the device with respect to Temp | К     | 0.0       |
| Mult           | number of devices in parallel                         | None  | 1         |
| Mode           | device simulation mode: nonlinear, linear             | None  | nonlinear |
| Noise          | noise generation option: yes=1, no=0                  | None  | yes       |
| _M             | number of devices in parallel                         | None  | 1         |

<sup>+</sup> Each instance parameter whose dimension contains a power of meter will be multiplied by the Scale to the same power. For example, a parameter with a dimension of *m* will be multiplied by *scale*<sup>1</sup> and a parameter with a dimension of  $m^2$  will be multiplied by *scale*<sup>2</sup>. Note that only parameters whose dimensions contain meter are scaled. For example, a parameter whose dimension contains *cm* instead of meter is not scaled.

#### Notes/Equations

- 1. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter, or Circuit Envelope analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point. In standard entry mode, the integer value 1 is used for a nonlinear device and 0 is used for a linear device.
- 2. More information about the model can be obtained from:

http://www.nxp.com/models/mos\_models/model11/

3. The following table lists the DC operating point parameters that can be sent to the

#### adabeti

### **DC Operating Point Information**

| Name  | Description                                                             | Units   |
|-------|-------------------------------------------------------------------------|---------|
| Id    | Drain current                                                           | amperes |
| Ig    | Gate current                                                            | amperes |
| Is    | Source current                                                          | amperes |
| Ib    | Bulk current                                                            | amperes |
| Power | DC power dissipated                                                     | watts   |
| Gds   | Output conductance (dIds/dVds)                                          | siemens |
| Gm    | Forward transconductance (dIds/dVgs)                                    | siemens |
| Gmb   | Backgate transconductance (dIds/dVbs)                                   | siemens |
| Iavl  | Drain-bulk weak avalanche current                                       | amperes |
| Igs   | Gate-source tunneling current                                           | amperes |
| Igd   | Gate-drain tunneling current                                            | amperes |
| Igb   | Gate-bulk tunneling current                                             | amperes |
| Vto   | Zero bias threshold voltage                                             | volts   |
| Vts   | Threshold voltage including back-bias effects                           | volts   |
| Vth   | Threshold voltage including back-bias and drain-bias effects            | volts   |
| Vgt   | Effective gate drive voltage including back-bias and drain-bias effects | volts   |
| Vdss  | Drain saturation voltage                                                | volts   |
| Vsat  | Saturation limit (Vds-Vdsat)                                            | volts   |
| Cdd   | (dQd/dVds)                                                              | farads  |
| Cdg   | (-dQd/dVgs)                                                             | farads  |
| Cds   | (Cdd-Cdg-Cdb)                                                           | farads  |
| Cdb   | (dQd/dVsb)                                                              | farads  |
| Cgd   | (-dQg/dVds)                                                             | farads  |
| Cgg   | (dQg/dVgs)                                                              | farads  |
| Cgs   | (Cgg-Cgd-Cgb)                                                           | farads  |
| Cgb   | (dQg/dVsb)                                                              | farads  |
| Csd   | (-dQs/dVds)                                                             | farads  |
| Csg   | (-dQs/dVgs)                                                             | farads  |
| Css   | (Csg+Csd+Csb)                                                           | farads  |
| Csb   | (dQs/dVsb)                                                              | farads  |
| Cbd   | (-dQb/dVds)                                                             | farads  |
| Cbg   | (-dQb/dVgs)                                                             | farads  |
| Cbs   | (Cbb-Cbd-Cbg)                                                           | farads  |
| Cbb   | (-dQb/dVsb)                                                             | farads  |
| Cgdol | Gate-drain overlap capacitance                                          | farads  |
| Cgsol | Gate-source overlap capacitance                                         | farads  |
| Weff  | Effective gate width                                                    | meters  |
| Leff  | Effective gate length                                                   | meters  |
| Fknee | Flicker noise corner frequency                                          | hertz   |
| Vgs   | Gate-source voltage                                                     | volts   |
| Vds   | Drain-source voltage                                                    | volts   |
| Vbs   | Bulk-source voltage                                                     | volts   |

### MM30\_Model (Philips MOS Model 30)

**Symbol** 



#### Parameters

| Name            | Description                                          | Units            | Default |
|-----------------|------------------------------------------------------|------------------|---------|
| NMOS            | Model type: yes or no                                | None             | yes     |
| PMOS            | Model type: yes or no                                | None             | no      |
| Ron             | ohmic resistance at zero-bias                        | Ohm              | 1.0     |
| Rsat            | space charge resistance at zero-bias                 | Ohm              | 1.0     |
| Vsat            | critical drain-source voltage for hot carrier        | V                | 10.0    |
| Psat            | velocity saturation coefficient                      | None             | 1.0     |
| Vp              | pinchoff voltage at zero gate and substrate voltages | V                | -1.0    |
| Тох             | gate oxide thickness                                 | cm               | -1.0    |
| Dch             | doping level channel                                 | cm <sup>-3</sup> | 1.0e+15 |
| Dsub            | doping level substrate                               | cm <sup>-3</sup> | 1.0e+15 |
| Vsub            | substrate diffusion voltage                          | V                | 0.6     |
| Cgate           | gate capacitance at zero-bias                        | F                | 0.0     |
| Csub            | substrate capacitance at zero-bias                   | F                | 0.0     |
| Tausc           | space charge transit time of the channel             | F                | 0.0     |
| Tref (Tr, Tnom) | reference temperature                                | °C               | 25.0    |
| Trise           | temperature rise above ambient                       | °C               | 0       |
| Vgap            | bandgap voltage channel                              | V                | 1.2     |
| Ach             | temperature coefficient resistivity of the channel   | None             | 0.0     |
| AllParams       | Data Access Component (DAC) Based Parameters         | None             | None    |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

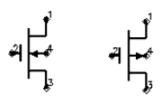
```
model modelname MOS30 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOS30*. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of

model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

#### Example:

model Nch9 MOS30 \
 Ron=5 Dsub=3e NMOS=yes


#### **Notes/Equations**

 The junction-field-effect transistor (JFET) and the depletion mode metal-oxide (MOSFET) are semiconductor devices whose operation is achieved by depleting an already existing channel via a voltage-controlled P-N junction (JFET) or a gatecontrolled surface depletion (MOSFET). These devices are often used as a load in high-voltage MOS devices. This long channel JFET/MOSFET model is specially developed to describe the drift region of LDMOS, EPMOS and VDMOS devices. Please refer to the NXP report *The MOS model, level 3002*. The *pdf* file MOSModel 30.02 is downloadable at the following web site:

http://www.nxp.com/models/hv\_models/model31/

# MM30\_NMOS, MM30\_PMOS (Philips MOS Model 30, NMOS, PMOS)

#### **Symbol**

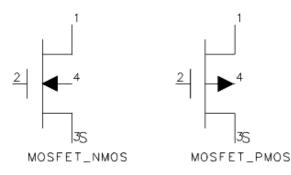


#### **Parameters**

| Name  | Description                    | Units | Default  |
|-------|--------------------------------|-------|----------|
| Model | model instance name            | None  | MOSFETM1 |
| Temp  | temperature                    | °C    | 25       |
| Trise | temperature rise above ambient | °C    | 0        |
| Mult  | multiplication factor          | None  | 1.0      |
| _M    | number of devices in parallel  | None  | 1        |

#### **Notes/Equations**

1. The following table lists the DC operating point parameters that can be sent to the dataset.


**DC Operating Point Information** 

| Name  | Description          | Units    |
|-------|----------------------|----------|
| Id    | Drain current        | amperes  |
| Ig    | Gate current         | amperes  |
| Is    | Source current       | amperes  |
| Ib    | Bulk current         | amperes  |
| Power | DC power dissipated  | watts    |
| gds_s | (dIds/dVs)           | siemens  |
| gds_d | (dIds/dVd)           | siemens  |
| gds_g | (dIds/dVg)           | siemens  |
| gds_b | (dIds/dVb)           | siemens  |
| cgs_s | (dQgs/dVs)           | farads   |
| cgs_d | (dQgs/dVd)           | farads   |
| cgs_g | (dQgs/dVg)           | farads   |
| cgs_b | (dQgs/dVb)           | farads   |
| cgd_s | (dQgd/dVs)           | farads   |
| cgd_d | (dQgd/dVd)           | farads   |
| cgd_g | (dQgd/dVg)           | farads   |
| cgd_b | (dQgd/dVb)           | farads   |
| cbs_s | (dQbs/dVs)           | farads   |
| cbs_d | (dQbs/dVd)           | farads   |
| cbs_g | (dQbs/dVg)           | farads   |
| cbs_b | (dQbs/dVb)           | farads   |
| cbd_s | (dQbd/dVs)           | farads   |
| cbd_d | (dQbd/dVd)           | farads   |
| cbd_g | (dQbd/dVg)           | farads   |
| cbd_b | (dQbd/dVb)           | farads   |
| cds_s | (dQds/dVs)           | farads   |
| cds_d | (dQds/dVd)           | farads   |
| cds_g | (dQds/dVg)           | farads   |
| cds_b | (dQds/dVb)           | farads   |
| Qgs   | Gate-source charge   | coulombs |
| Qgd   | Gate-drain charge    | coulombs |
| Qbs   | Bulk-source charge   | coulombs |
| Qbd   | Bulk-drain charge    | coulombs |
| Qds   | Drain-source charge  | coulombs |
| Vgs   | Gate-source voltage  | volts    |
| Vds   | Drain-source voltage | volts    |
| Vbs   | Bulk-source voltage  | volts    |

2. Parameter Ids is divided by  $scale^2$ .

## MOSFET\_NMOS, MOSFET\_PMOS (Nonlinear MOSFETs, NMOS, PMOS)

#### Symbol



#### **Parameters**

| Name                 | Description                                                                                                                                                                    | Units          | Default                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------|
| Model                | Model instance name                                                                                                                                                            | None           | MOSFETM1                            |
| Length <sup>†</sup>  | channel length                                                                                                                                                                 | m              | 1.0e-4                              |
| Width <sup>†</sup>   | channel width                                                                                                                                                                  | m              | 1.0e-4                              |
| Ad <sup>†</sup>      | drain diffusion area                                                                                                                                                           | m <sup>2</sup> | 0.0                                 |
| As <sup>†</sup>      | source diffusion area                                                                                                                                                          | m <sup>2</sup> | 0.0                                 |
| Pd <sup>†</sup>      | drain junction perimeter                                                                                                                                                       | m              | 0.0                                 |
| Ps <sup>†</sup>      | source junction perimeter                                                                                                                                                      | m              | 0.0                                 |
| Nrd                  | number of equivalent squares in drain diffusion region. Nrd is<br>multiplied by Rsh (sheet resistance factor specified in Model) to<br>get parasitic series drain resistance   | None           | 1.0                                 |
| Nrs                  | number of equivalent squares in source diffusion region. Nrs is<br>multiplied by Rsh (sheet resistance factor specified in Model) to<br>get parasitic series source resistance | None           | 1.0                                 |
| Mult                 | (obsolete: use _M instead)                                                                                                                                                     | None           | None                                |
| Region               | DC operating region, 0=off, 1=on, 2=rev, 3=sat                                                                                                                                 | None           | on                                  |
| Temp                 | device operating temperature (refer to Note 1)                                                                                                                                 | °C             | 25                                  |
| Trise                | temperature rise above ambient                                                                                                                                                 | °C             | 0                                   |
| Mode                 | simulation mode for this device: nonlinear or linear (refer to Note 3)                                                                                                         | None           | nonlinear                           |
| Noise                | noise generation option: yes=1, no=0                                                                                                                                           | None           | yes                                 |
| Nqsmod               | Non-Quasi Static Model Selector (BSIM3v3.2 only): 1=on or $0=off$                                                                                                              | None           | 0                                   |
| Geo                  | source/drain sharing selector                                                                                                                                                  | None           | 0                                   |
| _M                   | number of devices in parallel                                                                                                                                                  | None           | 1                                   |
| Stimod <sup>††</sup> | LOD stress effect model selector                                                                                                                                               | None           | 0                                   |
| Sa1 - Sa10<br>++     | Distance between OD edge to poly of one side (#1 - #10)                                                                                                                        | m              | 0                                   |
| Sb1 - Sb10<br>++     | Distance between OD edge to poly of the other side $(#1 - #10)$                                                                                                                | m              | 0                                   |
| Sw1 - Sw10<br>++     | Width of Sa1/Sb1, Sa2/Sb2, Sa3/Sb3, etc.                                                                                                                                       | m              | Wdrawn for Sw1, 0<br>for Sw2 - Sw10 |
| Sa <sup>††</sup>     | Alias for Sa1                                                                                                                                                                  | m              | Sa1                                 |
| Sb <sup>++</sup>     | Alias for Sb1                                                                                                                                                                  | m              | Sb1                                 |

<sup>†</sup> Each instance parameter whose dimension contains a power of meter will be multiplied by the Scale to the same power. For example, a parameter with a dimension of *m* will be multiplied by *scale*<sup>1</sup> and a parameter with a dimension of  $m^2$  will be multiplied by *scale*<sup>2</sup>. Note that only parameters whose dimensions contain meter are scaled. For example, a parameter whose dimension contains *cm* instead of meter is not scaled.<sup>††</sup> Intended for Foundry use only.

#### Range of Usage

Length, Width, Ad, As, Pd, Ps > 0

#### Notes

- 1. The Temp parameter specifies the physical (operating) temperature of the device. If this is different than the temperature at which the model parameters are valid or extracted (specified by the Tnom parameter of the associated model) certain model parameters are scaled such that the device is simulated at its operating temperature. Refer to the appropriate model to see which parameter values are scaled.
- The \_M parameter affects MOSFET channel width, diode leakage, capacitors, and resistors in the following manner. Width: \_M × Weff

Areas and perimeters:

 $\_M \times Ad$  $\_M \times As$  $\_M \times Pd$  $\_M \times Ps$ 

Diode leakage:

if (Js == 0), then Is =  $_M \times Is$ 

Capacitors:

if (Cj == 0), then Cbd =  $_M \times$  Cbd, Cbs =  $_M \times$  Cbs

Resistors:

if (Nrs  $\times$  Rsh == 0), then Rs = Rs/\_M; else Rs = (Nrs  $\times$  Rsh)/\_M if (Nrd  $\times$  Rsh == 0), then Rd = Rd/\_M; else Rd (Nrd  $\times$  Rsh)/\_M

Due to second-order effects in some models (BSIM3 for example), the use of the \_M parameter is not exactly equivalent to parallel multiple devices.

- 3. The Mode parameter is used only during harmonic balance, oscillator, or large-signal S-parameter analysis. By identifying devices that are operating in their linear region, the simulation time may be decreased. Devices with Mode=linear are linearized about their DC operating point.
- 4. The following table lists the DC operating point parameters that can be sent to the dataset.

#### **DC Operating Point Information**

| Name    | Description                           | Units   |
|---------|---------------------------------------|---------|
| Id      | Drain current                         | amperes |
| Ig      | Gate current                          | amperes |
| Is      | Source current                        | amperes |
| Ib      | Bulk current                          | amperes |
| Power   | DC power dissipated                   | watts   |
| Gm      | Forward transconductance (dIds/dVgs)  | siemens |
| Gmb     | Backgate transconductance (dIds/dVbs) | siemens |
| Gds     | Output conductance (dIds/dVds)        | siemens |
| Vth     | Threshold voltage                     | volts   |
| Vdsat   | Drain-source saturation voltage       | volts   |
| Capbd   | Bulk-drain capacitance                | farads  |
| Capbs   | Bulk-source capacitance               | farads  |
| CgdM    | Gate-drain Meyer capacitance          | farads  |
| CgbM    | Gate-bulk Meyer capacitance           | farads  |
| CgsM    | Gate-source Meyer capacitance         | farads  |
| DqgDvgb | (dQg/dVgb)                            | farads  |
| DqgDvdb | (dQg/dVdb)                            | farads  |
| DqgDvsb | (dQg/dVsb)                            | farads  |
| DqbDvgb | (dQb/dVgb)                            | farads  |
| DqbDvdb | (dQb/dVdb)                            | farads  |
| DqbDvsb | (dQb/dVsb)                            | farads  |
| DqdDvgb | (dQd/dVgb)                            | farads  |
| DqdDvdb | (dQd/dVdb)                            | farads  |
| DqdDvsb | (dQd/dVsb)                            | farads  |
| Vgs     | Gate-source voltage                   | volts   |
| Vds     | Drain-source voltage                  | volts   |
| Vbs     | Bulk-source voltage                   | volts   |

5. This device has no default artwork associated with it.

#### References

- 1. H. Shichman and D. A. Hodges. "Modeling and simulation of insulated-gate fieldeffect transistor switching circuits," *IEEE Journal of Solid-State Circuits,* SC-3, 285, September 1968.
- 2. A. Vladimirescu and S. Liu. *The Simulation of MOS Integrated Circuits Using SPICE2,* Memorandum No. M80/7, February 1980.
- 3. P. Antognetti and G. Massobrio. *Semiconductor Device Modeling with SPICE,* McGraw-Hill, Inc., 1988.
- 4. D. A. Divekar, *FET Modeling for Circuit Simulation*, Kluwer Academic Publishers, 1988.

# MOS\_Model9\_Process (Philips MOS Model 9, Process Based)

#### **Symbol**



#### **Parameters**

| Name               | Description                                                                                      | Units                | Default |
|--------------------|--------------------------------------------------------------------------------------------------|----------------------|---------|
| NMOS               | Model type: yes or no                                                                            | None                 | yes     |
| PMOS               | Model type: yes or no                                                                            | None                 | no      |
| Туре               | Type of model: 1:SINGLE_DEVICE 2:PROCESS_BASED                                                   | None                 | 2       |
| Ler                | effective channel length of reference transistor                                                 | m                    | 1.0e-4  |
| Wer                | effective channel width of reference transistor                                                  | m                    | 1.0e-4  |
| Lvar               | difference between actual and programmed poly-silicon gate length                                | m                    | 0.0     |
| Lap                | effective channel length reduction per side due to lateral diffusion of source/drain dopant ions | m                    | 0.0     |
| Wvar               | difference between actual and programmed field-oxide opening                                     |                      | 0.0     |
| Wot                | effective channel width reduction per side due to lateral diffusion of channel-stop dopant ions  | m                    | 0.0     |
| Tr (Tref,<br>Tnom) | temperature for reference transistor                                                             | °C                   | 25      |
| Trise (Dta)        | temperature rise above ambient                                                                   | °C                   | 0       |
| Vtor               | threshold voltage at zero back-bias                                                              | V                    | 0.87505 |
| Stvto              | coefficient of temperature dependence of Vto                                                     | V/K                  | 0.0     |
| Slvto              | coefficient of length dependence of Vto                                                          | V×m                  | 0.0     |
| Sl2vto             | second coefficient of length dependence of Vto                                                   | V×m <sup>2</sup>     | 0.0     |
| Swvto              | coefficient of width dependence of Vto                                                           | V×m                  | 0.0     |
| Kor                | low back-bias body factor                                                                        | V (1/2)              | 0.74368 |
| Slko               | coefficient of length dependence of Ko                                                           | m×V <sup>(1/2)</sup> | 0.0     |
| Swko               | coefficient of width dependence of Ko                                                            | m×V <sup>(1/2)</sup> | 0.0     |
| Kr                 | high back-bias body factor                                                                       | V (1/2)              | 0.55237 |
| Slk                | coefficient of length dependence of K                                                            | m×V <sup>(1/2)</sup> | 0.0     |
| Swk                | coefficient of width dependence of K                                                             | m×V <sup>(1/2)</sup> | 0.0     |
| Phibr              | surface potential at strong inversion                                                            | V                    | 0.65    |
| Vsbxr              | transition voltage for dual-k factor model                                                       | V                    | 0.63304 |
| Slvsbx             | coefficient of length dependence of Vsbx                                                         | V×m                  | 0.0     |

| Swvsbx<br>Betsg | coefficient of width dependence of Vsbx<br>gain factor             | V×m<br>A/V <sup>2</sup>    | 0.0<br>0.12069e-3 |
|-----------------|--------------------------------------------------------------------|----------------------------|-------------------|
| •               |                                                                    | -                          | 0.120050          |
| Etabet          | exponent of temperature dependence of gain factor                  | None                       |                   |
| The1r           | coefficient of mobility due to gate-induced field                  | 1/V                        | 0.99507e-<br>01   |
| Stthe1r         | coefficient of temperature dependence of The1                      | 1/V/K                      | 0.0               |
| Slthe1r         | coefficient of length dependence of The1                           | m/V                        | 0.0               |
| Stlthe1         | coefficient of temperature dependence of length dependence of The1 | m/V/K                      | 0.0               |
| Swthe1          | coefficient of width dependence of The1                            | m/V                        | 0.0               |
| Wdog            | characteristic drain gate width below which dogboning appears      | m                          | 0.0               |
| Fthe1           | coefficient describing the width dependence of The1 for $W < Wdog$ | None                       | 0.0               |
| The2r           | coefficient of mobility due to back-bias                           | V <sup>(-1/2)</sup>        | 0.43225e-<br>01   |
| Stthe2r         | coefficient of temperature dependence of The2                      | V <sup>(-1/2)</sup> /K     | 0.0               |
| Slthe2r         | coefficient of length dependence of The2                           | m/V <sup>(1/2)</sup>       | 0.0               |
| Stlthe2         | coefficient of temperature dependence of length dependence of The2 | m/V <sup>(1/2)</sup><br>/K | 0.0               |
| Swthe2          | coefficient of width dependence of The2                            | m/V <sup>(1/2)</sup>       | 0.0               |
| The3r           | coefficient of mobility due to lateral field                       | 1/V                        | 0.0               |
| Stthe3r         | coefficient of temperature dependence of The3                      | 1/V/K                      | 0.0               |
| Slthe3r         | coefficient of length dependence of The3                           | m/V                        | 0.0               |
| Stlthe3         | coefficient of temperature dependence of length dependence of The3 | ,<br>m/V/K                 | 0.0               |
| Swthe3          | coefficient of width dependence of The3                            | m/V                        | 0.0               |
| Gam1r           | coefficient for drain-induced threshold shift for large gate drive | V                          | 0.38096e-2        |
| Slgam1          | coefficient of length dependence of Gam1                           | V×m                        | 0.0               |
| Swgam1          | coefficient of width dependence of Gam1                            | V×m                        | 0.0               |
| Etadsr          | exponent of Vds dependence of Gam1                                 | None                       | 0.6               |
| Alpr            | factor of channel-length modulation                                | None                       | 0.1e-1            |
| Etaalp          | exponent of length dependence of Alp                               | None                       | 0.0               |
| Slalp           | coefficient of length dependence of Alp                            | m                          | 0.0               |
| Swalp           | coefficient of width dependence of Alp                             | m                          | 0.0               |
| Vpr             | characteristic voltage of channel length modulation                | V                          | 0.67876e1         |
| Gamoor          | coefficient of drain-induced threshold shift at zero gate drive    | None                       | 0.29702e-         |
| Slgamoo         | coefficient of length dependence of Gamoo                          | m                          | 0.0               |
| Etagamr         | exponent of back-bias dependence of Gamo                           | None                       | 2.0               |
| Mor             | factor of subthreshold slope                                       | None                       | 0.44              |
| Stmo            | coefficient of temperature dependence of Mo                        | 1/K                        | 0.0               |
| Slmo            | coefficient of length dependence of Mo                             | m <sup>(1/2)</sup>         | 0.0               |
| Etamr           | exponent of back-bias dependence of M                              | None                       | 2.0               |
| Zet1r           | weak-inversion correction factor                                   | None                       | 0.20153e1         |
| Etazet          | exponent of length dependence of Zet                               | None                       | 0.0               |
| Slzet1          | coefficient of length dependence of Zet                            |                            | 0.0               |
| Vsbtr           | limiting voltage of VSB dependence of M and Gamo                   | V                          | 0.61268e1         |
| Slvsbt          | coefficient of length dependence of Vsbt                           | m×V                        | 0.0               |
| A1r             | factor of weak-avalanche current                                   | None                       | 0.20348e2         |
| Sta1            | coefficient of temperature dependence of A1                        | 1/K                        | 0.0               |
| Sla1            | coefficient of length dependence of A1                             | m                          | 0.0               |

| Swa1         | Advanced Design System 2011.01 - Nonlinear Devices<br>coefficient of width dependence of A1 | m                     | 0.0       |
|--------------|---------------------------------------------------------------------------------------------|-----------------------|-----------|
| A2r          | exponent of weak-avalanche current                                                          | V                     | 0.33932e2 |
| Sla2         | coefficient of length dependence of A2                                                      | m×V                   | 0.0       |
| Swa2         | coefficient of width dependence of A2                                                       | m×V                   | 0.0       |
| A3r          | factor of drain-source voltage above which weak-avalanche occurs                            | None                  | 0.10078e1 |
| Sla3         | coefficient of length dependence of A3                                                      | m                     | 0.0       |
| Swa3         | coefficient of width dependence of A3                                                       | m                     | 0.0       |
| Тох          | thickness of oxide layer                                                                    | m                     | 1.0e-6    |
| Col          | gate overlap per unit channel width                                                         | F/m                   | 0.0       |
| Ntr          | coefficient of thermal noise                                                                | None                  | 0.0       |
| Nfmod        | noise model selector                                                                        | None                  | 0         |
| Nfr          | Coefficient of the Flicker Noise (Nfmod=0)                                                  | None                  | 0.0       |
| Nfar         | first coefficient of flicker noise (Nfmod=1)                                                | 1/(V×m)               | 7.15e+22  |
| Nfbr         | second coefficient of flicker noise (Nfmod=1)                                               | 1/(V×m <sup>2</sup> ) | 2.16e+7   |
| Nfcr         | third coefficient of flicker noise (Nfmod=1)                                                | 1/V                   | 0.0       |
| Vr           | voltage at which junction parameters have been determined                                   | V                     | 0.0       |
| Jsgbr        | bottom saturation current density due to electron-hole generation at V=Vr                   | A/m <sup>2</sup>      | 1.0e-14   |
| Jsdbr        | bottom saturation current density due to diffusion from back contact                        | A/m <sup>2</sup>      | 1.0e-14   |
| lsgsr        | sidewall saturation current density due to electron-hole generation at V=Vr                 |                       | 1.0e-14   |
| Jsdsr        | sidewall saturation current density due to diffusion from back contact                      | A/m                   | 1.0e-14   |
| lsggr        | gate edge saturation current density due to electron-hole generation at V=Vr                | A/m                   | 1.0e-14   |
| Jsdgr        | gate edge saturation current density due to diffusion from back contact                     | A/m                   | 1.0e-14   |
| Cjbr         | bottom junction capacitance at V=Vr                                                         | F/m <sup>2</sup>      | 0.0       |
| Cjsr         | sidewall junction capacitance at V=Vr                                                       | F/m                   | 0.0       |
| cjgr         | gate edge junction capacitance at V=Vr                                                      | F/m                   | 0.0       |
| Vdbr         | diffusion voltage of bottom junction at V=Vr                                                | V                     | 0.8       |
| Vdsr         | diffusion voltage of sidewall junction at V=Vr                                              | V                     | 0.8       |
| Vdgr         | diffusion voltage of gate edge junction at V=Vr                                             | V                     | 0.8       |
| Pb           | bottom-junction grading coefficient                                                         | None                  | 0.5       |
| Ps           | sidewall-junction grading coefficient                                                       | None                  | 0.5       |
| Pg           | gate-edge-junction grading coefficient                                                      | None                  | 0.5       |
| Nb           | emission coefficient of bottom forward current                                              | None                  | 1.0       |
| Ns           | emission coefficient of sidewall forward current                                            | None                  | 1.0       |
| Ng           | emission coefficient of gate-edge forward current                                           | None                  | 1.0       |
| vVsubfwd     | substrate junction forward bias warning                                                     | V                     | None      |
| wBvsub       | substrate junction reverse breakdown voltage warning                                        | V                     | None      |
| wBvg         | gate oxide breakdown voltage warning                                                        | V                     | None      |
| wBvds        | drain-source breakdown voltage warning                                                      | V                     | None      |
| wldsmax      | maximum drain-source current warning                                                        | A                     | None      |
| wPmax        | maximum power dissipation warning                                                           | W                     | None      |
| The3Clipping | flag for The3 clipping: no, yes                                                             | None                  | no        |
| AllParams    | Data Access Component (DAC) Based Parameters                                                | None                  | None      |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

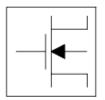
```
model modelname MOS9 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOS9*. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

Example:

```
model Nch10 MOS9 \
Vtor=0.7 Etabetr=0.4 NMOS=yes
```

#### **Notes/Equations/References**


- 1. This model supplies values for an MM9 device.
- 2. Information about this model is available at

#### http://www.nxp.com/models/mos\_models/model9/

3. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to DataAccessComponent (ccsim) in Introduction to Circuit Components). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

# MOS\_Model9\_Single (Philips MOS Model 9, Single Device)

#### Symbol



#### **Parameters**

| Name   | Description                                                        | Units            | Default         |
|--------|--------------------------------------------------------------------|------------------|-----------------|
| NMOS   | Model type: yes or no                                              | None             | yes             |
| PMOS   | Model type: yes or no                                              | None             | no              |
| Туре   | Model type: 1:SINGLE_DEVICE 2:PROCESS_BASED                        | None             | 1               |
| Vto    | threshold voltage at zero back-bias                                | V                | 0.87505         |
| Ко     | low-back-bias body factor                                          | V (1/2)          | 0.74368         |
| К      | high-back-bias body factor                                         | V (1/2)          | 0.55237         |
| Phib   | surface potential at strong inversion                              | V                | 0.65            |
| Vsbx   | transition voltage for dual-k factor model                         | V                | 0.63304         |
| Bet    | gain factor                                                        | A/V <sup>2</sup> | 0.12069e-3      |
| The1   | coefficient of mobility reduction due to gate-induced field        | 1/V              | 0.99507e-<br>01 |
| The2   | coefficient of mobility reduction due to back-bias                 | V (-1/2)         | 0.43225e-<br>01 |
| The3   | coefficient of mobility reduction due to lateral field             | 1/V              | 0.0             |
| Gam1   | coefficient for drain-induced threshold shift for large gate drive | V                | 0.38096e-2      |
| Etads  | exponent of VDS dependence of Gam1                                 | None             | 0.6             |
| Alp    | factor of channel-length modulation                                | None             | 0.1e-1          |
| Vp     | characteristic voltage of channel length modulation                | V                | 0.67876e1       |
| Gamoo  | coefficient of drain-induced threshold shift at zero gate drive    | None             | 0.29702e-4      |
| Etagam | exponent of back-bias dependence of Gamo                           | None             | 2.0             |
| Мо     | factor of subthreshold slope                                       | None             | 0.44            |
| Etam   | exponent of back-bias dependence of M                              | None             | 2.0             |
| Zet1   | weak-inversion correction factor                                   | None             | 0.20153e1       |
| Vsbt   | limiting voltage of vsb dependence of M and Gamo                   | V                | 0.61268e1       |
| A1     | factor of weak-avalanche current                                   | None             | 0.20348e2       |
| A2     | exponent of weak-avalanche current                                 | V                | 0.33932e2       |
| A3     | factor of drain-source voltage above which weak-avalanche occurs   | None             | 0.10078e1       |
| Cox    | gate-to-channel capacitance                                        | F                | 1e-12           |

| Cgdo         | Advanced Design System 2011.01 - Nonlinear Devices<br>gate-drain overlap capacitance | F                        | 1e-12    |
|--------------|--------------------------------------------------------------------------------------|--------------------------|----------|
| Cgso         | gate-source overlap capacitance                                                      | F                        | 1e-12    |
| Nt           | coefficient of thermal noise                                                         | None                     | 0.0      |
| Nfmod        | noise model selector                                                                 | None                     | 0        |
| Nf           | coefficient of flicker noise (Nfmod=0)                                               | None                     | 0.0      |
| Nfa          | first coefficient of flicker noise (Nfmod=1)                                         | 1/(V×m)                  | 7.15e+22 |
| Nfb          | second coefficient of flicker noise (Nfmod=1)                                        | 1/(V×m <sup>2</sup><br>) | 2.16e+7  |
| Nfc          | third coefficient of flicker noise (Nfmod=1)                                         | 1/V                      | 0.0      |
| Тох          | Thickness of the gate oxide layer (for Nfmod=1)                                      | m                        | 1.0e-6   |
| Isgb         | Bottom Saturation Current Density due to Electron-Hole generation                    | A                        | 1.0e-14  |
| Isdb         | Bottom Saturation Current Density due to Diffusion from Back Contact                 | A                        | 1.0e-14  |
| Isgs         | Sidewall Saturation Current Density due to Electron-Hole generation                  | A                        | 1.0e-14  |
| Isds         | Sidewall Saturation Current Density due to Diffusion from Back<br>Contact            | A                        | 1.0e-14  |
| Isgg         | Gate-Edge Saturation Current Density due to Electron-Hole Generation                 | A                        | 1.0e-14  |
| Isdg         | Gate-Edge Saturation Current Density due to Diffusion from Back<br>Contact           | A                        | 1.0e-14  |
| Cjb          | bottom junction capacitance                                                          | F                        | 0.0      |
| Cjs          | sidewall junction capacitance                                                        | F                        | 0.0      |
| Cjg          | gate edge junction capacitance                                                       | F                        | 0.0      |
| Vdb          | diffusion voltage of bottom area Ab                                                  | V                        | 0.8      |
| Vds          | diffusion voltage of Locos-edge Ls                                                   | V                        | 0.8      |
| Vdg          | diffusion voltage of gate edge Lg                                                    | V                        | 0.8      |
| Pb           | bottom-junction grading coefficient                                                  | None                     | 0.5      |
| Ps           | sidewall-junction grading coefficient                                                | None                     | 0.5      |
| Pg           | gate-edge-junction grading coefficient                                               | None                     | 0.5      |
| Nb           | emission coefficient of bottom forward current                                       | None                     | 1.0      |
| Ns           | emission coefficient of sidewall forward current                                     | None                     | 1.0      |
| Ng           | emission coefficient of gate-edge forward current                                    | None                     | 1.0      |
| wVsubfwd     | substrate junction forward bias (warning)                                            | V                        | None     |
| wBvsub       | substrate junction reverse breakdown voltage (warning)                               | V                        | None     |
| wBvg         | gate oxide breakdown voltage (warning)                                               | V                        | None     |
| wBvds        | drain-source breakdown voltage (warning)                                             | V                        | None     |
| wldsmax      | maximum drain-source current (warning)                                               | A                        | None     |
| wPmax        | maximum power dissipation (warning)                                                  | W                        | None     |
| The3Clipping | flag for The3 clipping                                                               | None                     | no       |
| AllParams    | Data Access Component (DAC) Based Parameters                                         | None                     | None     |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to the *Design Kit Development* (dkarch).

model modelname MOS9 [parm=value]\*

The model statement starts with the required keyword *model*. It is followed by the

*modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOS9*. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

#### Example:

```
model Nch11 MOS9 \
Vtor=0.7 Etabet=0.4 NMOS=yes
```

#### **Notes/Equations/References**

- 1. This model supplies values for an MM9 device.
- 2. Information about this model is available at

#### http://www.nxp.com/models/mos\_models/model9/

3. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

### MOS\_Model11\_Binned (Philips MOS Model 11, Binned)

#### Symbol



#### **Parameters**

#### Model parameters must be specified in SI units.

| Parameter          | Description                                                                                                    | Units              | Default            |
|--------------------|----------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| NMOS               | Model type: yes or no                                                                                          | None               | yes                |
| PMOS               | Model type: yes or no                                                                                          | None               | no                 |
| Level              | Philips Level Name (1101=Electrical 11010=Physical 11011=Binned)                                               | None               | 11011              |
| Lvar               | Difference between the actual and the programmed poly-silicon gate length                                      | m                  | 0.0                |
| Lap                | Effective channel length reduction per side due to the lateral diffusion of the source/drain dopant ions       | m                  | 4.0e-8             |
| Wvar               | Difference between the actual and the programmed field-oxide opening                                           | m                  | 0.0                |
| Wot                | Effective reduction of the channel width per side due to the lateral diffusion of the channel-stop dopant ions | m                  | 0.0                |
| Tr (Tref,<br>Tnom) | Temperature at which the parameters for the reference transistor have been determined                          | °C                 | 25                 |
| Vfb                | Flat-band voltage for the reference transistor at the reference temperature                                    | V                  | -1.05              |
| Poko               | Coefficient for the geometry independent part of KO                                                            | V <sup>(1/2)</sup> | 0.5                |
| Plko               | Coefficient for the length dependence of KO                                                                    | V <sup>(1/2)</sup> | 0.0                |
| Pwko               | Coefficient for the width dependence of KO                                                                     | V(1/2)             | 0.0                |
| Plwko              | Coefficient for the length times width dependence of KO                                                        | V <sup>(1/2)</sup> | 0.0                |
| Kpinv              | Inverse of body-effect factor of the poly-silicon gate                                                         | V(-1/2)            | 0.0                |
| Pophib             | Coefficient for the geometry independent part of PHIB                                                          | V                  | 0.95               |
| Plphib             | Coefficient for the length dependence of PHIB                                                                  | V                  | 0.0                |
| Pwphib             | Coefficient for the width dependence of PHIB                                                                   | V                  | 0.0                |
| Plwphib            | Coefficient for the length times width dependence of PHIB                                                      | V                  | 0.0                |
| Pobet              | Coefficient for the geometry independent part of BET                                                           | A/V <sup>2</sup>   | 1.922e-3<br>(NMOS) |
| Plbet              | Coefficient for the length dependence of BET                                                                   | A/V <sup>2</sup>   | 0.0                |

| Pwbet     | Advanced Design System 2011.01 - Nonlinear Devices                                               | A/V <sup>2</sup>    | 0.0               |
|-----------|--------------------------------------------------------------------------------------------------|---------------------|-------------------|
| Plwbet    | Coefficient for the width over length dependence of BET                                          | A/V <sup>2</sup>    | 0.0               |
| Pothesr   | Coefficient for the geometry independent part of THES                                            | V <sup>-1</sup>     | 0.3562 (NMOS      |
| Plthesr   | Coefficient for the length dependence of THES                                                    | V <sup>-1</sup>     | 0.0               |
| Pwthesr   | Coefficient for the width dependence of THES                                                     | V <sup>-1</sup>     | 0.0               |
| Plwthesr  | Coefficient for the length times width dependence of THES                                        | V <sup>-1</sup>     | 0.0               |
| Potheph   | Coefficient for the geometry independent part of THEPH                                           | V <sup>-1</sup>     | 1.0e-3 (NMOS)     |
| Pltheph   | Coefficient for the length dependence of THEPH                                                   | V <sup>-1</sup>     | 0.0               |
| Pwtheph   | Coefficient for the width dependence of THEPH                                                    | V <sup>-1</sup>     | 0.0               |
| Plwtheph  | Coefficient for the length times width dependence of THEPH                                       | V <sup>-1</sup>     | 0.0               |
| •         |                                                                                                  | -                   |                   |
| Poetamob  | Coefficient for the geometry independent part of ETAMOB                                          | None                | 1.4 (NMOS)        |
| Pletamob  | Coefficient for the length dependence of ETAMOB                                                  | None                | 0.0               |
| Pwetamob  | Coefficient for the width dependence of ETAMOB                                                   | None                | 0.0               |
| Plwetamob | Coefficient for the length times width dependence of ETAMOB                                      | None                | 0.0               |
| Pother    | Coefficient for the geometry independent part of THER                                            | V <sup>-1</sup>     | 8.12e-2<br>(NMOS) |
| Plther    | Coefficient for the length dependence of THER                                                    | V <sup>-1</sup>     | 0.0               |
| Pwther    | Coefficient for the width dependence of THER                                                     | V <sup>-1</sup>     | 0.0               |
| Plwther   | Coefficient for the length times width dependence of THER                                        | V <sup>-1</sup>     | 0.0               |
| Ther1     | Numerator of the gate voltage dependent part of series resistance for the reference transistor   | V                   | 0.0               |
| Ther2     | Denominator of the gate voltage dependent part of series resistance for the reference transistor | V                   | 1.0               |
| Pothesat  | Coefficient for the geometry independent part of THESAT                                          | V <sup>-1</sup>     | 0.2513 (NMOS      |
| Plthesat  | Coefficient for the length dependence of THESAT                                                  | V <sup>-1</sup>     | 0.0               |
| Pwthesat  | Coefficient for the width dependence of THESAT                                                   | V <sup>-1</sup>     | 0.0               |
| Plwthesat | Coefficient for the length times width dependence of THESAT                                      | V <sup>-1</sup>     | 0.0               |
| Potheth   | Coefficient for the geometry independent part of THETH                                           | V <sup>-3</sup>     | 1.0e-5 (NMOS)     |
| Pltheth   | Coefficient for the length dependence of THETH                                                   | V-3                 | 0.0               |
| Pwtheth   | Coefficient for the width dependence of THETH                                                    | V-3                 | 0.0               |
| Plwtheth  | Coefficient for the length times width dependence of THETH                                       | V-3                 | 0.0               |
| Posdibl   | Coefficient for the geometry independent part of SDIBL                                           | V <sup>(-1/2)</sup> | 8.53e-4<br>(NMOS) |
| Plsdibl   | Coefficient for the length dependence of SDIBL                                                   | V <sup>(-1/2)</sup> | 0.0               |
| Pwsdibl   | Coefficient for the width dependence of SDIBL                                                    | V <sup>(-1/2)</sup> | 0.0               |
| Plwsdibl  | Coefficient for the length times width dependence of SDIBL                                       | V <sup>-1/2</sup>   | 0.0               |
| Pomo      | Coefficient for the geometry independent part of MO                                              | None                | 0.0               |
| Plmo      | Coefficient for the length dependence of MO                                                      | None                | 0.0               |
| Pwmo      | Coefficient for the width dependence of MO                                                       | None                | 0.0               |
| Plwmo     | Coefficient for the length times width dependence of MO                                          | None                | 0.0               |
| Possf     | Coefficient for the geometry independent part of SSF                                             | V(-1/2)             | 0.012 (NMOS)      |
| Plssf     | Coefficient for the length dependence of SSF                                                     | V(-1/2)             | 0.0               |
|           | Coefficient for the width dependence of SSF                                                      | V(-1/2)             | 0.0               |
| Pwssf     |                                                                                                  |                     |                   |

Advanced Design System 2011.01 - Nonlinear Devices

| Poalp        | Coefficient for the geometry independent part of ALP                                  | None               | 0.025                         |
|--------------|---------------------------------------------------------------------------------------|--------------------|-------------------------------|
| Plalp        | Coefficient for the length dependence of ALP                                          | None               | 0.0                           |
| Pwalp        | Coefficient for the width dependence of ALP                                           | None               | 0.0                           |
| Plwalp       | Coefficient for the length times width dependence of ALP                              | None               | 0.0                           |
| VP           | Characteristic voltage of channel length modulation                                   | V                  | 0.05                          |
| Pomexp       | Coefficient for the geometry independent part of 1/m                                  | 1/m                | 0.2                           |
| Plmexp       | Coefficient for the length dependence of 1/m                                          | 1/m                | 0.0                           |
| Pwmexp       | Coefficient for the width dependence of 1/m                                           | 1/m                | 0.0                           |
| Plwmexp      | Coefficient for the length times width dependence of 1/m                              | 1/m                | 0.0                           |
| Poa1         | Coefficient for the geometry independent part of A1                                   | None               | 6.022 (NMOS)                  |
| Pla1         | Coefficient for the length dependence of A1                                           | None               | 0.0                           |
| Pwa1         | Coefficient for the width dependence of A1                                            | None               | 0.0                           |
| Plwa1        | Coefficient for the length times width dependence of A1                               | None               | 0.0                           |
| Poa2         | Coefficient for the geometry independent part of A2                                   | V                  | 38.02 (NMOS)                  |
| Pla2         | Coefficient for the length dependence of A2                                           |                    | 0.0                           |
| Pwa2         | Coefficient for the width dependence of A2                                            | V                  | 0.0                           |
| Plwa2        | Coefficient for the length times width dependence of A2                               |                    | 0.0                           |
| Poa3         | Coefficient for the geometry independent part of A3                                   | None               | 0.6407 (NMOS                  |
| Pla3         | Coefficient for the length dependence of A3                                           | None               | 0.0                           |
| Pwa3         | Coefficient for the width dependence of A3                                            | None               | 0.0                           |
| Plwa3        | Coefficient for the length times width dependence of A3                               | None               | 0.0                           |
| Poiginv      | Coefficient for the geometry independent part of IGINV                                | A/V                | 0.0                           |
| Pliginv      | Coefficient for the length dependence of IGINV                                        | None               | 0.0                           |
| Pwiginv      | Coefficient for the width dependence of IGINV                                         | None               | 0.0                           |
| Plwiginv     | Coefficient for the length times width dependence of IGINV                            | None               | 0.0                           |
| Pobinv       | Coefficient for the geometry independent part of BINV                                 | V                  | 48.0                          |
| Plbinv       | Coefficient for the length dependence of BINV                                         | V                  | 0.0                           |
| Pwbinv       | Coefficient for the width dependence of BINV                                          | V                  | 0.0                           |
| Plwbinv      | Coefficient for the length times width dependence of BINV                             | V                  | 0.0                           |
| Poigacc      | Coefficient for the geometry independent part of IGACC                                | A/V <sup>2</sup>   | 0.0                           |
| Pligacc      | Coefficient for the length dependence of IGACC                                        | A/V <sup>2</sup>   | 0.0                           |
| Pwigacc      | Coefficient for the width dependence of IGACC                                         | A/V <sup>2</sup>   | 0.0                           |
| Plwigacc     | Coefficient for the length times width dependence of IGACC                            | A/V <sup>2</sup>   | 0.0                           |
| Pobacc       | Coefficient for the geometry independent part of BACC                                 | V                  | 48.0 (NMOS)                   |
| Plbacc       | Coefficient for the length dependence of BACC                                         | V                  | 0.0                           |
| Pwbacc       | Coefficient for the width dependence of BACC                                          | V                  | 0.0                           |
| Plwbacc      | Coefficient for the length times width dependence of BACC                             | V                  | 0.0                           |
| Vfbov        | Flat-band voltage for source/drain overlap extension                                  | V                  | 0.0                           |
| Kov          | Body-effect factor for source/drain overlap extension                                 | V <sup>(1/2)</sup> | 2.5                           |
| Poigov       | Coefficient for the geometry independent part of IGOV                                 | A/V <sup>2</sup>   | 0.0                           |
| Pligov       | Coefficient for the length dependence of IGOV                                         | A/V <sup>2</sup>   | 0.0                           |
| Pwigov       | Coefficient for the width dependence of IGOV                                          | A/V <sup>2</sup>   | 0.0                           |
| Plwigov      | Coefficient for the width over length dependence of IGOV                              | A/V <sup>2</sup>   | 0.0                           |
| _            |                                                                                       |                    |                               |
| Tox<br>Pocox | Thickness of gate oxide layer<br>Coefficient for the geometry independent part of COX | F                  | 3.2e-9<br>2.980e-14<br>(NMOS) |

| Plcox              | Advanced Design System 2011.01 - Nonlinear Device<br>Coefficient for the length dependence of COX | F                                     | 0.0                 |
|--------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|
| Pwcox              | Coefficient for the width dependence of COX                                                       | F                                     | 0.0                 |
| Plwcox             | Coefficient for the width over length dependence COX                                              | F                                     | 0.0                 |
| Pocgdo             | Coefficient for the geometry independent part of CGDO                                             | F                                     | 6.392e-15<br>(NMOS) |
| Plcgdo             | Coefficient for the length dependence of CGDO                                                     | F                                     | 0.0                 |
| Pwcgdo             | Coefficient for the width dependence of CGDO                                                      | F                                     | 0.0                 |
| Plwcgdo            | Coefficient for the width over length dependence CGDO                                             | F                                     | 0.0                 |
| Pocgso             | Coefficient for the geometry independent part of CGSO                                             | F                                     | 6.392e-15<br>(NMOS) |
| Plcgso             | Coefficient for the length dependence of CGSO                                                     | F                                     | 0.0                 |
| Pwcgso             | Coefficient for the width dependence of CGSO                                                      | F                                     | 0.0                 |
| Plwcgso            | Coefficient for the width over length dependence CGSO                                             | F                                     | 0.0                 |
| Gatenoise          | Flag for in/exclusion of induced gate thermal noise                                               | None                                  | 0                   |
| Nt                 | coefficient of thermal noise at actual temperature                                                | J                                     | 1.656e-20           |
| Ponfa              | Coefficient for the geometry independent part of NFA                                              | V <sup>-1</sup> ×m <sup>-</sup><br>1  | 8.323e+22<br>(NMOS) |
| Plnfa              | Coefficient for the length dependence of NFA                                                      | V <sup>-1</sup> ×m⁻<br>1              | 0.0                 |
| Pwnfa              | Coefficient for the width dependence of NFA                                                       | V <sup>-1</sup> ×m <sup>-</sup><br>1  | 0.0                 |
| Plwnfa             | Coefficient for the length times width dependence of NFA                                          | V <sup>-1</sup> ×m⁻<br>1              | 0.0                 |
| Ponfb              | Coefficient for the geometry independent part of NFB                                              | V <sup>-1</sup> ×m <sup>-</sup><br>2  | 2.514e7<br>(NMOS)   |
| PInfb              | Coefficient for the length dependence of NFB                                                      | V <sup>-1</sup> ×m <sup>-</sup><br>2  | 0.0                 |
| Pwnfb              | Coefficient for the width dependence of NFB                                                       | V <sup>-1</sup> ×m⁻<br><sup>2</sup> 2 | 0.0                 |
| Plwnfb             | Coefficient for the length times width dependence of NFB                                          |                                       | 0.0                 |
| Ponfc              | Coefficient for the geometry independent part of NFC                                              | V <sup>-1</sup>                       | 0.0 (NMOS)          |
| PInfc              | Coefficient for the length dependence of NFC                                                      | V <sup>-1</sup>                       | 0.0                 |
| Pwnfc              | Coefficient for the width dependence of NFC                                                       | V <sup>-1</sup>                       | 0.0                 |
| Plwnfc             | Coefficient for the length times width dependence of NFC                                          | V <sup>-1</sup>                       | 0.0                 |
|                    |                                                                                                   |                                       |                     |
| Potvfb             | Coefficient for the geometry independent part of STVFB                                            | V/K                                   | 0.5e-3              |
| Pltvfb             | Coefficient for the length dependence of STVFB                                                    | V/K                                   | 0.0                 |
| Pwtvfb             | Coefficient for the width dependence of STVFB                                                     | V/K                                   | 0.0                 |
| Plwtvfb<br>Databib | Coefficient for the length times width dependence of STVFB                                        | V/K                                   | 0.0                 |
| Potphib            | Coefficient for the geometry independent part of STPHIB                                           | V/K                                   | -0.85e-3            |
| Pltphib            | Coefficient for the length dependence of STPHIB                                                   | V/K                                   | 0.0                 |
| Pwtphib            | Coefficient for the width dependence of STPHIB                                                    | V/K                                   | 0.0                 |
| Plwtphib           | Coefficient for the length times width dependence of STPHIB                                       | V/K                                   | 0.0                 |
| Potetabet          | Coefficient for the geometry independent part of ETABET                                           | None                                  | 1.3 (NMOS)          |
| Pltetabet          | Coefficient for the length dependence of ETABET                                                   | None                                  | 0.0                 |
| Pwtetabet          | Coefficient for the width dependence of ETABET                                                    | None                                  | 0.0                 |
| Plwtetabet         | Coefficient for the length times width dependence of ETABET                                       | None                                  | 0.0                 |

| Potetasr   | Advanced Design System 2011.01 - Nonlinear Device<br>Coefficient for the geometry independent part of ETASR | None            | 0.65 (NMOS) |
|------------|-------------------------------------------------------------------------------------------------------------|-----------------|-------------|
| Pltetasr   | Coefficient for the length dependence of ETASR                                                              | None            | 0.0         |
| Pwtetasr   | Coefficient for the width dependence of ETASR                                                               | None            | 0.0         |
| Plwtetasr  | Coefficient for the length times width dependence of ETASR                                                  | None            | 0.0         |
| Potetaph   | Coefficient for the geometry independent part of ETAPH                                                      | None            | 1.35 (NMOS) |
| Pltetaph   | Coefficient for the length dependence of ETAPH                                                              | None            | 0.0         |
| Pwtetaph   | Coefficient for the width dependence of ETAPH                                                               | None            | 0.0         |
| Plwtetaph  | Coefficient for the length times width dependence of ETAPH                                                  | None            | 0.0         |
| Potetamob  | Coefficient for the geometry independent part of ETAMOB                                                     | K <sup>-1</sup> | 0.0         |
| Pltetamob  | Coefficient for the length dependence of ETAMOB                                                             | K <sup>-1</sup> | 0.0         |
| Pwtetamob  | Coefficient for the width dependence of ETAMOB                                                              | K <sup>-1</sup> | 0.0         |
| Plwtetamob | Coefficient for the length times width dependence of ETAMOB                                                 | K <sup>-1</sup> | 0.0         |
| Nu         | Exponent of the field dependence of the mobility model minus 1 at the reference temperature                 | None            | 2.0         |
| Potnuexp   | Coefficient for the geometry independent part of NUEXP                                                      | None            | 5.25 (NMOS) |
| Pltnuexp   | Coefficient for the length dependence of NUEXP                                                              | None            | 0.0         |
| Pwtnuexp   | Coefficient for the width dependence of NUEXP                                                               | None            | 0.0         |
| Plwtnuexp  | Coefficient for the length times width dependence of NUEXP                                                  | None            | 0.0         |
| Potetar    | Coefficient for the geometry independent part of ETAR                                                       | None            | 0.95 (NMOS) |
| Pltetar    | Coefficient for the length dependence of ETAR                                                               | None            | 0.0         |
| Pwtetar    | Coefficient for the width dependence of ETAR                                                                | None            | 0.0         |
| Plwtetar   | Coefficient for the length times width dependence of ETAR                                                   | None            | 0.0         |
| Potetasat  | Coefficient for the geometry independent part of ETASAT                                                     | None            | 1.04 (NMOS) |
| Pltetasat  | Coefficient for the length dependence of ETASAT                                                             | None            | 0.0         |
| Pwtetasat  | Coefficient for the width dependence of ETASAT                                                              | None            | 0.0         |
| Plwtetasat | Coefficient for the length times width dependence of ETASAT                                                 | None            | 0.0         |
| Pota1      | Coefficient for the geometry independent part of STA1                                                       | K <sup>-1</sup> | 0.0         |
| Plta1      | Coefficient for the length dependence of STA1                                                               | K <sup>-1</sup> | 0.0         |
| Pwta1      | Coefficient for the width dependence of STA1                                                                | K <sup>-1</sup> | 0.0         |
| Plwta1     | Coefficient for the length times width dependence of STA1                                                   | K <sup>-1</sup> | 0.0         |
| wVsubfwd   | Substrate junction forward bias (warning)                                                                   | V               | None        |
| wBvsub     | Substrate junction reverse breakdown voltage (warning)                                                      | V               | None        |
| wBvg       | Gate oxide breakdown voltage (warning)                                                                      | V               | None        |
| wBvds      | Drain-source breakdown voltage (warning)                                                                    | V               | None        |
| wIdsmax    | Maximum drain-source current (warning)                                                                      | А               | None        |
| wPmax      | Maximum power dissipation (warning)                                                                         | W               | None        |
| AllParams  | DataAccessComponent-based parameters                                                                        | None            | None        |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname MOS11 [parm=value]*
```

The model statement starts with the required keyword model. It is followed by the

*modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOS11*. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

#### Example:

```
model Nch12 MOS11 \
Vfbr=-1.0 Phibr=0.8 NMOS=yes
```

#### **Notes/Equations**

1. This model supplies values for an MM11 device.

#### http://www.nxp.com/models/mos\_models/model11/

2. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

# MOS\_Model11\_Electrical (Philips MOS Model 11, Electrical)

#### Symbol



#### **Parameters**

#### Model parameters must be specified in SI units.

| Parameter          | Description                                                                                                                         | Units               | Default                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|
| NMOS               | Model type: yes or no                                                                                                               | None                | yes                           |
| PMOS               | Model type: yes or no                                                                                                               | None                | no                            |
| Level              | Philips Level Name (1101=Electrical 11010=Physical 11011=Binned)                                                                    | None                | 1101                          |
| Tr (Tref,<br>Tnom) | Temperature at which the parameters for the reference transistor have been determined                                               | °C                  | 25                            |
| Vfb                | Flat-band voltage for the reference transistor at the reference temperature                                                         | V                   | -1.05                         |
| Stvfb              | Coefficient of the temperature dependence of VFB                                                                                    | V/K                 | 0.5e-3                        |
| Ко                 | Low-back-bias body factor                                                                                                           | V <sup>(1/2)</sup>  | 0.5                           |
| Kpinv              | Inverse of body-effect factor of the poly-silicon gate                                                                              | V <sup>(-1/2)</sup> | 0.0                           |
| Phib               | Surface potential at the onset of strong inversion                                                                                  | V                   | 0.95                          |
| Stphib             | Coefficient of the temperature dependence of PHIB                                                                                   | V/K                 | -8.5e-4                       |
| Bet                | Gain factor for an infinite square transistor                                                                                       | A/V <sup>2</sup>    | 1.9215e-3 (NMOS),             |
| Etabet             | Exponent of the temperature dependence of the gain factor                                                                           | None                | 1.3 (NMOS)                    |
| Thesrr             | Coefficient of the mobility reduction due to surface roughness scattering for the reference transistor at the reference temperature | V <sup>-1</sup>     | 0.3562 (NMOS), 0.73<br>(PMOS) |
| Etasr              | Exponent of the temperature dependence of THESR for the reference transistor                                                        | None                | 0.65 (NMOS)                   |
| Theph              | Coefficient of the mobility reduction due to phonon scattering                                                                      | V <sup>-1</sup>     | 1.29e-2 (NMOS)                |
| Etaph              | Exponent of the temperature dependence of THESR for the reference transistor                                                        | None                | 1.35 (NMOS)                   |
| Etamob             | Effective field parameter for dependence on depletion/inversion charge                                                              | None                | 1.4 (NMOS)                    |
| Stetamob           | Coefficient of the temperature dependence of ETAMOB                                                                                 | K <sup>-1</sup>     | 0.0                           |
| Nu                 | Exponent of the field dependence of the mobility model minus 1 at the reference temperature                                         | None                | 2.0                           |
|                    |                                                                                                                                     |                     |                               |

Advanced Design System 2011.01 - Nonlinear Devices

|           | Advanced Design System 2011.01 - Nonlinear D                                                     |                                      |                                      |
|-----------|--------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| Nuexp     | Exponent of the temperature dependence of NU                                                     | None                                 | 5.25 (NMOS)                          |
| Ther      | Coefficient of the series resistance                                                             | V <sup>-1</sup>                      | 8.12e-2 (NMOS)                       |
| Etar      | Exponent of the temperature dependence of ETA                                                    | None                                 | 0.95 (NMOS)                          |
| Ther1     | Numerator of the gate voltage dependent part of series resistance for the reference transistor   | V                                    | 0.0                                  |
| Ther2     | Denominator of the gate voltage dependent part of series resistance for the reference transistor | V                                    | 1.0                                  |
| Thesat    | Velocity saturation parameter due to optical/acoustic phonon scattering                          | V <sup>-1</sup>                      | 0.2513 (NMOS),<br>0.1728 (PMOS)      |
| Etasat    | Exponent of the temperature dependence of THESAT                                                 | None                                 | 1.04 (NMOS)                          |
| Theth     | Coefficient on self-heating                                                                      | V <sup>-3</sup>                      | 1.0e-5 (NMOS), 0.0<br>(PMOS)         |
| Sdibl     | Drain-induced barrier-lowering parameter                                                         | V <sup>(-1/2)</sup>                  | 8.53e-4 (NMOS),<br>3.551e-5 (PMOS)   |
| Мо        | Parameter fr short-channel subthreshold slope                                                    | None                                 | 0.0                                  |
| Ssf       | Static feedback parameter                                                                        | V <sup>(-1/2)</sup>                  | 0.012 (NMOS), 0.01<br>(PMOS)         |
| Alp       | Factor of the channel-length modulation                                                          | None                                 | 0.025                                |
| Vp        | Characteristic voltage of channel length modulation                                              | V                                    | 0.05                                 |
| Мехр      | Smoothing factor for the actual transistor                                                       | None                                 | 5.0                                  |
| A1        | Factor of the weak-avalanche current                                                             | None                                 | 6.0221 (NMOS)                        |
| Sta1      | Coefficient of the temperature dependence of A1                                                  | K <sup>-1</sup>                      | 0.0                                  |
| 42        | Exponent of the weak-avalanche current                                                           | V                                    | 38.017 (NMOS)                        |
| A3        | Factor of the drain-source voltage above which weak-avalanche occurs                             | None                                 | 0.6407 (NMOS)                        |
| Iginv     | Gain factor for intrinsic gate tunneling current in inversion                                    | A/V <sup>2</sup>                     | 0.0                                  |
| Binv      | Probability factor for intrinsic gate tunneling current in inversion                             | V                                    | 48.0 (NMOS)                          |
| Igacc     | Gain factor for intrinsic gate tunneling current in accumulation                                 | A/V <sup>2</sup>                     | 0.0                                  |
| Васс      | Probability factor for intrinsic gate tunneling current in accumulation                          | V                                    | 48.0                                 |
| Vfbov     | Flat-band voltage for the source/drain overlap extension                                         | V                                    | 0.0                                  |
| Kov       | Body-effect factor for the source/drain overlap extension                                        | V <sup>(1/2)</sup>                   | 2.5                                  |
| Igov      | Gain factor for source/drain overlap gate tunneling current                                      | A/V <sup>2</sup>                     | 0.0                                  |
| Сох       | Gate-to-channel capacitance                                                                      | F                                    | 2.980e-14 (NMOS)                     |
| Cgdo      | G-D overlap capacitance                                                                          | F                                    | 6.392e-15 (NMOS)<br>6.358e-15 (PMOS) |
| Cgso      | G-S overlap capacitance                                                                          | F                                    | 6.392e-15 (NMOS)                     |
| Gatenoise | Flag for in/exclusion of induced gate thermal noise                                              | None                                 | 0                                    |
| Nt        | Coefficient of the thermal noise at the actual temperature                                       | J                                    | 1.656e-20                            |
| Nfa       | First coefficient of the flicker noise                                                           | V <sup>-1</sup> ×m <sup>-</sup><br>1 | 8.323e+22 (NMOS)                     |
| Nfb       | Second coefficient of the flicker noise                                                          | V <sup>-1</sup> ×m <sup>-</sup><br>2 | 2.514e+7 (NMOS)                      |
| Nfc       | Second coefficient of the flicker noise                                                          | V <sup>-1</sup> ×m <sup>-</sup><br>2 | 0.0 (NMOS)                           |
| Тох       | Thickness of the gate oxide layer                                                                | m                                    | 3.2e-9                               |
| wVsubfwd  | Substrate junction forward bias (warning)                                                        | V                                    | None                                 |
| wBvsub    | Substrate junction reverse breakdown voltage (warning)                                           | V                                    | None                                 |
| wBvg      | Gate oxide breakdown voltage (warning)                                                           | V                                    | None                                 |

Advanced Design System 2011.01 - Nonlinear Devices

| wBvds     | Drain-source breakdown voltage (warning)     | V    | None |
|-----------|----------------------------------------------|------|------|
| wIdsmax   | Maximum drain-source current (warning)       | А    | None |
| wPmax     | Maximum power dissipation (warning)          | W    | None |
| AllParams | Data Access Component (DAC) Based Parameters | None | None |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname MOS11 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOS11*. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

#### Example:

modelNch12 MOS11 \
 Vfbr=-1.0 Phibr=0.8 NMOS=yes

#### **Notes/Equations**

- 1. This model supplies values for an MM11 device.
- 2. Information about this model is available at

#### http://www.nxp.com/models/mos\_models/model11/

3. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

# MOS\_Model11\_Physical (Philips MOS Model 11, Physical)

#### Symbol



#### **Parameters**

#### Model parameters must be specified in SI units.

| Parameter          | Description                                                                                                    | Units               | Default |
|--------------------|----------------------------------------------------------------------------------------------------------------|---------------------|---------|
| NMOS               | Model type: yes or no                                                                                          | None                | yes     |
| PMOS               | Model type: yes or no                                                                                          | None                | no      |
| Level              | Philips Level Name (1101=Electrical 11010=Physical 11011=Binned)                                               | None                | 11010   |
| Lvar               | Difference between the actual and the programmed poly-silicon gate length                                      | m                   | 0.0     |
| Lap                | Effective channel length reduction per side due to the lateral diffusion of the source/drain dopant ions       | m                   | 4.0e-8  |
| Wvar               | Difference between the actual and the programmed field-oxide opening                                           | m                   | 0.0     |
| Wot                | Effective reduction of the channel width per side due to the lateral diffusion of the channel-stop dopant ions | m                   | 0.0     |
| Tr (Tref,<br>Tnom) | Temperature at which the parameters for the reference transistor have been determined                          | °C                  | 21      |
| Vfb                | Flat-band voltage for the reference transistor at the reference temperature                                    | V                   | -1.05   |
| Stvfb              | Coefficient of the temperature dependence of VFB                                                               | V/K                 | 0.5e-3  |
| Kor                | Low-back-bias body factor for the reference transistor                                                         | V <sup>(1/2)</sup>  | 0.5     |
| Slko               | Coefficient of the length dependence of KO                                                                     | m×V<br>(1/)2        | 0.0     |
| Sl2ko              | Second coefficient of the length dependence of KO                                                              | m×V<br>(1/)2        | 0.0     |
| Swko               | Coefficient of the width dependence of KO                                                                      | m×V<br>(1/)2        | 0.0     |
| Kpinv              | Inverse of body-effect factor of the poly-silicon gate                                                         | V <sup>(-1/2)</sup> | 0.0     |
| Phibr              | Surface potential at the onset of strong inversion at the reference temperature                                | V                   | 0.95    |
| Stphib             | Coefficient of the temperature dependence of PHIB                                                              | V/K                 | -8.5e-4 |
| Slphib             | Coefficient of the length dependence of PHIB                                                                   | V×m                 | 0.0     |
| Sl2phib            | Second coefficient of the length dependence of PHIB                                                            | V×m <sup>2</sup>    | 0.0     |

|           | Advanced Design System 2011.01 - Nonlinear Devices                                                                                  |                     |                     |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| Swphib    | Coefficient of the width dependence of PHIB                                                                                         | V×m                 | 0.0                 |
| Betsq     | Gain factor for an infinite square transistor at the reference temperature                                                          | A/V <sup>2</sup>    | 3.709e-4<br>(NMOS), |
| Etabetr   | Exponent of the temperature dependence of the gain factor                                                                           | None                | 1.3 (NMOS)          |
| Sletabet  | Coefficient of the length dependence of ETABET                                                                                      | m                   | 0.0                 |
| Fbet1     | Relative mobility decrease due to first lateral profile                                                                             | None                | 0.0                 |
| Lp1       | Characteristic length of first lateral profile                                                                                      | m                   | 0.8e-6              |
| Fbet2     | Relative mobility decrease due to second lateral profile                                                                            | None                | 0.0                 |
| Lp2       | Characteristic length of second lateral profile                                                                                     | m                   | 0.8e-6              |
| Thesrr    | Coefficient of the mobility reduction due to surface roughness scattering for the reference transistor at the reference temperature | V <sup>-1</sup>     | 0.4 (NMOS),         |
| Etasr     | Exponent of the temperature dependence of THESR for the reference transistor                                                        | None                | 0.65 (NMOS)         |
| Swthesr   | Coefficient of the width dependence of THESR                                                                                        | m                   | 0.0                 |
| Thephr    | Coefficient of the mobility reduction due to phonon scattering for the reference transistor at the reference temperature            | V <sup>-1</sup>     | 1.29e-2<br>(NMOS)   |
| Etaph     | Exponent of the temperature dependence of THESR for the reference transistor                                                        | None                | 1.35 (NMOS)         |
| Swtheph   | Coefficient of the width dependence of THEPH                                                                                        | m                   | 0.0                 |
| Etamobr   | Effective field parameter for dependence on depletion/inversion charge for the reference transistor                                 | None                | 1.4 (NMOS)          |
| Stetamob  | Coefficient of the temperature dependence of ETAMOB                                                                                 | K <sup>-1</sup>     | 0.0                 |
| Swetamob  | Coefficient of the width dependence of ETAMOB                                                                                       | m                   | 0.0                 |
| Nu        | Exponent of the field dependence of the mobility model minus 1 at the reference temperature                                         | None                | 2.0                 |
| Nuexp     | Exponent of the temperature dependence of NU                                                                                        | None                | 5.25 (NMOS)         |
| Therr     | Coefficient of the series resistance for the reference transistor at the reference temperature                                      | V <sup>-1</sup>     | 0.155 (NMOS),       |
| Etar      | Exponent of the temperature dependence of ETA                                                                                       | None                | 0.95 (NMOS)         |
| Swther    | Coefficient of the width dependence of THER                                                                                         | m                   | 0.0                 |
| Ther1     | Numerator of the gate voltage dependent part of series resistance for the reference transistor                                      | V                   | 0.0                 |
| Ther2     | Denominator of the gate voltage dependent part of series resistance for the reference transistor                                    | V                   | 1.0                 |
| Thesatr   | Velocity saturation parameter due to optical/acoustic phonon scattering for the reference transistor at the reference temperature   | V <sup>-1</sup>     | 0.5 (NMOS),         |
| Etasat    | Exponent of the temperature dependence of THESAT                                                                                    | None                | 1.04 (NMOS)         |
| Slthesat  | Coefficient of the length dependence of THESAT                                                                                      | None                | 1.0                 |
| Thesatexp | Exponent of the length dependence of THESAT                                                                                         | None                | 1.0                 |
| Swthesat  | Coefficient of the width dependence of THESAT                                                                                       | m                   | 0.0                 |
| Thethr    | Coefficient on self-heating for the reference transistor at the reference temperature                                               | V <sup>-3</sup>     | 1.0e-3 (NMOS)       |
| Thethexp  | Exponent of the length dependence of THETH                                                                                          | None                | 1.0                 |
| Swtheth   | Coefficient of the width dependence of THETH                                                                                        | m                   | 0.0                 |
| Sdiblo    | Drain-induced barrier-lowering parameter for the reference transistor                                                               | V <sup>(-1/2)</sup> | 1.0e-4              |
| Sdiblexp  | Exponent of the length dependence of SDIBLO                                                                                         | None                | 1.35                |
| Mor       | Parameter fr short-channel subthreshold slope for the reference transistor                                                          | None                | 0.0                 |
| Моехр     | Exponent of the length dependence of MO                                                                                             | None                | 1.34                |
| Ssfr      | Static feedback parameter for the reference transistor                                                                              | V <sup>(-1/2)</sup> | 6.25e-3             |
|           |                                                                                                                                     | -                   |                     |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0<br>0.0<br>0.01<br>1.0<br>1.0<br>0.0<br>0.05<br>1.5e-7<br>6.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Factor of the channel-length modulation for the reference transistor<br>Coefficient of the length dependence of ALP<br>Exponent of the length dependence of ALP<br>Coefficient of the width dependence of SSF<br>Characteristic voltage of channel length modulation<br>Minimum effective channel length in technology, used for calculation of<br>smoothing factor m<br>Factor of the weak-avalanche current for the reference transistor at the<br>reference temperature<br>Coefficient of the temperature dependence of A1<br>Coefficient of the length dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at | None<br>None<br>M<br>V<br>M<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01<br>1.0<br>0.0<br>0.05<br>1.5e-7<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Coefficient of the length dependence of ALP<br>Exponent of the length dependence of ALP<br>Coefficient of the width dependence of SSF<br>Characteristic voltage of channel length modulation<br>Minimum effective channel length in technology, used for calculation of<br>smoothing factor m<br>Factor of the weak-avalanche current for the reference transistor at the<br>reference temperature<br>Coefficient of the temperature dependence of A1<br>Coefficient of the length dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at                                                                         | None<br>m<br>V<br>m<br>None<br>K <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0<br>1.0<br>0.0<br>0.05<br>1.5e-7<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Exponent of the length dependence of ALP<br>Coefficient of the width dependence of SSF<br>Characteristic voltage of channel length modulation<br>Minimum effective channel length in technology, used for calculation of<br>smoothing factor m<br>Factor of the weak-avalanche current for the reference transistor at the<br>reference temperature<br>Coefficient of the temperature dependence of A1<br>Coefficient of the length dependence of A1<br>coefficient of the width dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at                                                                           | None<br>M<br>V<br>M<br>None<br>K <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0         0.0         0.05         1.5e-7         6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Coefficient of the width dependence of SSF<br>Characteristic voltage of channel length modulation<br>Minimum effective channel length in technology, used for calculation of<br>smoothing factor m<br>Factor of the weak-avalanche current for the reference transistor at the<br>reference temperature<br>Coefficient of the temperature dependence of A1<br>Coefficient of the length dependence of A1<br>coefficient of the width dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at                                                                                                                       | m<br>V<br>m<br>None<br>K <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0<br>0.05<br>1.5e-7<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Characteristic voltage of channel length modulation<br>Minimum effective channel length in technology, used for calculation of<br>smoothing factor m<br>Factor of the weak-avalanche current for the reference transistor at the<br>reference temperature<br>Coefficient of the temperature dependence of A1<br>Coefficient of the length dependence of A1<br>coefficient of the width dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at                                                                                                                                                                     | V<br>m<br>None<br>K <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05<br>1.5e-7<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Minimum effective channel length in technology, used for calculation of<br>smoothing factor m<br>Factor of the weak-avalanche current for the reference transistor at the<br>reference temperature<br>Coefficient of the temperature dependence of A1<br>Coefficient of the length dependence of A1<br>coefficient of the width dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at                                                                                                                                                                                                                            | m<br>None<br>K <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5e-7<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Smoothing factor m<br>Factor of the weak-avalanche current for the reference transistor at the<br>reference temperature<br>Coefficient of the temperature dependence of A1<br>Coefficient of the length dependence of A1<br>coefficient of the width dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at                                                                                                                                                                                                                                                                                                       | None<br>K <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| reference temperature<br>Coefficient of the temperature dependence of A1<br>Coefficient of the length dependence of A1<br>coefficient of the width dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at                                                                                                                                                                                                                                                                                                                                                                                                         | K <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Coefficient of the length dependence of A1<br>coefficient of the width dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| coefficient of the width dependence of A1<br>Exponent of the weak-avalanche current for the reference transistor at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Exponent of the weak-avalanche current for the reference transistor at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| the reference temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Coefficient of the length dependence of A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V×m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Coefficient of the width dependence of A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V×m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Coefficient of the length dependence of A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gain factor for intrinsic gate tunneling current in inversion for the reference transistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A/V <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Probability factor for intrinsic gate tunneling current in inversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.0 (NMOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Gain factor for intrinsic gate tunneling current in accumulation for the reference transistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A/V <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Probability factor for intrinsic gate tunneling current in accumulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Flat-band voltage for the source/drain overlap extension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Body-effect factor for the source/drain overlap extension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V(1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gain factor for source/drain overlap gate tunneling current for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A/V <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2e-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2e-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.656e-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| First coefficient of the flicker noise for the reference transistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Second coefficient of the flicker noise for the reference transistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sup>-1</sup> ×m <sup>-</sup><br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Second coefficient of the flicker noise for the reference transistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sup>-1</sup> ×m <sup>-</sup><br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0 (NMOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Substrate junction forward bias (warning)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Substrate junction reverse breakdown voltage (warning)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Gate oxide breakdown voltage (warning)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Drain-source breakdown voltage (warning)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Maximum drain-source current (warning)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Maximum power dissipation (warning)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | actor of the drain-source voltage above which weak-avalanche occurs,<br>or the reference transistor<br>Coefficient of the length dependence of A3<br>Coefficient of the width dependence of A3<br>Coefficient of the intrinsic gate tunneling current in inversion for the<br>eference transistor<br>Probability factor for intrinsic gate tunneling current in accumulation for the<br>eference transistor<br>Probability factor for intrinsic gate tunneling current in accumulation<br>Calat-band voltage for the source/drain overlap extension<br>Body-effect factor for the source/drain overlap extension<br>Body-effect factor for the source/drain overlap extension<br>Calin factor for source/drain overlap gate tunneling current for the<br>eference transistor<br>Fickness of the gate oxide layer<br>Cate overlap capacitance per unit channel width<br>Cag for in/exclusion of induced gate thermal noise<br>Coefficient of the thermal noise at the actual temperature<br>Coefficient of the flicker noise for the reference transistor<br>Coefficient of the flicker noise for the refere | Factor of the drain-source voltage above which weak-avalanche occurs,<br>or the reference transistorNoneCoefficient of the length dependence of A3mCoefficient of the width dependence of A3mSain factor for intrinsic gate tunneling current in inversion for the<br>eference transistorA/V2Probability factor for intrinsic gate tunneling current in accumulation for the<br>eference transistorA/V2Probability factor for intrinsic gate tunneling current in accumulation for the<br>eference transistorVProbability factor for intrinsic gate tunneling current in accumulationVProbability factor for intrinsic gate tunneling current in accumulationVProbability factor for the source/drain overlap extensionVSadap-effect factor for the source/drain overlap extensionVSada of the gate oxide layermFicksoft for in/exclusion of induced gate thermal noiseNoneCoefficient of the flicker noise for the reference transistorV^-1 xm^-1Second coefficient of the flicker noise for the reference transistorV^-1 xm^-2Substrate junction forward bias (warning)VSubstrate junction reverse breakdown voltage (warning)VVarian-source breakdown voltage (warning)VVarian-source breakdown voltage (warning)VVarian-source breakdown voltage (warning)V |

#### **Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelname MOS11 [parm=value]*
```

The model statement starts with the required keyword *model*. It is followed by the *modelname* that will be used by mosfet components to refer to the model. The third parameter indicates the type of model; for this model it is *MOS11*. Use either parameter NMOS=yes or PMOS=yes to set the transistor type. The rest of the model contains pairs of model parameters and values, separated by an equal sign. The name of the model parameter must appear exactly as shown in the parameters table-these names are case sensitive. Some model parameters have aliases, which are listed in parentheses after the main parameter name; these are parameter names that can be used instead of the primary parameter name. Model parameters may appear in any order in the model statement. Model parameters that are not specified take the default value indicated in the parameters table. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim) in Using Circuit Simulators.

#### Example:

```
modelNch12 MOS11 \
  Vfbr=-1.0 Phibr=0.8 NMOS=yes
```

#### **Notes/Equations**

1. This model supplies values for an MM11 device.

#### http://www.nxp.com/models/mos\_models/model11/

2. Use AllParams with a DataAccessComponent to specify file-based parameters (refer to *DataAccessComponent* (ccsim) in *Introduction to Circuit Components*). Note that model parameters that are explicitly specified take precedence over those specified via AllParams. Set AllParams to the DataAccessComponent instance name.

### MOSVAR\_1\_1 (PSP-Based MOS Varactor Version 1.1 Model and Instance)

#### 🖯 Note

For detailed information please refer to the MOSVAR 1.1 manual provided by the Arizona State University at http://pspmodel.asu.edu/downloads/MOSVAR1p1p0.pdf.

#### Model Netlist Format

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to Design Kit Development.

model modelName mosvar\_1\_1 [parm=value]\*

#### Example:

model Nch mosvar\_1\_1 TOXO=2.15e-9

#### **Model Parameters**

| Name (Alias) | Description                                                     | Units | Default    |
|--------------|-----------------------------------------------------------------|-------|------------|
| Gender       | +1=N-type, -1=P-type                                            |       | 1(n),-1(p) |
| Tnom (TR)    | Parameter measurement temperature                               | deg C | 21         |
| Secured      | Secured model parameters                                        |       | 0          |
| VERSION      | model version                                                   |       | 1.1        |
| SUBVERSION   | model subversion                                                |       | 0          |
| REVISION     | model revision                                                  |       | 0          |
| LEVEL        | model level                                                     |       | 1000       |
| TMIN         | minimum reference/ambient temperature                           |       | -100       |
| ТМАХ         | maximum reference/ambient temperature                           |       | 500        |
| VMAX         | maximum voltage applied between nodes g and b                   |       | 10000      |
| LMIN         | minimum allowed drawn length                                    |       | 1e-08      |
| LMAX         | maximum allowed drawn length                                    |       | 9.9e+09    |
| WMIN         | minimum allowed drawn width                                     |       | 1e-08      |
| WMAX         | maximum allowed drawn width                                     |       | 9.9e+09    |
| SWRES        | switch to control series resistance: 0=exclude and 1=include    |       | 1          |
| TYPE         | substrate doping TYPE: -1=n-TYPE and +1=p-TYPE                  |       | -1         |
| ТҮРЕР        | polysilicon doping TYPE: -1=n-TYPE and +1=p-TYPE                |       | -1         |
| тохо         | oxide thickness                                                 |       | 2e-09      |
| TAU          | time constant for inversion charge recombination/generation     |       | 0.1        |
| VFBO         | flatband voltage (for p-TYPE substrate)                         |       | 0          |
| NSUBO        | substrate doping level                                          |       | 3e+23      |
| MNSUBO       | maximum change in absolute doping, limited to 1 order of mag up |       | 1          |
| DNSUBO       | doping profile slope parameter                                  |       | 0          |
| VNSUBO       | doping profile corner voltage parameter                         |       | 0          |
| NSLPO        | doping profile smoothing parameter                              |       | 0.1        |
| NPO          | polysilicon doping level                                        |       | 1e+27      |
| QMC          | quantum mechanical correction factor                            |       | 1          |
| DLQ          | length delta for capacitor size                                 |       | 0          |

| DWQ     | width delta for capacitor size                                                    | 0      |
|---------|-----------------------------------------------------------------------------------|--------|
| DWR     | width delta for substrate resistance calculation                                  | 0      |
| CFRL    | fringing capacitance in length direction                                          | 0      |
| CFRW    | fringing capacitance in width direction                                           | 0      |
| RSHG    | gate sheet resistance                                                             | 1      |
| RPV     | vertical resistance down through gate in units of ohm*m^2                         | 0      |
| REND    | end resistance (extrinsic well res. plus vertical contact res. to well) per width | 0.0001 |
| RSHS    | substrate sheet resistance                                                        | 1000   |
| UAC     | accumulation layer zero bias mobility                                             | 0.05   |
| UACRED  | accumulation layer mobility degradation factor                                    | 0      |
| STVFB   | temperature dependence of VFB                                                     | 0      |
| STRSHG  | temperature dependence of RSHG                                                    | 0      |
| STRPV   | temperature dependence of RPV                                                     | 0      |
| STREND  | temperature dependence of REND                                                    | 0      |
| STRSHS  | temperature dependence of RSHS                                                    | 0      |
| STUAC   | temperature dependence of UAC                                                     | 0      |
| FETA    | Effective field parameter                                                         | 1      |
| SWIGATE | flag for gate current: 0=turn off and 1=turn on                                   | 0      |
| CHIBO   | tunneling barrier height for electrons                                            | 3.1    |
| CHIBPO  | tunneling barrier height for holes                                                | 4.5    |
| STIG    | temperature dependence for gate current densities of ECB, HVB                     | 2      |
| LOV     | overlap length                                                                    | 0      |
| NOVO    | effective doping level of overlap regions                                         | 5e+25  |
| IGINVLW | ECB gate channel current pre-factor for 1 um <sup>2</sup> channel area            | 0      |
| IGOVW   | ECB gate overlap current pre-factor for 1 um wide gate overlap region             | 0      |
| GCOO    | ECB gate tunneling energy adjustment                                              | 0      |
| GC2O    | ECB gate current slope factor                                                     | 0.375  |
| GC30    | ECB gate current curvature factor                                                 | 0.063  |
| IGCHVLW | HVB gate channel current pre-factor for 1 um^2 channel area                       | 0      |
| IGOVHVW | HVB gate overlap current pre-factor for 1 um wide gate overlap region             | 0      |
| GCOHVO  | HVB gate tunneling energy adjustment                                              | 0      |
| GC2HVO  | HVB gate current slope factor                                                     | 0.375  |
| GC3HVO  | HVB gate current curvature factor                                                 | 0.063  |
| IGMAX   | maximum gate tunneling current                                                    | 1e-05  |

**Instance Netlist Format** 

modelName [:Name] d g s b

#### Example

Nch:M1 2 1 0 W=10u L=0.9u

#### **Instance Parameters**

| Name (Alias) | Description                     | Units | Default |
|--------------|---------------------------------|-------|---------|
| Тетр         | Device operating temperature    | deg C | 25      |
| Trise (DTA)  | Temperature rise over ambient   | deg C | 0       |
| Mode         | Nonlinear spectral model on/off |       | 1       |
| Noise        | Noise generation on/off         |       | 1       |
| m            | multiplicity factor             |       | 1       |
| W            | design width of varactor        |       | 1e-06   |
| L            | design length of varactor       |       | 1e-06   |
| NGCON        | number of gate contacts         |       | 1       |

#### DC Operating Point Information

| Name | Description | Units |
|------|-------------|-------|
| Ι    | Current     | A     |
| V    | Voltage     | V     |
| Сар  | Capacitance | F     |

## **MOSVAR (PSP-Based MOS Varactor Model)**

#### **Instance Parameters**

| Name  | Description                        | Unit | Default | Min | Max |
|-------|------------------------------------|------|---------|-----|-----|
| m     | Multiplicity factor                |      | 1       | 0   |     |
| W     | Design width of varactor           | m    | 1.0e-6  | 0.0 |     |
| L     | Design length of varactor          | m    | 1.0e-6  | 0.0 |     |
| NGCON | Number of gate contacts            |      | 1       | 1   | 2   |
| DTA   | Local temperature delta to ambient | °C   | 0.0     |     |     |

#### **Model Parameters**

| Name       | Description                                                     | Units           | Default | Min         | Max    |
|------------|-----------------------------------------------------------------|-----------------|---------|-------------|--------|
| VERSION    | Model version                                                   |                 | 1.0     |             |        |
| SUBVERSION | Model subversion                                                |                 | 0.0     |             |        |
| REVERSION  | Model reversion                                                 |                 | 0.0     |             |        |
| LEVEL      | Model level                                                     |                 | 1000    |             |        |
| TMIN       | Minimum reference/ambient temperature                           | °C              | -100.0  | -250.0      | 21.0   |
| ТМАХ       | Maxinum reference/ambient temperature                           | °C              | 500.0   | 21.0        | 1000.0 |
| VMAX       | Maximum voltage applied between nodes g and b                   | V               | 10000.0 | 0.5         |        |
| TR         | Nominal (reference) temperature                                 | °C              | 21.0    | -250.0      | 1000.0 |
| LMIN       | Minimum allowed drawn length                                    | m               | 1.0e-8  | 0.0         |        |
| LMAX       | Maximum allowed drawn length                                    | m               | 9.9e9   | 0.0         |        |
| WMIN       | Minimum allowed drawn width                                     | m               | 1.0e-8  | 0.0         |        |
| WMAX       | Maximum allowed drawn width                                     | m               | 9.9e9   | 0.0         |        |
| SWRES      | Switch to control series resistance: 0=exclude and 1=include    |                 | 1       |             |        |
| TYPE       | Substrate doping TYPE: -1=n-TYPE and +1=p-TYPE                  |                 | -1      |             |        |
| ТҮРЕР      | Polysilicon doping TYPE: -1=n-TYPE and +1=p-TYPE                |                 | -1      |             |        |
| тохо       | Oxide thickness                                                 | m               | 2.0e-9  | 5.0e-<br>10 | 2.0e-8 |
| TAU        | Time constant for inversion charge recombination/generation     | S               | 0.1     | 0           | 10.0   |
| VFBO       | Flatband voltage (for p-TYPE substrate)                         | V               | 0.0     |             |        |
| NSUBO      | Substrate doping level                                          | /m <sup>3</sup> | 3.0e23  | 1.0e22      | 1.0e25 |
| MNSUBO     | Maximum change in absolute doping, limited to 1 order of mag up |                 | 1.0     | 1.0         | 10.0   |
| DNSUBO     | Doping profile slope parameter                                  |                 | 0.0     | 0.0         | 100.0  |
| VNSUBO     | Doping profile corner voltage parameter                         |                 | 0.0     | -5.0        | 5.0    |
| NSLPO      | Doping profile smoothing parameter                              |                 | 0.1     | 0.1         | 1.0    |
| NPO        | Doping profile corner voltage parameter                         | /m <sup>3</sup> | 1.0e27  | 1.0e24      | 1.0e27 |
| QMC        | Quantum mechanical correction factor                            |                 | 1.0     | 0.0         |        |
| DLQ        | Length delta for capacitor size                                 | m               | 0.0     |             |        |

| DWQ     | Width delta for capacitor size                                                    | m                         | 0.0    |        |         |
|---------|-----------------------------------------------------------------------------------|---------------------------|--------|--------|---------|
| DWR     | Width delta for substrate resistance calculation                                  | m                         | 0.0    |        |         |
| CFRL    | Fringing capacitance in length direction                                          | F/m                       | 0.0    | 0.0    |         |
| CFRW    | Fringing capacitance in width direction                                           | F/m                       | 0.0    | 0.0    |         |
| RSHG    | Gate sheet resistance                                                             | Ω / sq                    | 1.0    | 0.0    |         |
| RPV     | Vertical resistance down through gate in units of $\Omega\timesm^2$               | $\Omega \times m^2$       | 0.0    | 0.0    |         |
| REND    | End resistance (extrinsic well res. plus vertical contact res. to well) per width | Ω×m                       | 1.0e-4 | 0.0    |         |
| RSHS    | Substrate sheet resistance                                                        | Ω / sq                    | 1000.0 | 0.0    | 10000.0 |
| UAC     | Accumulation layer zero bias mobility                                             | m <sup>2</sup> / V /<br>s | 5.0e-2 | 0.0    |         |
| UACRED  | Accumulation layer mobility degradation factor                                    | /V                        | 0.0    | 0.0    |         |
| STVFB   | Temperature dependence of VFB                                                     | V / K                     | 0.0    |        |         |
| STRSHG  | Temperature dependence of RSHG                                                    |                           | 0.0    |        |         |
| STRPV   | Temperature dependence of RPV                                                     |                           | 0.0    |        |         |
| STREND  | Temperature dependence of REND                                                    |                           | 0.0    |        |         |
| STRSHS  | Temperature dependence of RSHS                                                    |                           | 0.0    |        |         |
| STUAC   | Temperature dependence of UAC                                                     |                           | 0.0    |        |         |
| STETA   | Effective field parameter                                                         |                           | 1.0    | 0.0    |         |
| SWIGATE | Flag for gate current: 0=turn off and 1=turn on                                   |                           | 0      |        |         |
| СНІВО   | Tunneling barrier height for electrons                                            | V                         | 3.1    | 1.0    |         |
| CHIBOP  | Tunneling barrier height for holes                                                | V                         | 4.5    | 1.0    |         |
| STIG    | Common temperature coefficient for gate currents (ECB,<br>HVB and HVB)            |                           | 2.0    |        |         |
| LOV     | Overlap length                                                                    | m                         | 0.0    | 0.0    |         |
| NOVO    | Effective doping level of overlap regions                                         | /m <sup>3</sup>           | 5.0e25 | 1.0e22 | 1.0e26  |
| IGINVLW | ECB gate channel current pre-factor for 1 $\mu$ m <sup>2</sup> channel area       | A                         | 0.0    | 0.0    |         |
| IGOVW   | ECB gate overlap current pre-factor for 1 µm wide gate overlap region             | A                         | 0.0    | 0.0    |         |
| GCOO    | ECB gate tunneling energy adjustment                                              |                           | 0.0    | -10.0  | 10.0    |
| GC2O    | ECB gate current slope factor                                                     |                           | 0.375  | 0.0    | 10.0    |
| GC30    | ECB gate current curvature factor                                                 |                           | 0.063  | -10.0  | 10.0    |
| IGCHVLM | HVB gate channel current pre-factor for 1 $\mu$ m <sup>2</sup> channel area       | A                         | 0.0    | 0.0    |         |
| IGOVHVW | HVB gate overlap current pre-factor for 1 µm wide gate overlap region             | A                         | 0.0    | 0.0    |         |
| GCOHVO  | HVB gate tunneling energy adjustment                                              |                           | 0.0    | -10.0  | 10.0    |
| GC2HVO  | HVB gate current slope factor                                                     |                           | 0.375  | 0.0    | 10.0    |
| GC3HVO  | HVB gate current curvature factor                                                 |                           | 0.063  | -10.0  | 10.0    |
| IGCEVLM | EVB gate channel current pre-factor for 1 µm <sup>2</sup> channel area            | A                         | 0.0    | 0.0    |         |
| IGOVEVW | EVB gate overlap current pre-factor for 1 µm wide gate overlap region             | A                         | 0.0    | 0.0    |         |
| GCOEVO  | EVB gate tunneling energy adjustment                                              |                           | 0.0    | -10.0  | 10.0    |
| GC2EVO  | EVB gate current slope factor                                                     |                           | 0.375  | 0.0    | 10.0    |
| GC3EVO  | EVB gate current curvature factor                                                 |                           | 0.063  | -10.0  | 10.0    |

modelName:instanceName g bi b [parm=value]

#### Example:

amos:X1 1 2 3 w=10 um l=10 um

#### **Model Netlist Format**

Model statements for the ADS circuit simulator may be stored in an external file. This is typically done with foundry model kits. For more information on how to set up and use foundry model kits, refer to *Design Kit Development* (dkarch).

```
model modelName mosvar [parm=value]
```

The model statement starts with the required keyword model. It is followed by the modelName that will be used by components to refer to the model. The third parameter indicates the type of model; for this model it is mosvar. Use the parameter gender to set the model parameters. Model parameters that are not specified take the default value. For more information about the ADS circuit simulator netlist format, including scale factors, subcircuits, variables and equations, refer to *ADS Simulator Input Syntax* (cktsim).

#### Example:

model model amos mosvar SWRES=1 TOXO=3.6e-9 VFBO=6.0e-2

#### **Notes/Equations**

1. Please see the following PDF document for detailed information: http://pspmodel.asu.edu/downloads/MOSVAR1p0p0.pdf

# **Devices and Models, NXP SiMKit**

The ADS circuit simulator supports the transistor models developed by NXP Semiconductors, called SiMKit. Version 3.4 of SiMKit is currently shipped with the circuit simulator, older versions of SiMKit are available from the NXP website. Please refer to the following website for more information on SiMKit:

http://www.nxp.com/models/source/

The simulator will recognize these models and instances at the netlist level. Schematic level support for ADS is available by downloading the SiMKit design kit from the NXP website. Please refer to the following website for support documentation for the SiMKit 3.4 components and models in ADS:

SiMKit 3.4 Components and Models

(located at <u>http://www.agilent.com/find/eesof</u> in the Support and Services Knowledge Center)

| Model<br>Category    | Netlist Model Names                                                                                                                            |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| BJT 3500             | bjt3500, bjt3500t, bjtd3500, bjtd3500t                                                                                                         |
| BJT 500              | bjt500, bjt500t                                                                                                                                |
| BJT 504<br>(Mextram) | bjt504, bjt504t, bjtd504, bjtd504t                                                                                                             |
| Juncap               | juncap, juncap200                                                                                                                              |
| MOS 11               | mos1100, mos1100e, mos11010, mos11010t, mos11011, mos11011t, mos1101e, mos1101et, mos11020, mos11020t, mos11021, mos11021t mos1102e, mos1102et |
| MOS 20               | mos2001, mos2001e, mos2001et, mos2001t, mos2002, mos2002e, mos2002t, mos2002et                                                                 |
| MOS 31               | mos3100, mos3100t                                                                                                                              |
| MOS 40               | mos4000, mos4000t                                                                                                                              |
| PSP                  | psp103, pspnqs103, psp102e, psp1020, psp1021, pspnqs102e, pspnqs1020, pspnqs1021                                                               |

For detailed information about NXP SiMKit, refer to <a href="http://www.nxp.com/models/source/">http://www.nxp.com/models/source/</a> .

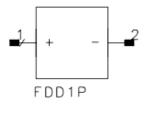
## **Equation-Based Non-Linear Components**

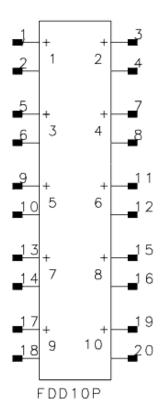
- FDD1P to FDD10P (1- to 10-Port Frequency-Domain Defined Devices) (ccnld)
- NonlinC (Nonlinear Capacitor) (ccnld)
- NonlinCCCS (Nonlinear Current-Controlled Current Source) (ccnld)
- NonlinCCVS (Nonlinear Current-Controlled Voltage Source) (ccnld)
- NonlinL (Nonlinear Inductor) (ccnld)
- NonlinVCCS (Nonlinear Voltage-Controlled Current Source) (ccnld)
- NonlinVCVS (Nonlinear Voltage-Controlled Voltage Source) (ccnld)
- SDD14P (Symbolically Defined Devices, 1-12 and 14 Ports) (ccnld)

### **Multiplicity Parameter \_M**

The multiplicity feature provides a way to scale components or entire sub-circuits containing many components and sub-circuits. Given a component with a multiplicity value M, the simulator treats this component as if there were M such components all connected in parallel. Sub-circuits within sub-circuits will be appropriately scaled.

The \_M parameter is available at the component level as shown here. (For components that do not explicitly have a Multiplicity parameter, the same functionality can be achieved by placing the component in a sub-circuit and using the sub-circuit's Multiplicity parameter, as described next.)


| Select Parameter<br>Model=BJTM1      | I None 🗹                      |  |  |
|--------------------------------------|-------------------------------|--|--|
| Area=<br>Region=                     | Equation Editor               |  |  |
| Temp=<br>Mode=nonlinear<br>Noise=yes | Optimization/Statistics Setup |  |  |
| M=<br>_M : Number of devices         | in parallel, (default: 1)     |  |  |
| OK Apply                             | Cancel Reset Help             |  |  |


For sub-circuits, the parameter is enabled by selecting **File** > **Design Parameters** from the Schematic window. In the dialog box, select the **Parameters** tab. To add the Multiplicity parameter, choose **Add Multiplicity Factor\_M**.

| General   | Param       | eters      |
|-----------|-------------|------------|
| Select Pa | arameter    |            |
|           |             |            |
|           |             |            |
| Add       | Cat         | Paste      |
| Add Mult  | iplicity Fa | actor (_M) |

# **FDD1P to FDD10P (1- to 10-Port Frequency-Domain Defined Devices)**

#### Symbol





#### **Parameters**

| Name    | Description                                                                                                      | Units | Default |
|---------|------------------------------------------------------------------------------------------------------------------|-------|---------|
| I[i, j] | current equation that describes spectral current. $i$ refers to the port number. $j$ refers to a frequency index | None  | None    |
| V[i, j] | voltage equation that describes spectral voltage. $i$ refers to the port number. $j$ refers to a frequency index |       |         |
| Freq[k] | carrier frequency                                                                                                | F     | Hz      |
| Trig[k] | trigger event                                                                                                    |       |         |
| Ce[k]   | clock enable definiiton                                                                                          |       |         |

#### Range of Usage

 $0 \le i \le 10$ 

#### Notes/Equations

- The frequency-domain defined (FDD) device enables you to create equation-based, user-defined, nonlinear components. The FDD is a multi-port device that describes current and voltage spectral values in terms of algebraic relationships of other voltage and current spectral values. It is for developing nonlinear, behavioral models that are more easily defined in the frequency domain.
- 2. For more information on how to use these devices and application examples, refer to *Custom Modeling with Frequency-Domain Defined Devices* (modbuild) in *User-Defined Models*.
- 3. Equations that relate to port spectral voltages and currents are described in the frequency domain. The two basic types of equations are current equations and voltage equations. Their format is:

I[port, findex] = f(\_sv(),\_sv\_d(),\_si(),\_si\_d())
V[port, findex] = f(\_sv(),\_sv\_d(),\_si(),\_si\_d())

where *port* is the port number and *findex* is a frequency index.

The equations can be listed in any order; more than one equation can be used for a single port, but each port must have at least one equation.

The variables of interest at a given port are the port spectral voltages and currents. Spectral voltages and currents can be obtained using the functions:

\_*sv()*, \_*si()*, \_*sv\_d()*, and \_*si\_d()*.

- 4. The Freq parameter enables you to define one or more carrier frequencies.
- 5. The FDD device enables you to define up to 31 trigger events. Any time the value of the trigger expression is equal to a number other than 0, a trigger event is declared for the corresponding trigger.
- 6. Clock enables specify that the output of a given port can change only when a specified trigger, or a set of specified triggers, occurs.

### **NonlinC (Nonlinear Capacitor)**

Symbol



#### **Parameters**

| Name | Description                                                                                                                                                                                                                                                                                                                                    | Units | Default   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
|      | list of coefficients that describe a polynomial that defines capacitance as a function of voltage v across the capacitor where:<br>cap = Coeff[0] + Coeff[1] × v + Coeff[2] × v <sup>2</sup> +,, + Coeff[n] × v <sup>n</sup><br>and coefficients are entered using the list function:<br>Coeff = list (Coeff[0], Coeff[1],Coeff[2],, Coeff[n]) | None  | list(1,1) |

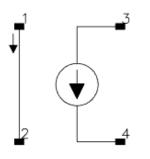
#### **Notes/Equations**

1. The coefficients of the polynomial are specified in the dialog box for this component. Enter the values for each coefficient in a single line.

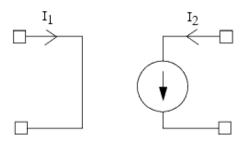
units of Coeff[0] = farads units of Coeff[1] = farads/volt units of Coeff[2] = farads/volt<sup>2</sup>

Coefficients are entered using the list function. For example, if

 $C = 5V^2 + 4V^4$ 


the parameter entry is:

Coeff = list(0,0,5,0,4)


- 2. The controlling voltage V is the voltage across the capacitor, with pin 1 being positive and pin 2 being negative.
- 3. This component has no default artwork associated with it.
- 4. For linear analyses DC, AC and S\_Param, the behavior of this component is linearized around its DC operating point, so the effective value of cap=Coeff[0].

### **NonlinCCCS (Nonlinear Current-Controlled Current** Source)

#### Symbol



#### Illustration



#### **Parameters**

| Name  | Description                                                                                 | Units | Default   |
|-------|---------------------------------------------------------------------------------------------|-------|-----------|
| Coeff | list of coefficients that describe a polynomial that defines output current $I_2$ as a      | None  | list(1,1) |
|       | function of input current $I_1$ : if only one coefficient is specified:                     |       |           |
|       | $I_2 = Coeff[0] \times {I_1}^2$                                                             |       |           |
|       | the coefficient is entered using the list function:<br>Coeff = list(Coeff[0])<br>Otherwise: |       |           |
|       | $I_2$ Coeff[0] + Coeff[1] × $I_1$ + Coeff[2] × $I_1^2$ +, , + Coeff[n] × $I_1^n$            |       |           |
|       | and coefficients are entered as:<br>Coeff = list (Coeff[0], Coeff[1],Coeff[2], , Coeff[n])  |       |           |

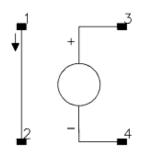
#### **Notes/Equations**

1. The coefficients of polynomial are specified in the dialog box for this component. Enter values for each coefficient in a single line using the list function. For example, if:

$$I_2 = 3 - 2I_1^2 + 5I_1^6$$

the parameter entry is:

Coeff = list(3,0,-2,0,0,0,5)


If  $I_2 = 5I_1$ , then Coeff = list(5)

If  $I_2 = 5$ , then Coeff = list(5,0)

- 2. This component has no default artwork associated with it.
- 3. Output current is in Amperes.

# **NonlinCCVS (Nonlinear Current-Controlled Voltage Source)**

#### Symbol



#### Illustration



#### **Parameters**

| Name  | Description                                                                                                                      | Units | Default   |
|-------|----------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| Coeff | a list of coefficients that describe a polynomial that defines output voltage $V_2$ as a                                         | None  | list(1,1) |
|       | function of input current I <sub>1</sub> :                                                                                       |       |           |
|       | if only one coefficient is specified $V_2 = \text{Coeff}[0] \times I_1$                                                          |       |           |
|       | the coefficient is entered using the list function:<br>Coeff = list(Coeff[0])<br>otherwise:                                      |       |           |
|       | $V_2 = \text{Coeff}[0] + \text{Coeff}[1] \times I_1 + \text{Coeff}[2] \times I_1^2 +, \dots, + \text{Coeff}[n] \times I_1^n$ and |       |           |
|       | coefficients are entered as:<br>Coeff = list (Coeff[0], Coeff[1],Coeff[2], , Coeff[n])                                           |       |           |

Coeff = a list of coefficients that describe a polynomial that defines output voltage  $V_2$  as a

function of input current  $I_1$ :

if only one coefficient is specified

 $V_2 = Coeff[0] \times I_1$ 

the coefficient is entered using the list function:

otherwise:

```
V_2 = Coeff[0] + Coeff[1] \times I_1 + Coeff[2] \times {I_1}^2 +, \dots, + Coeff[n] \times {I_1}^n
```

and coefficients are entered as:

#### Notes/Equations

1. The coefficients of polynomial are specified in the dialog box for this component. Enter values for each coefficient in a single line. Enter values for each coefficient in a single line using the list function. For example, if:

 $V_2 = 3 - 2I_1^2 + 5I_1^6$ 

the parameter entry is:

Coeff = list(3,0,-2,0,0,0,5)

If  $V_2 = 5I_1$ , then Coeff = list(5)

If  $V_2 = 5$ , then Coeff = list(5,0)

- 2. This component has no default artwork associated with it.
- 3. Output voltage is in volts.

## **NonlinL (Nonlinear Inductor)**

Symbol



#### **Parameters**

| Name | Description                                                                                                                                                                                                                                                                                                                       | Units | Default   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
|      | a list of coefficients that describe a polynomial that defines inductance as a function of current through the inductor:<br>L= Coeff[0] + Coeff[1] × I + Coeff[2] × I <sup>2</sup> +,, +Coeff[n] × I <sup>n</sup><br>and coefficients are entered using the list function:<br>Coeff = list(Coeff[0],Coeff[1],Coeff[2],, Coeff[n]) | None  | list(1,1) |

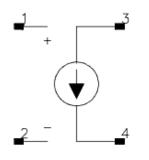
#### **Notes/Equations**

1. The coefficients of the polynomial are specified in the dialog box for this component. Enter the values for each coefficient in a single line.

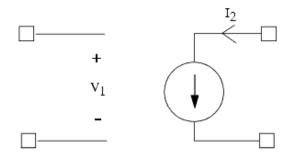
units of Coeff[0] = henries units of Coeff[1] = henries/amp units of Coeff[2] = henries/amp<sup>2</sup>

Coefficients are entered using the list function. For example, if:

 $L = 5I^2 + 4I^4$ 


the parameter entry is:

Coeff = list(0,0,5,0,4)


- 2. The controlling current I is the current flowing from pin 1 to pin 2.
- 3. This component has no default artwork associated with it.
- 4. For linear analyses DC, AC and S\_Param, the behavior of this component is linearized around its DC operating point, so the effective value of L=Coeff[0].

# **NonlinVCCS (Nonlinear Voltage-Controlled Current Source)**

#### Symbol



#### Illustration



#### **Parameters**

| Name  | Description                                                                                 | Units | Default   |
|-------|---------------------------------------------------------------------------------------------|-------|-----------|
| Coeff | a list of coefficients that describe a polynomial that defines output current $I_2$ as a    | None  | list(1,1) |
|       | function of input voltage $V_1$ : if only one coefficient is specified:                     |       |           |
|       | $I_2 = Coeff[0] \times V_1$                                                                 |       |           |
|       | the coefficient is entered using the list function:<br>Coeff = list(Coeff[0])<br>otherwise: |       |           |
|       | $I_2 = Coeff[0] + Coeff[1] \times V1 + Coeff[2] \times V_1^2 +,, +Coeff[n] \times V_1^n$    |       |           |
|       | and coefficients are entered as:<br>Coeff = list (Coeff[0], Coeff[1],Coeff[2], , Coeff[n])  |       |           |

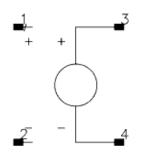
#### **Notes/Equations**

1. The coefficients of polynomial are specified in the dialog box for this component. Enter values for each coefficient in a single line. Enter values for each coefficient in a single line using the list function. For example, if:

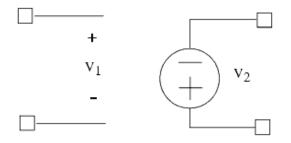
$$I_2 = 3 - 2V_1^2 + 5V_1^6$$

the parameter entry is:

Coeff = list(3,0,-2,0,0,0,5)


If  $I_2 = 5V_1$ , then Coeff = list(5)

If  $I_2 = 5$ , then Coeff = list(5,0)


- 2. This component has no default artwork associated with it.
- 3. Output current is in amperes.

# **NonlinVCVS (Nonlinear Voltage-Controlled Voltage Source)**

#### Symbol



#### Illustration



#### **Parameters**

| Name  | Description                                                                                 | Units | Default   |
|-------|---------------------------------------------------------------------------------------------|-------|-----------|
| Coeff | a list of coefficients that describe a polynomial that defines output voltage $V_2$ as a    | None  | list(1,1) |
|       | function of input voltage $V_1$ : If only one coefficient is specified:                     |       |           |
|       | $V_2 = Coeff [0] \times V_1$                                                                |       |           |
|       | the coefficient is entered using the list function:<br>Coeff = list(Coeff[0])<br>otherwise, |       |           |
|       | $V_2 = Coeff[0] + Coeff[1] \times V1 + Coeff[2] \times V12 +,, +Coeff[n] \times V_1^n$      |       |           |
|       | and coefficients are entered as:<br>Coeff = list (Coeff[0], Coeff[1],Coeff[2], , Coeff[n])  |       |           |

#### **Notes/Equations**

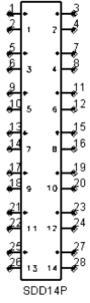
1. The coefficients of polynomial are specified in the dialog box for this component. Enter values for each coefficient in a single line. Enter values for each coefficient in a single line using the list function. For example, if:

$$V_2 = 3 - 2V_1^2 + 5V_1^6$$

the parameter entry is:

Coeff = list(3,0,-2,0,0,0,5)

If  $V_2 = 5V_1$ , then Coeff = list(5)


If  $V_2 = 5$ , then Coeff = list(5,0)

- 2. This component has no default artwork associated with it.
- 3. Output voltage is in volts.

# SDD1P to SDD12P, SDD14P (Symbolically Defined Devices, 1-12 and 14 Ports)

#### Symbol





#### **Parameters**

| Name     | Description                                                                                                                                                                                                                                        | Units | Default           |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
| I[p,w]   | explicit equation that describes port current in terms of voltage. $p$ refers to the port number. $w$ refers to the weighting function (0,1, or user defined).                                                                                     | None  | I[1,0]=(_v1)/50.0 |
| C[n]     | controlling current device name (repeatable).<br><i>n</i> is index of list of controlling currents                                                                                                                                                 | None  | None              |
| Cport[n] | port number on controlling current device to use (repeatable).<br><i>n</i> is index of port number associated with current source C[n]                                                                                                             | None  | 1                 |
| _M       | number of devices in parallel                                                                                                                                                                                                                      | None  | 1                 |
| F[p,w]   | implicit equation defining a nonlinear relationship of port voltages and port currents (or the currents of certain other devices) that is equal to 0. $p$ refers to the port number. $w$ refers to the weighting function (0, 1, or user defined). |       |                   |
| H[w]     | user-defined weighting function                                                                                                                                                                                                                    |       |                   |
| In[p,w]  | equation that specifies the noise current squared. $p$ refers to the port number. $w$ refers to the weighting function (0, 1, or user defined).                                                                                                    |       |                   |
| Nc[p,q]  | complex noise correlation coefficient between ports $p$ and $q$ .                                                                                                                                                                                  |       |                   |

#### Range of Usage

 $1 \le p \le 60$   $1 \le q \le 60$   $1 \le n$  $0 \le w$ , but H[w] is internally pre-defined for  $w = \{0,1\}$ , use only  $2 \le w$  for H[].

#### Notes/Equations

- 1. The symbolically-defined device (SDD) enables you to create equation based, userdefined, nonlinear components. The SDD is a multi-port device which is defined by specifying algebraic relationships that relate the port voltages, currents, and their derivatives, plus currents from certain other devices.
- 2. Devices SDD1P through SDD10P are available from the component palette and library browser. Two additional devices, SDD12P and SDD14P are only available by typing their exact names into the Component History box, pressing Enter, and moving the cursor to the drawing area to place the components.
- 3. The port index *p* starts at 1 and should go no higher than the number of ports on the SDD. SDD1P through SDD10P are available from the *Devices Nonlinear Equation* palette; SDD12P and SDD14P are available for direct placement.
- 4. Port variables, \_*in* and \_*vn* , contain the current and voltage values of a port, respectively. The suffix *n* specifies the port number, for example, the current and voltage variables for port 1 are \_*i1* and \_*v1* , respectively.
- 5. Equations that relate port currents and voltages are specified in the time domain. These constitutive relationships may be specified in either *explicit* or *implicit* representations.

With the *explicit* representation, the current at port k is specified as a function of port voltages:

 $i_k = func(v_1, v_2, \cdots, v_n)$ 

The *implicit* representation uses an implicit relationship between any of the port currents and any of the port voltages:

 $f_k(v_1, v_2, \cdots, v_n, i_1, i_2, \cdots, i_n) = 0$ 

Using the implicit representation, you can also reference current flowing in another device by using controlling currents.

Different types of expressions cannot be mixed-that is, a single port must be described by either implicit or explicit expressions. Every port must have at least one equation.

By convention, a positive port current flows into the terminal marked + .

- 6. A weighting function H[w] is a frequency-dependent expression used to scale the spectrum of a port current. Weighting functions are evaluated in the frequency domain. There are two predefined weighting functions. Weighting function 0 is defined to be identically one; it is used when no weighting is desired. Weighting function 1 is defined as j $\omega$  and is used when a time derivative is desired. Other weighting functions can be defined, starting with 2. H[w] can be made dependent on frequency by using the global variable *freq*.
- 7. An SDD can also be set up to reference the current flowing in another device. The devices that can be referenced are limited to:
  - independent voltage sources
  - current probes and shorts
  - inductors (L and L\_Model)
  - hybrid (primary current only)

- SnP S-parameter devices
- ZnP Z-parameter devices
- SDD (implicit voltage ports only)
  - To specify a current as a control current, you enter the instance name of the device in the C[n] parameter of the SDD. For devices with more than one port (SnP, ZnP, SDD), the port number whose current is to be measured must be specified with Cport[n]. These currents can then be referred to using the variable  $\_cn$  for the n <sup>th</sup> referenced current. The variables  $\_cn$  can be used in the SDD equations along with the SDD port voltages  $\_vn$  and port currents  $\_in$ .
- 8. In [p, w] specifies the short-circuit noise current squared, in units of amperes squared at port p, with weighting function w. This expression should not have a negative value:

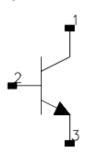
 $< i_{p}, i_{p}^{*} >$ 

When user-defined weighting function H[w] are used with noise, they should be real and non-negative. Only one In[p,w] can be defined for each port p. If there is a need to define two noise currents at one port with different weighting factors, introduce one of them through an additional SDD port that is used only for noise. For example, on a two port SDD the expressions on the left-hand are not legal. Instead, creating a new third port and using the expressions on the right-hand solves the problem:

| Incorrect             | Correct                                 |
|-----------------------|-----------------------------------------|
| SDD2P                 | SDD3P                                   |
| In[1,0]=funcA(_v1)    | $In[1,0] = funcA(\_v1)$                 |
| $In[1,2]=funcB(\_v1)$ | I[3,0]=0                                |
| $H[2] = freq^{**2}$   | $\ln[3,2] = \operatorname{funcB}(\_v1)$ |
|                       | $H[2] = freq^{**2}$                     |

9. Nc[p,q] specifies the complex noise correlation coefficient between ports p and q. It should be a complex number with a magnitude  $\leq 1$ , Nc[p,q)] and Nc[ $_q,p$ ] should be complex conjugates of each other. If only one is specified, the other term is assumed since the noise correlation matrix is assumed to be Hermitian. Nc[p,q] should be a constant for harmonic balance noise analysis. This parameter is not used during Transient Circuit Envelope noise analysis.

$$Nc[p,q] = \frac{\langle i_p, i_q^* \rangle}{\sqrt{\langle i_p, i_p^* \rangle * \langle i_q, i_q^* \rangle}}$$


10. For more information on how to use these devices and application examples, refer to *Custom Modeling with Symbolically-Defined Devices* (modbuild) in *User-Defined Models*.

# **Linear Devices**

- BIP (Bipolar Transistor with Alpha Current Gain) (ccnld)
- BIPB (Bipolar Transistor, with Beta Current Gain) (ccnld)
- DFET (Dual-Gate Field Effect Transistor) (ccnld)
- FET2 (Field Effect Transistor with Source Resistance) (ccnld)
- FET (Field Effect Transistor) (ccnld)
- FETN1 (FET Noise Model (Van der Ziel)) (ccnld)
- FETN2 (FET Noise Model (Statz, et al)) (ccnld)
- FETN3 (FET Noise Model (Fukui)) (ccnld)
- FETN4 (FET Noise Model (Podell)) (ccnld)
- FETN4a (FET Noise Model (Podell)) (ccnld)
- FETN5 (FET Noise Model Gupta, et al)) (ccnld)
- HYBPI (Hybrid-Pi Bipolar Transistor with Alpha Current Gain) (ccnld)
- PIN2 (PIN Diode, Packaged Model) (ccnld)
- PIN (PIN Diode, Chip Model) (ccnld)

# **BIP (Bipolar Transistor with Alpha Current Gain)**

Symbol



#### **Parameters**

| Name | Description                             | Units | Default |
|------|-----------------------------------------|-------|---------|
| Α    | magnitude of current gain (alpha) at DC | None  | 0.99    |
| Т    | time delay associated with current gain | nsec  | 1.0     |
| F    | -3 dB frequency for current gain        | GHz   | 0.1     |
| Cc   | collector capacitance                   | pF    | 10.0    |
| Gc   | collector conductance                   | uS    | 1.0     |
| Rb   | base resistance                         | Ohm   | 2.0     |
| Lb   | base inductance                         | nH    | 1.0     |
| Ce   | emitter capacitance                     | pF    | 10.0    |
| Re   | emitter resistance                      | Ohm   | 2.0     |
| Le   | emitter inductance                      | nH    | 1.0     |

#### Range of Usage

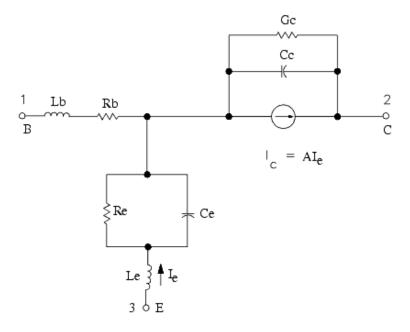
0 < A < 1.0

1.

#### **Notes/Equations**

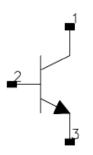
$$A(f) = A \times \frac{e^{-(j2\pi fT)}}{1+j\left(\frac{f}{F}\right)}$$
 (for F

$$A(f) = A \times e^{-(j2\pi fT)} \text{ (for F = 0)}$$


where:

f = simulation frequency F = reference frequency

> 0)


#### Advanced Design System 2011.01 - Nonlinear Devices

- For time-domain analysis, the frequency-domain analytical model is used.
   This component is assumed to be noiseless.
   This component has no default artwork associated with it.



# **BIPB (Bipolar Transistor, with Beta Current Gain)**

Symbol

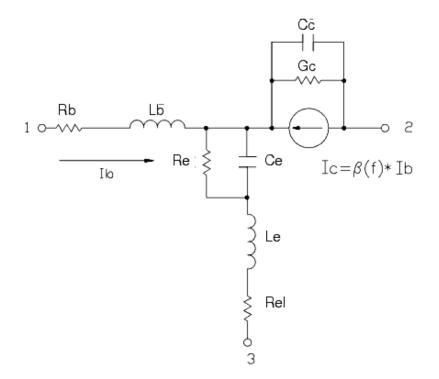


#### **Parameters**

| Name | Description                             | Units | Default |
|------|-----------------------------------------|-------|---------|
| В    | magnitude of current gain (Beta) at DC  | None  | 20.0    |
| A    | phase offset of current gain            | deg   | 0.0     |
| Т    | time delay associated with current gain | nsec  | 1.0     |
| Cc   | collector capacitance                   | pF    | 10.0    |
| Gc   | collector conductance                   | uS    | 1.0     |
| Rb   | base resistance                         | Ohm   | 2.0     |
| Lb   | base inductance                         | nH    | 1.0     |
| Ce   | emitter capacitance                     | pF    | 10.0    |
| Re   | emitter resistance                      | Ohm   | 2.0     |
| Le   | emitter lead inductance                 | nH    | 1.0     |
| Rel  | emitter lead resistance                 | Ohm   | 0.2     |

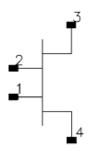
#### **Range of Usage**

B > 0


#### **Notes/Equations**

1. 
$$\beta(f) = B \times e^{-j(2\pi fT_{sec} - A_{radians})}$$

where:


f = simulation frequency in Hz

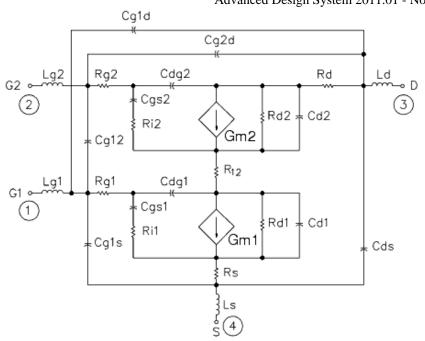
- 2. For time-domain analysis, the frequency-domain analytical model is used.
- 3. This component is assumed to be noiseless.
- 4. This component has no default artwork associated with it.



# **DFET (Dual-Gate Field Effect Transistor)**

Symbol

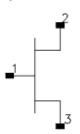



**Parameters** 

#### Advanced Design System 2011.01 - Nonlinear Devices

| Name | Description                             | Units | Default |
|------|-----------------------------------------|-------|---------|
| Gm1  | DC transconductance at gate 1           | uS    | 20.0    |
| T1   | time delay of Gm1                       | nsec  | 1.0     |
| F1   | -3 dB frequency for Gm1                 | GHz   | 1.0     |
| Cgs1 | gate-to-source capacitance - gate 1     | pF    | 10.0    |
| Ri1  | input resistance - gate 1               | Ohm   | 0.1     |
| Cdg1 | drain-to-gate capacitance - gate 1      | pF    | 10.0    |
| Cds1 | drain-to-source capacitance - gate 1    | pF    | 10.0    |
| Rds1 | drain-to-source resistance - gate 1     | Ohm   | 500.0   |
| Rg1  | gate1 resistance                        | Ohm   | 0.1     |
| Lg1  | gate1 inductance                        | nH    | 10.0    |
| Gm2  | dc transconductance - gate 2            | uS    | 20.0    |
| T2   | time delay of Gm2                       | nsec  | 1.0     |
| F2   | -3 dB frequency for Gm2                 | GHz   | 1.0     |
| Cgs2 | gate-to-source capacitance - gate 2     | pF    | 10.0    |
| Ri2  | input resistance - gate 2               | Ohm   | 0.1     |
| Cdg2 | drain-to-gate capacitance - gate 2      | pF    | 10.0    |
| Cds2 | drain-to-source capacitance - gate 2    | pF    | 10.0    |
| Rds2 | drain-to-source resistance - gate 2     | Ohm   | 500.0   |
| Rg2  | gate 2 resistance                       | Ohm   | 0.1     |
| Lg2  | gate 2 inductance                       | nH    | 10.0    |
| Rd   | drain resistance                        | Ohm   | 25.0e-6 |
| Ld   | drain inductance                        | nH    | 1.0     |
| Rs   | source resistance                       | Ohm   | 1.0     |
| Ls   | source inductance                       | nH    | 10.0    |
| Cg1s | gate1-to-source capacitance             | pF    | 10.0    |
| Cg12 | gate1-to-gate2 capacitance              | pF    | 5.0     |
| Cg1d | gate1-to-drain capacitance              | pF    | 10.0    |
| Cg2d | gate2-to-drain capacitance              | pF    | 1.0     |
| Cds  | drain-to-source capacitance             | pF    | 1.0     |
| R12  | resistance between drain 1 and source 2 | Ohm   | 1.0     |

#### **Notes/Equations**


- 1. For time-domain analysis, the frequency-domain analytical model is used.
- 2. This component is assumed to be noiseless.
- 3. This component has no default artwork associated with it.



#### Advanced Design System 2011.01 - Nonlinear Devices

# FET2 (Field Effect Transistor with Source Resistance)





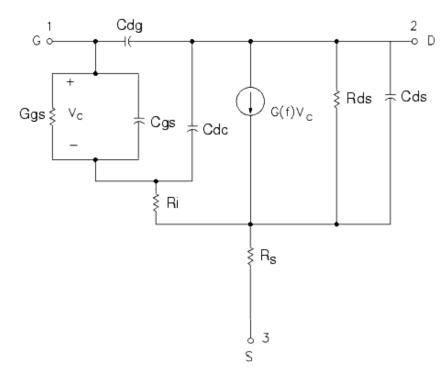
#### **Parameters**

| Name | Description                                 | Units | Default |
|------|---------------------------------------------|-------|---------|
| G    | magnitude of transconductance at DC         | uS    | 20.0    |
| Т    | time delay associated with transconductance | nsec  | 1.0     |
| F    | transconductance roll-off frequency         | GHz   | 1.0     |
| Cgs  | gate-to-source capacitance                  | pF    | 10.0    |
| Ggs  | gate-to-source conductance                  | uS    | 1.0     |
| Ri   | channel resistance                          | Ohm   | 0.1     |
| Cdg  | drain-to-gate capacitance                   | pF    | 10.0    |
| Cdc  | dipole layer capacitance                    | pF    | 10.0    |
| Cds  | drain-to-source capacitance                 | pF    | 10.0    |
| Rds  | drain-to-source resistance                  | Ohm   | 500.0   |
| Rs   | source resistance                           | Ohm   | 0.1     |

#### **Notes/Equations**

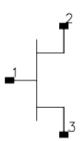
1. Setting F = 0 gives constant transconductance magnitude with respect to frequency:

$$G(f) = G \times \begin{pmatrix} \frac{e^{-(j2\pi fT)}}{1+j\frac{f}{F}} \end{pmatrix} \quad \text{(for } F > 0\text{)}$$


Transconductance = G(f)

Transconductance = G(f) = G ×  $e^{-(j2\pi fT)}$  (for F = 0)

where:


f = simulation frequency, in Hz

- F = reference frequency, in Hz
- T = time delay, in seconds
- 2. For time-domain analysis, the frequency-domain analytical model is used.
- 3. This component is assumed to be noiseless.
- 4. This component has no default artwork associated with it.



# FET (Field Effect Transistor)

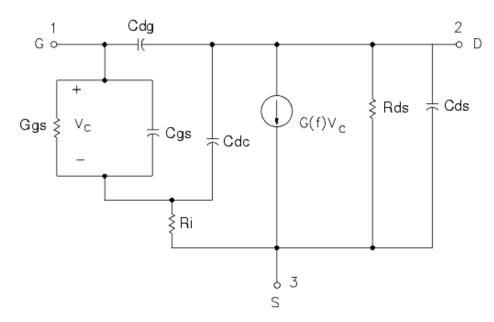




#### Parameters

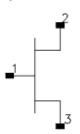
| Name | Description                                 | Units | Default |
|------|---------------------------------------------|-------|---------|
| G    | magnitude of transconductance at DC         | uS    | 20.0    |
| Т    | time delay associated with transconductance | nsec  | 1.0     |
| F    | transconductance roll-off frequency         | GHz   | 1.0     |
| Cgs  | gate-to-source capacitance                  | pF    | 10.0    |
| Ggs  | gate-to-source conductance                  | uS    | 1.0     |
| Ri   | channel resistance                          | Ohm   | 0.1     |
| Cdg  | drain-to-gate capacitance                   | pF    | 10.0    |
| Cdc  | dipole layer capacitance                    | pF    | 10.0    |
| Cds  | drain-to-source capacitance                 | pF    | 10.0    |
| Rds  | drain-to-source resistance                  | Ohm   | 500.0   |

#### **Notes/Equations**


1. Setting F = 0 gives constant transconductance magnitude with respect to frequency:

Transconductance = G(f) = G × 
$$\begin{cases} \frac{e^{-(j2\pi_f T)}}{1+j\overline{F}} \end{cases}$$
 (for F > 0)  
Transconductance = G(f) = G × 
$$e^{-(j2\pi_f T)}$$
 (for F = 0)

where:

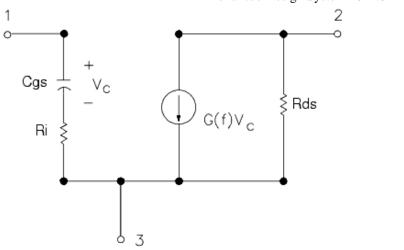

f = simulation frequency, in Hz

- F = reference frequency, in Hz
- T = time delay, in seconds
- 2. For time-domain analysis, the frequency-domain analytical model is used.
- 3. This component is assumed to be noiseless.
- 4. This component has no default artwork associated with it.



# FETN1 (FET Noise Model (Van der Ziel))



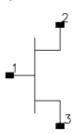



#### Parameters

| Name | Description                                 | Units | Default |
|------|---------------------------------------------|-------|---------|
| G    | magnitude of transconductance               | S     | 0.03    |
| Т    | time delay associated with transconductance | psec  | 3.0     |
| Cg   | gate-to-source capacitance                  | pF    | 0.40    |
| Ri   | channel resistance                          | Ohm   | 3.0     |
| Rds  | drain-to-source resistance                  | Ohm   | 300.0   |
| Р    | noise parameter P (see references)          | None  | 0.8     |
| R    | noise parameter R (see references)          | None  | 1.2     |
| С    | noise parameter C (see references)          | None  | 0.90    |

#### **Notes/Equations**

- 1. This component provides a linear bias-independent FET noise model (by A. Van der Ziel) for use during a noise analysis. The signal performance of the component is determined by the equivalent circuit shown following these notes.
- 2. The effect of feedback or parasitics on the noise performance of FETN1 is determined by connecting appropriate circuit components externally to FETN1.
- 3. For time-domain analysis, the frequency-domain analytical model is used.
- 4. This component has no default artwork associated with it.

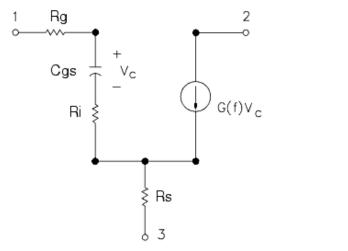



#### References

- 1. C. Liechti "Microwave Field Effect Transistors-1976," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-24, June 1976, pp. 279-300.
- A. Van der Ziel, "Gate Noise in Field Effect Transistors at Moderately High Frequencies," *Proceedings of the IEEE*, Vol. 51, March 1963, pp. 461-467.
   A. Van der Ziel, "Thermal Noise in Field Effect Transistors," *Proceedings of the IRE*,
- Vol. 50, August 1962, pp. 1808-1812.

# FETN2 (FET Noise Model (Statz, et al))



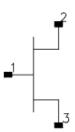



#### **Parameters**

| Name | Description                                 | Units | Default |
|------|---------------------------------------------|-------|---------|
| G    | magnitude of transconductance               | S     | 0.03    |
| Т    | time delay associated with transconductance | psec  | 3.0     |
| Cgs  | gate-to-source capacitance                  | pF    | 0.40    |
| Ri   | channel resistance                          | Ohm   | 3.0     |
| Rs   | drain-to-source resistance                  | Ohm   | 3.70    |
| Rg   | gate resistance                             | Ohm   | 0.80    |
| Kr   | noise parameter Kr (see references)         | None  | 0.050   |
| Kc   | noise parameter Kc (see references)         | None  | 1.4     |
| Kg   | noise parameter Kg (see references)         | None  | 1.50    |

#### **Notes/Equations**

- 1. This component provides a linear bias-independent FET noise model (by Statz, et al.) for use during a noise analysis. The signal performance of the component is determined by the equivalent circuit shown following these notes.
- 2. The effect of feedback or parasitics on the noise performance of FETN2 is determined by connecting appropriate circuit components externally to FETN2.
- 3. For time-domain analysis, the frequency-domain analytical model is used.
- 4. This component has no default artwork associated with it.

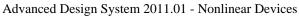


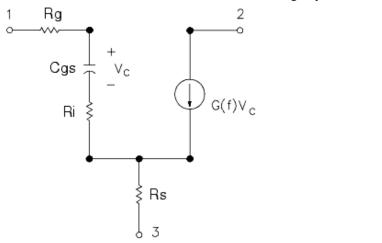

#### References

- R. Pucel, H. Haus, and H. Statz. "Signal and Noise Properties of Gallium Arsenide Microwave Field-Effect Transistors," *Advances in Electronics and Electron Physics*, Vol. 38. New York: Academic Press, 1975, pp. 195-265.
- 2. R. Pucel, D. Masse, and C. Krumm. "Noise Performance of Gallium Arsenide Field-Effect Transistors," *IEEE Journal of Solid-State Circuits,* Vol. SC-11, April 1976, pp. 243-255.
- 3. H. Statz, H. Haus, and R. Pucel. "Noise Characteristics of Gallium Arsenide Field-Effect Transistors," *IEEE Transactions on Electron Devices*, Vol. ED-21, September 1974, pp. 549-562.

# FETN3 (FET Noise Model (Fukui))





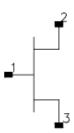


#### **Parameters**

| Name | Description                                 | Units | Default |
|------|---------------------------------------------|-------|---------|
| G    | magnitude of transconductance               | S     | 0.03    |
| Т    | time delay associated with transconductance | psec  | 3.0     |
| Cgs  | gate-to-source capacitance                  | pF    | 0.40    |
| Ri   | channel resistance                          | Ohm   | 3.0     |
| Rs   | source resistance                           | Ohm   | 3.70    |
| Rg   | gate resistance                             | Ohm   | 0.80    |
| K1   | noise parameter K1 (see references)         | None  | 0.020   |
| K2   | noise parameter K2 (see references)         | None  | 0.800   |
| K3   | noise parameter K3 (see references)         | None  | 2.2     |
| K4   | noise parameter K4 (see references)         | None  | 160.0   |

#### Notes/Equations

- 1. This component provides a linear bias-independent FET noise model (by Fukui) for use during a noise analysis. The signal performance of the component is determined by the equivalent circuit shown following these notes.
- 2. The effect of feedback or parasitics on the noise performance of FETN3 is determined by connecting appropriate circuit components externally to FETN3.
- 3. The expressions that relate the noise parameters to the model components (G, Cgs, for example) and the K1-K4 parameters use the model components in specific units. The values of K1-K4 should conform to these units of the model components. (See references.)
- 4. For time-domain analysis, the frequency-domain analytical model is used.
- 5. This component has no default artwork associated with it.



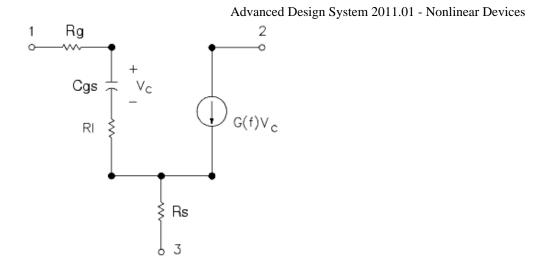



#### References

- 1. H. Fukui, "Design of Microwave GaAs MESFET's for Broad-Band Low-Noise Amplifiers," *IEEE Transactions on Microwave Theory and Techniques,* Vol. MTT-27, July 1979, pp. 643-650.
- 2. H. Fukui, Addendum to "Design of Microwave GaAs MESFET's for Broad-Band Low-Noise Amplifiers," *IEEE Transactions on Microwave Theory and Techniques,* Vol. MTT-29, October 1981.

# FETN4 (FET Noise Model (Podell))



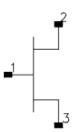



#### Parameters

| Name  | Description                                    | Units | Default |
|-------|------------------------------------------------|-------|---------|
| G     | magnitude of transconductance                  | S     | 0.03    |
| Т     | time delay associated with transconductance    | psec  | 3.0     |
| Cgs   | gate-to-source capacitance                     | pF    | 0.40    |
| Ri    | channel resistance                             | Ohm   | 3.0     |
| Rs    | source resistance                              | Ohm   | 3.70    |
| Rg    | gate resistance                                | Ohm   | 0.80    |
| NFmin | minimum noise figure                           | dB    | 2.0     |
| FRef  | reference frequency at which NFMin is measured | GHz   | 10.0    |

#### **Notes/Equations**

- 1. This component provides a linear bias-independent FET noise model (by Podell) for use during a noise analysis. The signal performance of the component is determined by the equivalent circuit shown following these notes.
- 2. The effect of feedback or parasitics on the noise performance of FETN4 is determined by connecting appropriate circuit components externally to FETN4.
- 3. For time-domain analysis, the frequency-domain analytical model is used.
- 4. This component has no default artwork associated with it.

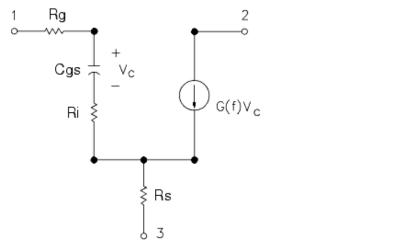



#### References

1. A. Podell, "A Functional GaAs FET Noise Model," *IEEE Transactions on Electron Devices*, Vol. ED-28, No. 5, May 1981, pp. 511-517.

# FETN4a (FET Noise Model (Podell))



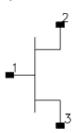



#### Parameters

| Name | Description                                 | Units | Default |
|------|---------------------------------------------|-------|---------|
| G    | magnitude of transconductance               | S     | 0.03    |
| Т    | time delay associated with transconductance | psec  | 3.0     |
| Cgs  | gate-to-source capacitance                  | pF    | 0.40    |
| Ri   | channel resistance                          | Ohm   | 3.0     |
| Rs   | source resistance                           | Ohm   | 3.70    |
| Rg   | gate resistance                             | Ohm   | 0.80    |
| K    | noise parameter K (see references)          | None  | 1.0     |

#### **Notes/Equations**

- 1. This component provides a linear bias-independent FET noise model (by Podell) for use during a noise analysis. The signal performance of the component is determined by the equivalent circuit shown following these notes.
- 2. This model is the same as FETN4 except that the input parameter related to the noise performance for FETN4a is K, whereas FETN4 uses NFMin and FRef. Specifying K instead of NFMin and FRef is an alternate way to describe the same model.
- 3. The effect of feedback or parasitics on the noise performance of FETN4a is determined by connecting appropriate circuit components externally to FETN4a.
- 4. For time-domain analysis, the frequency-domain analytical model is used.
- 5. This component has no default artwork associated with it.

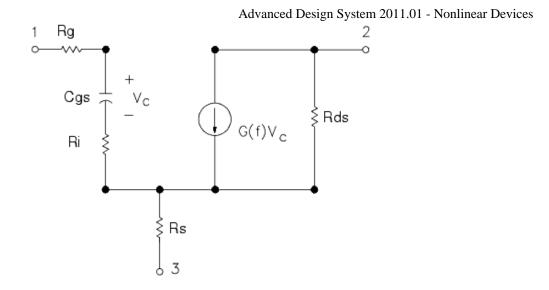



#### References

1. A. Podell, "A Functional GaAs FET Noise Model," *IEEE Transactions on Electron Devices,* Vol. ED-28, No. 5, May 1981, pp. 511-517.

## FETN5 (FET Noise Model Gupta, et al))



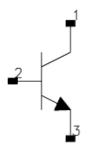



#### **Parameters**

| Name | Description                                 | Units                                       | Default |
|------|---------------------------------------------|---------------------------------------------|---------|
| G    | magnitude of transconductance               | S                                           | 0.03    |
| Т    | time delay associated with transconductance | psec                                        | 3.0     |
| Cgs  | gate-to-source capacitance                  | pF                                          | 0.40    |
| Ri   | channel resistance                          | Ohm                                         | 3.0     |
| Rds  | drain-to-source resistance                  | Ohm                                         | 450.0   |
| Rs   | source resistance                           | Ohm                                         | 3.70    |
| Rg   | gate resistance                             | Ohm                                         | 0.80    |
| Sio  | noise parameter Sio                         | picoamperes squared per Hz (see references) | 710     |

#### **Notes/Equations**

- 1. This component provides a linear bias-independent FET noise model (by Gupta, et al.) for use during a noise analysis. The signal performance of the component is determined by the equivalent circuit shown following these notes.
- 2. The effect of feedback or parasitics on the noise performance of FETN5 is determined by connecting appropriate circuit components externally to FETN5.
- 3. For time-domain analysis, the frequency-domain analytical model is used.
- 4. This component has no default artwork associated with it.




#### References

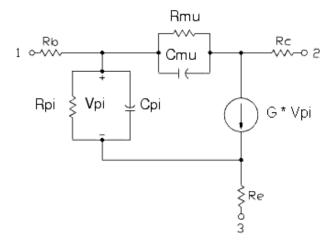
- 1. M. Gupta, O. Pitzalis, S. Rosenbaum, and P. Greiling. "Microwave Noise Characterization of GaAs MESFET's: Evaluation by On-Wafer Low-Frequency Output Noise Current Measurement," *IEEE Transactions on Microwave Theory and Techniques,* Vol. MTT-35, No. 12, December 1987, pp. 1208-1217.
- 2. M. Gupta and P. Greiling. "Microwave Noise Characterization of GaAs MESFET's: Determination of Extrinsic Noise Parameters," *IEEE Transactions on Microwave Theory and Techniques,* Vol. 36, No. 4, April 1988, pp. 745-751.

### HYBPI (Hybrid-Pi Bipolar Transistor with Alpha Current Gain)

#### **Symbol**



#### **Parameters**


| Name | Description                     | Units | Default |
|------|---------------------------------|-------|---------|
| G    | transconductance                | uS    | 20.0    |
| Т    | transit time                    | nsec  | 1.0     |
| Срі  | base-emitter (pi) capacitance   | pF    | 10.0    |
| Rpi  | base-emitter (pi) resistance    | Ohm   | 0.01    |
| Cmu  | base-collector (mu) capacitance | pF    | 5.0     |
| Rmu  | base-collector (mu) resistance  | Ohm   | 1000.0  |
| Rb   | base resistance                 | Ohm   | 0.02    |
| Rc   | collector resistance            | Ohm   | 500.0   |
| Re   | emitter resistance              | Ohm   | 0.04    |

#### Range of Usage

 $\begin{array}{l} \text{Rpi} > 0 \\ \text{Rmu} > 0 \end{array}$ 

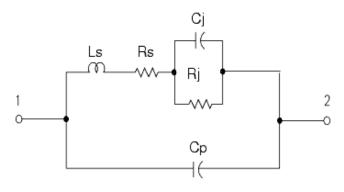
#### **Notes/Equations**

- 1. For time-domain analysis, the frequency-domain analytical model is used.
- 2. This component is assumed to be noiseless.
- 3. This component has no default artwork associated with it.



# PIN2 (PIN Diode, Packaged Model)

**Symbol** 




#### **Parameters**

| Name | Description          | Units | Default |
|------|----------------------|-------|---------|
| Cj   | junction capacitance | nF    | 0.01    |
| Rj   | junction resistance  | Ohm   | 0.01    |
| Rs   | series resistance    | Ohm   | 0.01    |
| Ls   | series inductance    | nH    | 1.0     |
| Ср   | package capacitance  | nF    | 0.1     |

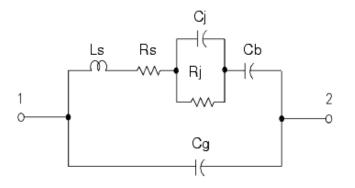
#### **Notes/Equations**

- This component is assumed to be noiseless.
   This component has no default artwork associated with it.



# PIN (PIN Diode, Chip Model)

Symbol




#### **Parameters**

| Name | Description                                        | Units | Default |
|------|----------------------------------------------------|-------|---------|
| Cj   | junction capacitance                               | nF    | 0.1     |
| Rj   | junction resistance                                | Ohm   | 0.01    |
| Rs   | diode series resistance                            | Ohm   | 0.01    |
| Ls   | bond wire inductance                               | nH    | 1.0     |
| Cb   | by-pass capacitance                                | nF    | 0.1     |
| Cg   | capacitance of gap across which diode is connected | nF    | 0.1     |

#### **Notes/Equations**

- 1. This component is assumed to be noiseless.
- 2. This component has no default artwork associated with it.

